
DISCRETE SEMICONDUCTORS

DATA SHEET

BAT54W seriesSchottky barrier (double) diodes

Product specification Supersedes data of October 1993 1996 Mar 19

Philips Semiconductors Product specification

Schottky barrier (double) diodes

BAT54W series

FEATURES

- · Low forward voltage
- · Guard ring protected
- · Very small SMD package.

APPLICATIONS

- · Ultra high-speed switching
- · Voltage clamping
- · Protection circuits
- · Blocking diodes.

DESCRIPTION

Planar Schottky barrier diodes encapsulated in a SOT323 very small plastic SMD package. Single diodes and double diodes with different pinning are available.

MARKING

TYPE NUMBER	MARKING CODE
BAT54W	L4
BAT54AW	42
BAT54CW	43
BAT54SW	44

PINNING

PIN	BAT54			
PIN	W	AW	CW	sw
1	а	k ₁	a ₁	a ₁
2	n.c.	k ₂	a ₂	k ₂
3	k	a ₁ , a ₂	k ₁ , k ₂	k ₁ , a ₂

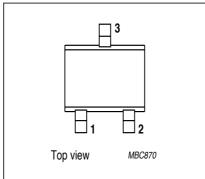
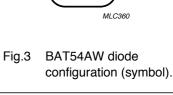



Fig.1 Simplified outline (SOT323) and pin configuration.

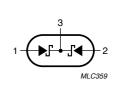


Fig.4 BAT54CW diode configuration (symbol).

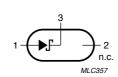


Fig.2 BAT54W single diode configuration (symbol).

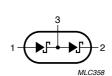


Fig.5 BAT54SW diode configuration (symbol).

1996 Mar 19 2

Philips Semiconductors Product specification

Schottky barrier (double) diodes

BAT54W series

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT	
Per diode	Per diode					
V _R	continuous reverse voltage		_	30	٧	
I _F	continuous forward current		_	200	mA	
I _{FRM}	repetitive peak forward current	$t_p \le 1 \text{ s}; \delta \le 0.5$	_	300	mA	
I _{FSM}	non-repetitive peak forward current	t _p < 10 ms	_	600	mA	
P _{tot}	total power dissipation (per package)	T _{amb} ≤ 25 °C	_	200	mW	
T _{stg}	storage temperature		-65	+150	°C	
Tj	junction temperature		_	125	°C	
T _{amb}	operating ambient temperature		-65	+125	°C	

ELECTRICAL CHARACTERISTICS

T_{amb} = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT		
Per diode	Per diode					
V _F	forward voltage	see Fig.6				
		I _F = 0.1 mA	240	mV		
		I _F = 1 mA	320	mV		
		I _F = 10 mA	400	mV		
		I _F = 30 mA	500	mV		
		I _F = 100 mA	800	mV		
I _R	reverse current	V _R = 25 V; note 1; see Fig.7	2	μΑ		
t _{rr}	reverse recovery time	when switched from I_F = 10 mA to I_R = 10 mA; R_L = 100 Ω ; measured at I_R = 1 mA: see Fig.9	5	ns		
C _d	diode capacitance	f = 1 MHz; V _R = 1 V; see Fig.8	10	pF		

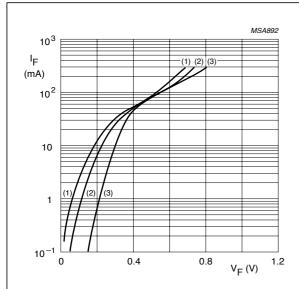
Note

1. Pulsed test: $t_p = 300 \mu s$; $\delta = 0.02$.

THERMAL CHARACTERISTICS

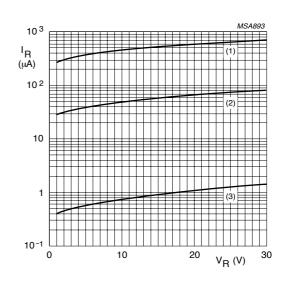
SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th i-a}	thermal resistance from junction to ambient	note 1	625	K/W

Note

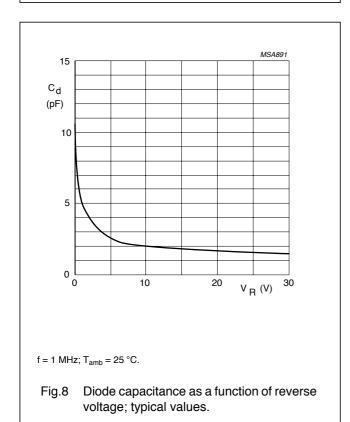

1. Refer to SOT323 standard mounting conditions.

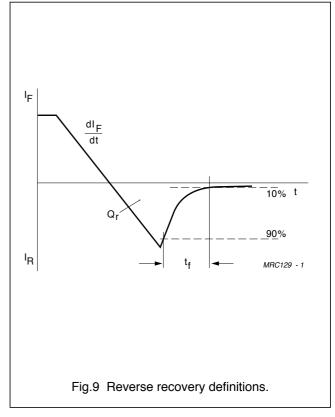
1996 Mar 19 3

Schottky barrier (double) diodes


BAT54W series

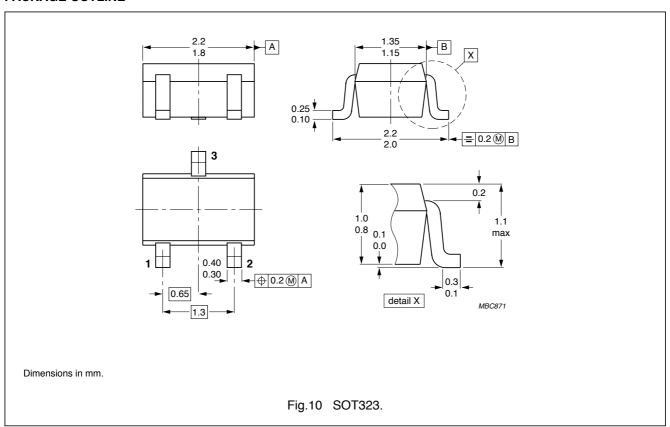
GRAPHICAL DATA


- (1) $T_{amb} = 125 \,^{\circ}C$.
- (2) $T_{amb} = 85 \, ^{\circ}C$.
- (3) $T_{amb} = 25 \,^{\circ}C$.


Fig.6 Forward current as a function of forward voltage; typical values.

- (1) $T_{amb} = 125 \,^{\circ}C$.
- (2) $T_{amb} = 85 \,^{\circ}C$.
- (3) $T_{amb} = 25 \,^{\circ}C$.

Fig.7 Reverse current as a function of reverse voltage; typical values.



Philips Semiconductors Product specification

Schottky barrier (double) diodes

BAT54W series

PACKAGE OUTLINE

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

1996 Mar 19 5