

©

 1998 Microchip Technology Inc.





DS00690A-page 1

M

INTRODUCTION

This application note describes a method to automati-
cally detect the memory size of a serial EEPROM con-
nected to an I

2

C bus. The topics include:
• Automatic detection of memory size on the I

2

C
bus

• Standard I

2

C
• Smart Serial or the I

2

C Dilemma
• Another set of routines for I

2

C
• How to tell the addressing scheme
• How to tell the size
• Putting it all together
• Debugging
• Compatibility
• References

AUTOMATIC DETECTION OF
MEMORY SIZE ON THE I

2

C BUS

The purpose of this application note is to show how to
solve a common problem in microcontroller applica-
tions with Serial EEPROMs. User needs often dictate
different memory sizes for different versions of an appli-
cation, but cost constraints require the smallest possi-
ble memory to be used each time. A typical application
example could be the base station (receiver) of a
remotely controlled garage door opener. Versions
capable of storing 4, 20, 200 or 1000 users could be
implemented from a single source code complement-
ing the controller with the appropriate memories.
Microchip currently offers a very broad range of mem-
ory capacities with I

2

C bus interface (from 16 bytes in
the 24C00 up to 32k bytes in the 24C256).
The microcontroller has to be able to tell which mem-
ory it is dealing with on the I

2

C bus in order to address
it properly.
There are two possible approaches to the problem, one
is to provide some kind of configuration information to
the controller by means of dip switches or jumpers, the
other one is to make the controller capable of automatic

detection. In this application note, we will show how to
implement the automatic detection in an easy, safe and
compatible way.
The software techniques explained in the following will
be demonstrated on a generic mid-range PICmicro

®

microcontroller (MCU), PIC16C62A and can be tested
immediately using a PICDEM2 demo board.
All the code can be adapted to any other PICmicro
MCU (12, 14 and 16 bit core) and/or pin configuration
with minor modifications to the source code.

Standard I

2

C

The I

2

C protocol utilizes a master/slave bi-directional
communication bus. The master, usually a microcon-
troller that controls the bus, generates the serial clock
(SCL) and originates the start and stop conditions. A
Serial EEPROM is considered a slave device and is
defined as a transmitter during read operations and
generates acknowledges when receiving data from the
master. The start and stop bits are utilized to control the
bus. Normal operation begins with a start bit and ends
with a stop bit. Following a start, commands begin with
an 8 bit 'control' byte originated by the master. The con-
trol byte identifies the slave device to be addressed and
defines the operation to take place. A typical control
byte for a Serial EEPROM (slave address =

1010

) is
shown in Figure 1. The control byte, therefore, consists
of a start bit, a four-bit slave address, a read/write bit
and an acknowledge. The slave address consists of the

1010

 identifying address plus the three block or chip
select bits A2,A1,A0.

Smart Serial or the I

2

C Dilemma [ref 3]

The I

2

C serial bus has many advantages over other
common serial interfaces for serial embedded devices.
The I

2

C bus with level-triggered inputs offers better
noise immunity over edge-triggered technology.
Opcodes are not needed to communicate with storage
devices because all interfaces are intuitive and compa-
rable to parallel devices.
But the standard protocol limits addressing up to a
maximum of 16K bytes of memory on the bus via the 8-
bit address and the three device or memory block
select pins A0, A1, and A2 (8x2kbytes).
Herein lies the dilemma. With the advent of the more
sophisticated personal communication devices such as
cellular and full-featured phones, personal digital assis-
tants and palm-top computers, 16K bytes is not
enough!

Author: Lucio Di Jasio
Microchip Technology , Italy

AN690

I

2

C™ Memory Autodetect

AN690

DS00690A-page 2





©

 1998 Microchip Technology Inc.

So the Smart Serial concept grew from the industry’s
need for increased memory requirements in I

2

C
embedded applications, smarter endurance perfor-
mance, security needs, and the need for more function-
ality at lower power demands.
Microchip Technology has designed an addressing
scheme for I

2

C Serial EEPROM based on the standard
I

2

C protocol and device addresses, but incorporating
an additional address byte for enabling the designer to
use up to 256K bits per device and add from 1 to 8
devices on the system bus. This flexibility allows for
future memory expansion and more advanced features
in a smaller, more cost effective design.
For the first byte, or control byte, the Smart Serials
adhere to the I

2

C protocol (reference Figure 2). The
next 2 bytes (instead of one) define the address of the
requested memory location.

Another Set of Routines for I

2

C bus

Many application notes have already been published
by Microchip Technology on the I

2

C bus interface such
as: AN515, AN537, AN558, AN567, AN608, AN554,
AN578 and AN535. In the following, we will use tech-
niques and code taken from those application notes as
a base to build a new compact, powerful set of routines.
The first step will be to modify a basic set of routines
[ref1,2,4,6,8] to make them capable of producing Stan-
dard I

2

C and Smart Serial addressing, selecting the
addressing scheme at run time by means of a flag (that
we will call: SMART).
Listing 1 (

i2c.inc

) shows the new set of routines. As
usual, there are two layers of functions:
• The lower layer (composed of routines:

BSTOP

,

BSTART

,

RXI2C

,

TXI2C

,

BITIN

,

BITOUT

,

ERR

; list-
ing starts from line 153) deals with sending and
detecting the single bits and bytes on the bus and
contains no new code.

• The higher layer (composed of routines:

RDbyte

,

WRbyte

 and

SETI2C

, from line 1 to 152) assem-
bles commands and takes care of addressing
schemes. This will be the focus of our discussion.

What is new here, is that we moved to function

SETI2C

(lines 112..152) all the code that deals with the details
of the addressing scheme. This function gets a SMART
flag as an input and provides Standard or Smart
addressing according to its value. Both

RDbyte

 and

WRbyte

 rely on

SETI2C

 for the command and address
generation, and therefore are now compatible with
Standard and Smart Serial.

Determining the Addressing Scheme

As a next small step toward automatic memory size
detection we need to find a method to distinguish auto-
matically between a Smart Serial and a Standard
Serial EEPROM.

The algorithm proposed is very simple and compact,
made up of only the following 4 steps:
1. Put in Smart Serial mode the I

2

C routines (set
SMART flag).

2. Issue a write command to location 0000, writing
a 1.

(0000) <- 00
(0001) <- 01
If the memory is a Smart Serial, then we get the correct
interpretation.
(0000) <- 01
3. Put in Standard I

2

C Mode the I

2

C routines (clear
the SMART flag).

4. Issue a read command of location 0000.
If the memory really is a Standard I

2

C, then this read
command will give us the contents of location 0000,
and that was set to 0!.
If the memory is a Smart Serial, we get a read com-
mand with a partial (incomplete) addressing.
What happens in this case is not really part of the I

2

C
bus definition, so let's analyze two possible cases.
a) Partial addressing set only the most significant

bits of the internal address register and leaves
unattached the lower 8 bits. This means that we
will read location 0000.

b) Partial addressing doesn't modify at all the
address register. This means that the address
remains equal to the last value set (by the last
Smart Write) and reading gives the contents of
location 0000.

If in both cases we end up reading a 1, that tells us that
it was a Smart Serial memory. If a 0 was read, then it
was a Standard I

2

C serial memory.
Listing 2) (

i2cauto.asm

) lines 108..120 implement in
just 10 lines of assembly this simple algorithm.

Determining Memory Size

The last step toward automatic memory size detection
is the development of an algorithm to tell the size of a
memory given its addressing scheme. That is, suppose
we know whether it is a Standard or Smart, we want to
be able to measure its size.

Note:

If the memory is a standard I

2

C, this com-
mand is interpreted as a sequential write
command of two bytes that produces writ-
ing a 00 byte to location 0000 and a 01
byte to location 0001.

Note:

Locations 0000 and 0001 are obviously
corrupted through this procedure and
there is no way to save and restore them
(until the addressing scheme is known!).

AN690

©

 1998 Microchip Technology Inc.





DS00690A-page 3

We will base the detection algorithm on a simple
assumption which is:

If a memory is of size N, then trying to address
locations out of the 0..N-1 range will produce a fall
back in the same range (modulus N). Since the
most significant (extra) address bits will be simply
ignored, they are DON'T CARE bits to the device
as can be easily verified from each device data
sheet.

We can develop a simple test function to tell us whether
a memory is of a given size N (or smaller).
In a high level pseudo language, such a test function
could look like this:

EXAMPLE 1:

function TestIfSizeIs(Size N): boolean
(// is memory range 0..N-1 ?
 var TEMP;
 TEMP = Read(0000);

 if (Read(N) == TEMP)
 Write(0000, TEMP+1)

 if (Read(N) == TEMP+1)
 Write(0,TEMP-1)
 return(TRUE)
 // else
 return(FALSE)
) //end function

Having this function, we can then set up a loop to test
memory sizes.
In the case of the Standard I

2

C, we can loop and test
from N=128 to N=2048 corresponding to models from
24C01 up to 24C16 doubling N at each iteration as in
the following:

EXAMPLE 2:

function StandardI2CMemDetect() : integer
(// returns a model number 1..16

 N = 128
 MODEL = 1
 loop

 if (TestIfSizeIs(N))
 break

 else
 N=N*2

 MODEL=MODEL*2
 while(N<=2048)

return (MODEL);
) //end function

Similarly, a function to measure Smart Serial memories
will loop with N=4096 up to N=32768.
Please note that in this second algorithm, no memory
location had to be reserved. Even location 0 that is
modified could always be saved and restored by the
test algorithms.

PUTTING IT ALL TOGETHER

Now all the pieces of the puzzle are ready and we can
complete our automatic memory size detection routine.
First we determine the addressing scheme, and once
that is known, we enter a loop to measure the actual
memory size. Depending on the addressing scheme,
we will enter the loop with different initial values corre-
sponding to the different ranges of memory according
to the memory models available on the market.
Listing 2 (

i2cauto.asm

) lines 136..174 implement in
assembly in a very compact way both algorithms.

Debugging

Assembling the code and testing it on a PIC16C62A on
a PICDEM2 board or any other target board (after mod-
ifying the pin definitions in listing 2 (

i2cauto.asm

)
lines 48..60) will prove the functionality of the proposed
code. Just insert an I

2

C memory in the DIL socket on
the PICDEM2 board, power up or press the reset but-
ton, and voila', on the LEDs will appear the binary rep-
resentation of the memory TYPE value according to
Table 1.

AN690

DS00690A-page 4





©

 1998 Microchip Technology Inc.

TABLE 1 MEMORY TYPE VALUE

The reader is invited to experiment and modify further
this software to adapt it to their specific needs. When
doing so, we strongly recommend having at hand the
SEEVAL kit, a cheap and effective tool from Microchip
Technology that allows the designer to read/write any
Serial EEPROM and connects to any PC through the
serial port. Further consider the "Endurance" software
tool from Microchip Technology, while designing mem-
ory applications where reliability and endurance are
critical.[ref 9,10]

Compatibility

While most of the code presented strictly follows the
existing I

2

C and Smart Serial standards, it should be
compatible with any Serial EEPROM device from any
manufacturer, that adheres to such standards. Only
Microchip Serial EEPROMs were tested. It is left up to
the user to validate this code for Serial E

2

 from other
manufacturers.
Further, there is some space for discussion, as a pos-
sible future compatibility issue, on the addressing
scheme detection method. As a matter of fact, the
behavior of the serial memory in case of partial
addressing (as it occurs during step 4 in the case of
Smart Serial) is not part of the specification. While it
works with current implementations of the Smart Serial
protocol (from Microchip and up to the 24C256), it is not
guaranteed to do so in the future.

References

[1] AN515 Communicating with I

2

C™ Bus Using the
PIC16C5X, Bruce Negley
[2] AN535 Logic Powered Serial EEPROMs, R. J.
Fisher and Bruce Negley
[3] AN558 Using the 24xx65 and the 24xx32 with
Stand-alone PIC16C54 Code, Dick Fisher and Bruce
Negley
[4]AN567 Interfacing the 24LCxxB Serial EEPROMs to
the PIC16C54, Bruce Negley
[5] AN608 Converting to 24LCXXB and 93LCxx Serial
EEPROMs, Nathan John
[6] AN536 Basic Serial EEPROM Operation, Steve
Drehobl
[7] AN554 Software Implementation of I

2

C™ Bus Mas-
ter, Amar Palacherla
[8] AN559 Optimizing Serial Bus Operations with
Proper Write Cycle Times, Lenny French
[9] AN537 Serial EEPROM Endurance, Steve Drehobl
[10] AN602 How to get 10 Million Cycles Out of Your
Microchip Serial EEPROM, David Wilkie

Standard I

2

C Smart Serial

Type Size Model Type Size Model

01 128 24C01/21/41 32 4096 24C32
02 256 24C02/62 64 8192 24C65/64
04 512 24C04 128 16384 24C128
08 1024 24C08 0 32768 24C256
16 2048 24C16/164

AN690

©

 1998 Microchip Technology Inc.





DS00690A-page 5

FIGURE 1: CONTROL BYTE ALLOCATION

FIGURE 2: BYTE WRITE

Slave Address R/W A

START READ/WRITE

1 10 0 A1 A0A2

Bus Activity
Master

SDA Line

Bus Activity

S

A
C
K

Control
Byte

S
T
A
R
T

A
C
K

Word
Address (1)

Word
Address (0)

A
C
K

Data

A
C
K

S
T
O
P

AN690

DS00690A-page 6





©

 1998 Microchip Technology Inc.

APPENDIX A:

LISTING 1:

I2C.INC

;**
;* Filename: I2C.INC
;**
;* Author: Lucio Di Jasio
;* Company: Microchip Technology
;* Revision: RevA0
;* Date: 5-7-98
;* Assembled using MPASM v02.15
;**
;* Two wire/I2C Bus READ/WRITE Sample Routines
;* both Smart Serial and Standard I2C addressing schemes supported
;* PIC16CXXX mid-range (14 bit core) version
;*
;* Note: 1) All timing is based on a reference crystal frequency of 4MHz
;* which is equivalent to an instruction cycle time of 1 usec.
;* 2) Address and literal values are read in hexidecimal unless
;* otherwise specified.
;***
;*
;* Register File Assignment
;***
 CBLOCK
 FLAGS
 INDHI ; address
 INDLO
 DATO ; data buffer for read write functions
 ERCODE ; error code (see table below)
 EEBUF ; read write buffer
 SLAVEbuf ; SLAVE address (+ addrHi on 24LC16)
 COUNT
 AUX
 ENDC
;**
; flag definitions
;
#define FLAG_EE FLAGS,0 ; I2C bus error
#define SMART FLAGS,1 ; Smart(1) Standard(0)
;
;***
;* Bit Assignments
;***

#define SLAVE B'10100000' ; Device address (1010xxx0)

; error codes
#define ERR_NACK 1 ; no ACK reading
#define ERR_STOP 2 ; SDA locked in STOP
#define ERR_TOWR 3 ; time out in read (>20ms)
#define ERR_LOCK 4 ; SDA locked in BITOUT

;***
;* RDbyte
;* read one byte from serial EEPROM device
;*
;* Input : INDHI/LO
;* SLAVE = device address (1010xxx0)
;* Output : DATO = data read from serial EEPROM
;***
;
RDbyte bcf FLAG_EE ; reset error flag
 call SETI2C ; set address pointer

; enter here for sequential reading

AN690

©

 1998 Microchip Technology Inc.





DS00690A-page 7

RDnext call BSTART ; START
 movf SLAVEbuf,W ; use SLAVE addr(+IndHi se 24LC16)
 movwf EEBUF
 bsf EEBUF,0 ; it's a read command
 call TXI2C ; Output SLAVE + address + read command
 call RXI2C ; read in DATO and ACKnowledge
 movf EEBUF,W
 movwf DATO

 bsf STATUS,C ; set ACK = 1 (NOT ACK)
 call BITOUT ; to STOP further input
 goto BSTOP ; generate STOP bit

;***
;* WRbyte
;* write one byte to EEPROM device
;*
;* Input : DATO = data to be written
;* INDHI/LO= EEPROM data address
;* SLAVE = device address (1010xxx0)
;* PROT = 1-> SmartSerial | 0> Standard
;* Output : FLAG_EE = set if operation failed
;***

WRbyte bcf FLAG_EE ; reset error condition
 call SETI2C ; set address pointer
 movf DATO,W ; move DATO
 movwf EEBUF ; into buffer
 call TXI2C ; output DATO and detect ACKnowledge
 call BSTOP ; generate STOP bit

; loop waiting for writing complete
 movlw .80 ; 80 test=20ms timeout
 movwf AUX
WRpoll CLRWDT ; keep the WDT from resetting
 bcf FLAG_EE
 call BSTART ; invia start
 movlw SLAVE
 movwf EEBUF
 call TXI2C ; ed un comando di scrittura
 btfss FLAG_EE ; se non da ACK -> ercode 3 -> BUSY
 goto WRpollE
WRbusy decfsz AUX,F
 goto WRpoll
 movlw ERR_TOWR ; time out in scrittura
 call ERR
WRpollE goto BSTOP ; exit sending the stop condition

;***
;* SETI2C
;* set the address pointer at INDHI/LO, use Smart or Standard
;* addressing scheme according to SMART flag
;*
;* Input : INDHI = EEPROM data address
;* INDLO
;* SLAVE = device address (1010xxx0)
;* SMART = 1-> Smart Serial | 0> Standard I2C
;* Output : SLAVEbuf for sequential read
;***
SETI2C
 btfsc SMART ; if clear -> Standard I2C
 goto Smart ; if set -> Smart Serial

Standard
 bcf STATUS,C ;

AN690

DS00690A-page 8  © 1998 Microchip Technology Inc.

 rlf INDHI,W ; add address MSb
 iorlw SLAVE ; to slave address
 movwf EEBUF
 movwf SLAVEbuf ; save for sequential read
 call BSTART ; generate START bit
 call TXI2C ; output first comand byte
 goto SETseq

Smart
 movlw SLAVE ; prepare slave address
 movwf EEBUF
 movwf SLAVEbuf ; save for sequential read
 call BSTART ; generate START bit
 call TXI2C ; output first command byte
 movf INDHI,W ;
 movwf EEBUF ; output address MSB
 call TXI2C

SETseq
 movf INDLO,W ; send address LSB
 movwf EEBUF
 goto TXI2C ; Output WORD address

;***
;* TXI2C
;* transmit 8 data bits
;*
;* Input : EEBUF
;* Output : none
;***
TXI2C
 movlw .8 ; Set counter for eight bits
 movwf COUNT

TXlp
 rlf EEBUF,F ; data bit in CARRY
 call BITOUT ; Send bit
 decfsz COUNT,F ; 8 bits done?
 goto TXlp ; No.

 call BITIN ; Read acknowledge bit
 movlw ERR_NACK
 btfsc STATUS,C ; Check for acknowledgement
 call ERR ; No acknowledge from device
 return

;***
;* BITOUT
;* send single bit
;*
;* Input : bit in CARRY
;* Output : Bit transmitted over I2C
;* Error bits set as necessary
;***
BITOUT
 btfss STATUS,C ; is it 0/1?
 goto Bit0

Bit1
 bsf STATUS,RP0 ; select RAM bank 1
 bsf SDA ; input SDA (pull up->1)
 bcf STATUS,RP0 ; back to RAM bank 0
 movlw ERR_LOCK
 btfss SDA ; Check for error
 call ERR ; SDA locked low by device
 goto Clk1

AN690

© 1998 Microchip Technology Inc.  DS00690A-page 9

Bit0
 bsf STATUS,RP0 ; select RAM bank 1
 bcf SDA ; Output SDA
 bcf STATUS,RP0 ; back to RAM bank 0
 bcf SDA ; clear 0
 nop ; Delay

Clk1
 bsf SCL ; rise SCL
 nop
 nop
 nop ; Timing delay 4us minimum
 nop
 nop
 bcf SCL ; lower SCL
 return

;
;***
;* RXI2C
;* receive eight data bits
;*
;* Input : None
;* Output : RXBUF = 8-bit data received
;***
RXI2C
 movlw .8 ; 8 bits of data
 movwf COUNT
 clrf EEBUF

RXlp
 call BITIN ; new bit in CARRY
 rlf EEBUF,F ; enter new bit
 decfsz COUNT,F ; 8 bits?
 goto RXlp
 return

;
;***
;* BITIN
;* Single bit receive
;*
;* Input : None
;* Output : EEBUF,0 bit received
;***
BITIN
 bsf STATUS,RP0 ; select RAM bank 1
 bsf SDA ; Set SDA for input
 bcf STATUS,RP0 ; back to RAM bank 0
 bsf SCL ; Clock high
 nop
 nop
 nop
 nop ; provide minimum Tset up
 CLRC
 btfsc SDA ; Read SDA pin in CARRY
 bsf STATUS,C
 bcf SCL ; Return SCL to low
 return

;***
;* START bit generation
;*
;* input : none
;* output : initialize bus communication

AN690

DS00690A-page 10  © 1998 Microchip Technology Inc.

;***
BSTART
 bsf STATUS,RP0 ; select RAM bank 1
 bsf SDA ; SDA input (pull-up ->1)
 bcf STATUS,RP0 ; back to RAM bank 0
 bsf SCL ; Set clock high
 nop
 nop
 nop
 nop ; 5us before falling SDA
 bsf STATUS,RP0 ; select RAM bank 1
 bcf SDA ; SDA output
 bcf STATUS,RP0 ; back to RAM bank 0
 bcf SDA ; set SDA = 0
 nop
 nop
 nop
 nop ; 4us before falling SCL
 bcf SCL ; Start clock train
 return

;***
;* STOP bit generation
;*
;* Input : None
;* Output : Bus communication, STOP condition
;***
BSTOP
 bsf STATUS,RP0 ; select RAM bank 1
 bcf SDA ; SDA output
 bcf STATUS,RP0 ; back to RAM bank 0
 bcf SDA ; set SDA = 0
 bsf SCL ; Set SCL high
 nop
 nop
 nop
 nop ; 4us before rising SDA
 bsf STATUS,RP0 ; select RAM bank 1
 bsf SDA ; SDA input (pull-up ->1) while SCL high
 bcf STATUS,RP0 ; back to RAM bank 0
 movlw ERR_STOP ; Ready error code
 btfss SDA ; High?
 call ERR ; Error, SDA locked before STOP

 bcf SCL ; lower SCL
 return
;
;***
;* Two wire/I2C - CPU communication error status table
;*
;* input : W-reg = error code
;* output : ERCODE = error code
;* FLAG(ERROR) = 1
;***
ERR
 bcf STATUS,RP0 ; back to RAM bank 0
; record last error

 movwf ERCODE ; Save error code
 bsf FLAG_EE ; Set error flag
 return

AN690

© 1998 Microchip Technology Inc.  DS00690A-page 11

LISTING 2: I2CAUTO.ASM
LIST n=0, c=132
RADIX HEX
PROCESSORPIC16C62A

;**
;* Filename: I2CAUTO.ASM
;**
;* Author: Lucio Di Jasio
;* Company: Microchip Technology
;* Revision: RevA0
;* Date: 5-7-98
;* Assembled using MPASM v02.15
;**
;* Include files:
;* p16c62A.inc rev1.01
;*
;**
;* software detection of I2C memory size
;*
;* PIC16CXXX /+5V
;* +-----------+ |
;* | Vdd+--------------+--------+ 24CXXX
;* | | +++ | +--------+
;* | | | | +--+Vdd |
;* | | | | 4k7 | |
;* | | +++ | |
;* | RC4+--------------+-----------+SDA |
;* | RC3+--------------------------+SCL |
;* | | | |
;* | Vss+--------------+-----------+Vss |
;* +-----------+ | +--------+
;* GND
;*
;* can be tested on a PICDEM2 demo board
;**

 INCLUDE "P16C62A.INC"

 __CONFIG _XT_OSC & _CP_OFF & _WDT_ON
 __IDLOCS H'62A0'

;**
;* external 4MHZ crystal oscillator
;* no code protection
;* no watchdog
;* ID code is "62A0"
;**

; pin assignments

#define SDA PORTC,4 ; i I2C SDA
#define SCL PORTC,3 ; o I2C SCL

MASKA equ 0FF ; unused all inputs

MASKB equ 00 ; all outputs to LEDs

MASKC equ b'11110111' ; SCL and SDA on this port
; enable SCL as output
;
;--
; RAM assignments
;
 CBLOCK 20
 TEMP
 SIZELO ; memory size

AN690

DS00690A-page 12  © 1998 Microchip Technology Inc.

 SIZEHI
 TYPE ; memory type
 ENDC

;**

 org 00 ; reset vector

 goto Start

;**

 org 04 ; interrupt vector

 retfie ; esce riabilitando gli interrupt

;**

 INCLUDE "i2c.inc"

;**
;* MemDetect,
;* automatic detection of memory size
;*
;* INPUT:
;* none
;* OUTPUT:
;* SIZEHI/LO memory size as detected
;* TYPE memory type (see table below)
;* FLAG_EE bus error flag
;* ERCODE bus error code
;*
;* Standard I2C Smart Serial
;* TYPE SIZE MODEL TYPE SIZE MODEL
;* 01 128 24C01/21/41 32 4096 24C32
;* 02 256 24C02/62 64 8192 24C65/64
;* 04 512 24C04 128 - 16384 24C128
;* 08 1024 24C08 0 - 32768 24C256
;* 16 2048 24C16/164
;*
;**
MemDetect
 clrf INDHI ; address 0000h
 clrf INDLO
 bsf SMART ; write(smart, 0000, 1)
 movlw 1
 movwf DATO
 call WRbyte
 bcf SMART
 call RDbyte ; read(standard, 0000)
 movf DATO,W
 btfsc STATUS,Z
 goto StandardD
SmartD
 bsf SMART ; it is a Smart Serial
 movlw HIGH(.4096)
 movwf SIZEHI ; size = 4096 byte
 clrf SIZELO
 movlw .32
 movwf TYPE ; start with TYPE = 24C32
 goto TestD

StandardD
 bcf SMART ; it is a Standard Serial
 movlw .128

AN690

© 1998 Microchip Technology Inc.  DS00690A-page 13

 movwf SIZELO ; size = 128 byte
 clrf SIZEHI
 movlw 01
 movwf TYPE ; start with TYPE = 24C01

TestD
 call RDbyte ; TEMP=read(0)
 movf DATO,W
 movwf TEMP
LoopDet movf SIZELO,W ; DATO=read(SMART, size)
 movwf INDLO
 movf SIZEHI,W
 movwf INDHI
 call RDbyte
 movf DATO,W
 xorwf TEMP,W ; compare TEMP with DATO
 btfss STATUS,Z
 goto LoopDN
 incf TEMP,W ; if same value than TEMP=TEMP+1
 movwf TEMP
 movwf DATO
 clrf INDHI
 clrf INDLO
 call WRbyte ; write(SMART, 0000, TEMP)
 movf SIZELO,W ; if (read(SMART, size) == TEMP)
 movwf INDLO
 movf SIZEHI,W
 movwf INDHI
 call RDbyte
 movf DATO,w ; if still same value it means
 xorwf TEMP,W ; we reached the actual memory size
 btfsc STATUS,Z
 goto DetEx

LoopDN
 bcf STATUS,C ; double memory size
 rlf SIZELO,F
 rlf SIZEHI,F
 bcf STATUS,C
 rlf TYPE,F ; double TYPE code
 btfss TYPE,4
 goto LoopDet ;
DetEx
 nop
 return

;**
; init ports and option register
;
Start
 bsf STATUS,RP0 ; select RAM bank 1
 movlw MASKA ; set tris registers
 movwf PORTA ; PORTA
 movlw MASKB ;
 movwf PORTB ; PORTB
 movlw MASKC ;
 movwf PORTC ; PORTC

 movlw b'00000111' ; enable pull_ups, prescale TMR0 1:256
 movwf OPTION_REG

 bcf STATUS,RP0
 clrf FLAGS ; reset all flags

AN690

DS00690A-page 14  © 1998 Microchip Technology Inc.

;**
;

Main
 call MemDetect ; determine memory size

 movf TYPE,W ; if using a PICDEM2 board
 movwf PORTB ; send TYPE to the LEDs

MainLoop
 goto MainLoop ; stuck in the loop until reset

 END

AN690

© 1998 Microchip Technology Inc.  DS00690A-page 15

NOTES:

 2002 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip Tech-
nology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.
If you have any further questions about this matter, please contact the local sales office nearest to you.

 2002 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02

WORLDWIDE SALES AND SERVICE

	Introduction
	Automatic detection of memory size on the I2C bus
	Standard I2C
	Smart Serial or the I2C Dilemma [ref 3]
	Another Set of Routines for I2C bus
	Determining the Addressing Scheme
	Determining Memory Size

	Putting it all together
	Debugging
	Compatibility
	References

	Appendix A
	Worldwide Sales and Service

