

What Readers Are Saying About

Cocoa Programming: A Quick-Start Guide for Developers

Cocoa Programming is powerful because Daniel Steinberg teaches

us the brilliant way Cocoa and Objective C are constructed and

commonly used—just what you’d expect from a seasoned, native, local

resident.

Eric Freeman

Author, Head First Design Patterns

Over the years, as a programmer experienced in many different

languages and paradigms, I’ve come to dread the process of learning

new programming languages and technologies. It’s really hard to

find a teacher who can speak to experienced programmers without

boring us to tears with oversimplification or taking too much prior

knowledge for granted. In this book, Daniel Steinberg has proven to be

such a teacher. Cocoa Programming exposes the beauty of the Cocoa

environment with just enough detail and explanation to help you “get

it” the first time.

Chad Fowler

CTO, InfoEther, Inc.

If you are writing applications for the Mac, the iPhone, or the exciting

new iPad, this book will get you started. The programming model for

all three platforms is essentially the same, and this book will teach it

to you. Get this book so you have a solid foundation to write the next

big hit.

Bill Dudney

Gala Factory Software

This book is perfect for seasoned developers looking to get started with

Cocoa development. Daniel gives you a solid foundation that will allow

you to build the next great Mac or iPhone application.

James Frye

Developer, Tasty Cocoa Software LLC

If you’re new to Mac programming or switching from iPhone

development, start reading this book now! Cocoa Programming

covers topics other books don’t and puts it all together through great

examples where you actually learn it and don’t just read it.

Jake Behrens

Software Engineer, Snafl

As a recently initiated iPhone developer with several applications

under my belt (and seasoned web applications developer), this book

was a perfect fit for my desire to use my knowledge to create robust,

functional, and lightweight Cocoa applications. Daniel Steinberg

captured my attention early on with his brilliance and kept me

intrigued from one chapter to the next. I had no choice but to write

my first Cocoa application while reading and felt I walked away with

more than just a solid foundation upon which to build. This book will

be a mainstay in my library for sure.

Kevin J. Garriott

Developer II—Mobile Applications, Rockfish Interactive

One of the best flowing programming books I’ve ever read. The

chapters just naturally follow one after another. The book is a whole,

in much the same way the Cocoa framework is a whole. Both reflect a

single, clear, concise voice.

Craig Castelaz

Principle Software Engineer

Cocoa Programming
A Quick-Start Guide for Developers

Daniel H Steinberg

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 Daniel H Steinberg.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-9343563-0-1

ISBN-13: 978-1-9343563-0-2

Printed on acid-free paper.

P1.0 printing, April 2010

Version: 2010-4-22

http://www.pragprog.com

Contents
1 Introduction 15

1.1 Moving In . 15

1.2 Learning the Language 18

1.3 Installing the Tools . 19

1.4 Exploring the Frameworks 20

1.5 In This Book . 21

2 Using What’s There 24

2.1 Creating Your Project in Xcode 25

2.2 Creating the Appearance with Interface Builder 26

2.3 Testing the Interface with the Cocoa Simulator 31

2.4 Finishing the Interface 33

2.5 Wiring Up the Components 35

2.6 Fixing the Build . 39

2.7 Sharing Your Browser 41

2.8 Exercise: Rinse and Repeat 42

2.9 The Nib File . 43

3 Methods and Parameters 48

3.1 Sending Messages Without Arguments 48

3.2 Reading the Docs . 50

3.3 Methods with Arguments 53

3.4 Dynamic Binding . 56

3.5 Problems Sending Messages 57

3.6 Links Back to Yourself 58

3.7 Exercise: Multiple Connections 59

4 Classes and Objects 62

4.1 Creating “Hello, World!” 62

4.2 Logging Output to the Console 63

4.3 Using an Existing Class 66

4.4 Refactoring Code . 69

4.5 Creating a New Class . 72

CONTENTS 8

4.6 Creating and Using a Class Method 75

4.7 Creating a New Object 76

4.8 Further Refactoring . 78

4.9 Initializing Your Objects 79

4.10 Logging Objects . 82

4.11 Exercise: Other Initializations 83

4.12 Solution: Other Initializations 84

5 Instance Variables and Properties 86

5.1 Pointers . 87

5.2 Working with Nonobject Types 88

5.3 Getters and Setters . 89

5.4 Converting the Accessors to Properties 92

5.5 Dot Notation . 93

5.6 Property Attributes . 96

5.7 Exercise: Adding Properties 98

5.8 Solution: Adding Properties 99

5.9 Removing Instance Variables 100

6 Memory 102

6.1 Reference Counting . 103

6.2 Finding Leaks with the Clang Static Analyzer 104

6.3 Fixing the Memory Leak on Mac OS X 106

6.4 Properties and Garbage Collection 107

6.5 Creating a Flashlight . 109

6.6 Finding Leaks in Instruments 111

6.7 Fixing the Memory Leak on the iPhone 112

6.8 Using Zombies . 113

6.9 Cleaning Up in dealloc 115

6.10 Retain and Release in a Setter 116

6.11 The Autorelease Pool . 117

6.12 Using Convenience Constructors 120

6.13 Exercise: Creating and Using a Convenience Constructor121

6.14 Solution: Creating and Using a Convenience Constructor122

7 Outlets and Actions 124

7.1 The Big Picture . 125

7.2 Using an Outlet . 125

7.3 Exercise: Creating and Using an Outlet 128

7.4 Solution: Creating and Using an Outlet 129

7.5 Declaring an Action . 130

7.6 Connecting and Implementing the Action 133

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=8

CONTENTS 9

7.7 Exercise: Hiding the Button 135

7.8 Solution: Hiding the Button 135

7.9 Exercise: Toggling the Interface 136

7.10 Solution: Toggling the Interface 136

7.11 Introducing Another Outlet 137

7.12 Creating Selectors from Strings 139

8 Creating a Controller 141

8.1 How We’ve Created Objects 141

8.2 Creating Our Controller Class 143

8.3 Creating an Instance of Our Controller in IB 144

8.4 Declaring an Outlet and an Action 146

8.5 Forward Declaration . 149

8.6 Wiring Up the Controller 150

8.7 Implementing the Loading of the Previous Page 150

8.8 Exercise: Finishing the Controller 150

8.9 Solution: Finishing the Controller 151

8.10 Awake from Nib . 152

8.11 Disabling and Enabling the Buttons 153

8.12 Still Needs Work . 156

9 Customizing with Delegates 158

9.1 Understanding Delegates 158

9.2 The Default Window Behavior 162

9.3 Turning the Background Red 162

9.4 Exercise: Turning the Background Green 165

9.5 Solution: Turning the Background Green 165

9.6 Application Delegate . 165

9.7 Delegates for Your Web View 166

9.8 Setting the Window Title 167

9.9 Exercise: Updating the URL and Setting Buttons . . . 169

9.10 Solution: Updating the URL and Setting Buttons 170

9.11 Cleaning Up . 170

9.12 Exercise: Adding a Progress Indicator 173

9.13 Solution: Adding a Progress Indicator 173

10 Adapting Our Browser to the iPhone 175

10.1 Creating the iPhone Project 175

10.2 Creating the Look of Our Browser 177

10.3 The WebView’s Limitations 178

10.4 Loading a Web Page at Launch 179

10.5 Tweaking the Text Field in IB 181

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=9

CONTENTS 10

10.6 Using the Text Field Delegate 183

10.7 Using a Third Delegate to Implement the Buttons . . . 184

10.8 Exercise: Adding an Activity Indicator 185

10.9 Solution: Adding an Activity Indicator 186

10.10 Organizing with Pragma Marks 188

11 Posting and Listening for Notifications 191

11.1 Exercise: Creating a Model 192

11.2 Solution: Creating a Model 192

11.3 Registering for Notifications 194

11.4 Responding to Workspace Activity 195

11.5 Holding on to the Controller 197

11.6 Exercise: Registering for Notifications 198

11.7 Solution: Registering for Notifications 198

11.8 Posting Notifications . 199

11.9 Exercise: Receiving the Custom Notifications 201

11.10 Solution: Receiving the Custom Notifications 201

12 Creating Protocols for Delegation 203

12.1 Exercise: Creating and Setting the Delegate 204

12.2 Solution: Creating and Setting the Delegate 204

12.3 Creating and Using a Protocol 205

12.4 Requiring Methods . 207

12.5 Responding to Selector 208

12.6 Exercise: Calling the Delegate Methods 208

12.7 Solution: Calling the Delegate Methods 209

12.8 Exercise: Cleaning Up 209

12.9 Solution: Cleaning Up 209

13 Working with Dictionaries 213

13.1 Looking at the User Info 213

13.2 Reading from a Dictionary 214

13.3 Exercise: Displaying the Name 215

13.4 Solution: Displaying the Name 215

13.5 Reducing Redundancy 216

13.6 Using a Dictionary for Flow Control 218

13.7 Adding and Removing Entries with a Mutable Dictionary218

13.8 Exercise: Adding an Icon 221

13.9 Solution: Adding an Icon 223

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=10

CONTENTS 11

14 Multiple Nibs 227

14.1 Methods, Objects, and Nibs 227

14.2 Splitting Nibs . 229

14.3 Preparing to Split Out the View 231

14.4 Creating the View Nib 232

14.5 Integrating a Nib File . 233

14.6 The File’s Owner . 235

14.7 Exercise: Loading the View 236

14.8 Solution: Loading the View 237

14.9 Creating the Window Nib 237

14.10 Loading the Window Nib 239

14.11 Presenting the Window 240

14.12 Exercise: Connecting the View and the Model 240

14.13 Solution: Connecting the View and the Model 241

15 Creating Custom Views 243

15.1 Creating a Custom View 243

15.2 Drawing Shapes into a Custom View 245

15.3 Exercise: Changing the Stroke Color 248

15.4 Solution: Changing the Stroke Color 248

15.5 Drawing Images . 250

15.6 Drawing Text . 252

16 Displaying Data in a Table 256

16.1 Tables and Data Sources 256

16.2 Exercise: Implementing a Basic Data Source 259

16.3 Solution: Implementing a Basic Data Source 260

16.4 Exercise: Introducing a Data Source 261

16.5 Solution: Introducing a Data Source 262

16.6 Filling Cells Based on Table Column Titles 263

16.7 Table Column Identifiers as Keys 265

16.8 Previews of Coming Attractions 266

16.9 Exercise: Adding and Removing Rows 266

16.10 Solution: Adding and Removing Rows 267

16.11 Manually Removing Rows 268

17 Saving Data to Disk 270

17.1 Saving in Your Running Application 270

17.2 Where to Put Application Support 273

17.3 Saving to a Plist . 274

17.4 Reading a Plist . 275

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=11

CONTENTS 12

17.5 Saving an Archive to Disk 276

17.6 Reading and Using Preferences 278

17.7 Setting the Factory Defaults 278

17.8 Preparing to Set User Defaults 280

17.9 The Preference Window Nib 281

17.10 Enabling the Preferences Window 283

18 Changing Views 285

18.1 Working with Radio Buttons 285

18.2 Adding Preferences for View at Launch 287

18.3 Exercise: Launching with the Right View 288

18.4 Solution: Launching with the Right View 288

18.5 Eliminating Magic Numbers 290

18.6 Customizing the Menu Bar 292

18.7 Moving the Main Window 293

18.8 Exercise: Switching Views (Mostly) 294

18.9 Solution: Switching Views (Mostly) 294

18.10 Lazy Initialization . 296

19 Key Value Coding 298

19.1 Treating Objects Like Dictionaries 299

19.2 Getting Variables Using KVC 301

19.3 Undefined Keys . 303

19.4 Exercise: Setting Variables Using KVC 304

19.5 Solution: Setting Variables Using KVC 304

19.6 KVC and Dictionaries . 305

19.7 Keypaths for Navigating a Class Hierarchy 306

19.8 Exercise: Filling Tables Using KVC 309

19.9 Solution: Filling Tables Using KVC 309

19.10 Arrays and KVC . 311

20 Key Value Observing 314

20.1 Codeless Connections 314

20.2 A Target-Action Counter 316

20.3 Introducing an Observer 318

20.4 Registering an Observer 320

20.5 Making Changes Observable 321

20.6 Observing the Changes 323

20.7 Exercise: Adding a Second Observer 324

20.8 Solution: Adding a Second Observer 324

20.9 The Ugly Way to Observe More Than One Attribute . . 325

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=12

CONTENTS 13

20.10 Selecting Methods Using KVC 328

20.11 Implementing an Observer Object 329

20.12 Updating Dependent Variables 331

21 Cocoa Bindings 334

21.1 The Model and View for Our Counter with Bindings . . 335

21.2 Creating and Connecting the NSObjectController . . . 335

21.3 Binding More Objects . 338

21.4 Number Formatters . 339

21.5 Exercise: Connecting Two Counters with Bindings . . . 341

21.6 Solution: Connecting Two Counters with Bindings . . . 342

21.7 The Model for Our Bookshelf Example 344

21.8 Creating the View for the Bookshelf 345

21.9 Binding with the NSArrayController 346

21.10 The Big Finish . 349

22 Core Data 350

22.1 Entities and Attributes 351

22.2 Using the Core Data Widget 352

22.3 The Managed Object Context 354

22.4 The Persistence Layer 356

22.5 Introducing Relationships 358

22.6 Choosing a Relationship’s Delete Rule 360

22.7 Updating the View . 361

22.8 Managing Dependencies 362

22.9 Exercise: Enabling Author Addition and Removal . . . 363

22.10 Sorting . 363

22.11 Filtering Items . 365

22.12 Coding the Sort Descriptor 366

23 Categories 368

23.1 Overcoming Limitations 368

23.2 Creating a Category . 369

23.3 Category Cautions . 371

23.4 Private Methods in Class Extensions 372

23.5 Exercise: Extending Properties with Class Extensions . 375

23.6 Solution: Extending Properties with Class Extensions . 375

23.7 Categories and Core Data 376

23.8 Generated Classes in Core Data 378

23.9 Accessing Properties . 379

23.10 Regenerating Class Files from Entities 380

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=13

CONTENTS 14

24 Blocks 383

24.1 The Need for Blocks in Wrappers 384

24.2 Declaring a Block . 385

24.3 Using Blocks in Wrappers 386

24.4 Capturing Values . 387

24.5 Blocks and Collections 389

24.6 Declaring, Defining, and Using Blocks 390

24.7 Using __block . 392

24.8 Cleaning Up with typedef 393

24.9 Exercise: Using Blocks in Callbacks 394

24.10 Solution: Using Blocks in Callbacks 396

25 Operations and Their Queues 398

25.1 Making the Beach Ball Spin 398

25.2 Invocation Operations 400

25.3 Block Operations . 402

25.4 Interacting with the Queue and Operations 403

25.5 Custom NSOperations 406

25.6 From Operation Queues to Dispatch Queues 408

26 Dispatch Queues 412

26.1 When to Use Dispatch Queues 412

26.2 Quick Queue Overview 414

26.3 Drawing Our Fractal . 415

26.4 Working Without Dispatch Queues 416

26.5 The Main Queue . 418

26.6 Global Concurrent Queues 419

26.7 Synchronizing on the Main Queue 420

26.8 Private Dispatch Queues 421

26.9 Synchronous Tasks . 422

27 Up and Out 426

27.1 But What About... 426

27.2 What’s Next . 427

27.3 Acknowledgments . 428

27.4 Dedication . 429

A Bibliography 431

Index 434

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=14

Chapter 1

Introduction
As I finished up the final walk-through of our new house, a woman

called to me from across the street. “Tonight’s our annual progressive

dinner,” she shouted. “Come meet the neighborhood.”

I followed along and met our new neighbors all at once. It went fast and

was a bit overwhelming, and there was a ton of information, some of

which I was able to sort out later. Mostly, it made me feel a lot better

about my new neighborhood. I knew the questions to ask, and I had

met the people who could answer them for me.

That’s the goal in this book. It’s not a guide for tourists that lists the

things you’d want to see if you were only going to live with Cocoa for

a day. It’s not a comprehensive almanac that lists every API class by

class and method by method. This is designed to get you through those

first weeks and months of moving to Cocoa.

This is the coding equivalent of finding out where to go for coffee, which

streets are safe to walk on at night, and which teacher to request for

your kids. Once you get a feel for the neighborhood, you’ll have more

questions, but you’ll know where and how to get them answered.

1.1 Moving In

Moving to Cocoa is like moving to a new neighborhood. You need to

figure out where everything is and get used to the local customs. You’ll

find that some aspects of developing Cocoa apps for Mac OS X are very

similar to what you’ve been doing, while other aspects feel very strange.

In this book you’ll get a feel for working with the following:

• Objective-C: The language of Cocoa development

MOVING IN 16

• Xcode, Interface Builder, and Instruments: The tools for Cocoa

development

• Cocoa: The frameworks full of existing classes created by Apple

that will give your applications the features and polish of your

favorite Mac OS X applications

What, you ask, is a framework? A framework is a directory that con-

tains some related set of resources. You can think of a framework as a

library or a package, but it can also contain image files, documentation,

localization strings, and other constructs that you’ll learn about later

in this book. You’ll see in Chapter 2, Using What’s There, on page 24

that we bring in all the resources for programming web applications by

adding the WebKit framework to our project.

Frameworks are kind of like what you know already and kind of dif-

ferent. For now you can think of them as libraries, and you’ll be fine.

You’ll learn about many ideas in Mac OS X development that are close

to what you already know. You’ll be tempted to hold on the way you

used to do things. Don’t. You don’t want to be the only one driving on

the wrong side of the road. It’s not good for you, and it’s not good for

others sharing the same road.

No one likes a new neighbor who goes on about how good it was where

they came from. It’s the same here in OS X. It isn’t that the old-timers

are being mean. It’s just that they have a way of doing things. You

will have an incredible amount of power at your fingertips to quickly

develop native Mac OS X applications if you embrace Objective-C, use

the development tools, and take advantage of the Cocoa frameworks.

You will tend to get much further much more quickly if you use what

is provided for you and follow local customs rather than fight with the

culture.

Use Objective-C. Sure, you can write Cocoa applications in other lan-

guages. But for now, learn the native language. There is a lot of support

for new developers on the various Apple lists1 and in the support docu-

mentation, tutorials, and sample code accessible from Xcode. You will

have an easier time of getting your question answered if you use the

lingua franca of Cocoa development.

1. For a comprehensive list, visit http://lists.apple.com/. You will probably want to sub-

scribe to the http://lists.apple.com/mailman/listinfo/cocoa-dev list. Also look for lists that serve

specific areas that you target in your application. If you have a specific need that is only

temporary, you can also search the archives.

Report erratum

this copy is (P1.0 printing, April 2010)

http://lists.apple.com/
http://lists.apple.com/mailman/listinfo/cocoa-dev
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=16

MOVING IN 17

What About the iPhone and iPad?

In this book we mainly target Mac OS X development. For the
most part, these are the same techniques, tools, and APIs you
will use to target the iPhone and iPad. There are differences that
I’ve highlighted in a couple of the iPhone chapters, but for the
most part this book focuses on desktop Cocoa and assumes
that you’ll find it fairly easy to move from Cocoa development
for Mac OS X to developing for the mobile platforms.

Use the tools that Apple provides for Cocoa development. In your old

environment, you may have popped open a terminal window and used

vi or emacs along with gcc and gdb, or you may have used an IDE

like Eclipse. For Cocoa app development, use Xcode to write, compile,

debug, and run your code. Use Xcode to create, build, and manage

your projects. You’ll even use Xcode to create and edit your data mod-

els. You’ll use Interface Builder (IB) to create your GUI and to wire up

the various components. You’ll use Instruments to improve the perfor-

mance of your application. You can find most of your favorite command-

line developer tools in /usr/bin/, but you still want to use Apple’s dev

tools when you are creating a Cocoa app.

Finally, use the built-in frameworks as much as you possibly can.

Before you think about writing any code, take a look at what Apple

has provided for you. Your first impulse should always be to use what

is there.

To emphasize this last point, your first project will be to build a simple

web browser with Apple’s WebKit framework.2 The browser will include

a text field where the user can enter a URL and a web view that ren-

ders the web page. You will also add Forward and Back buttons for

navigating through sites you have already visited. Because you are tak-

ing advantage of the WebKit framework, you can accomplish all of this

without writing any code.

Working with the new language, tools, and APIs is going to feel a bit

odd at first. They are unfamiliar, so your first instincts won’t always be

right. but in no time you’ll be typing in what you assume the method

2. I got the idea for starting with this example while editing Chris Adamson’s “ten-minute

browser” example in iPhone SDK Development [DA09].

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=17

LEARNING THE LANGUAGE 18

Joe Asks. . .

Is This Book for Me?

This book is for the experienced programmer who is new to the
Mac or iPhone platform.

You understand basic programming concepts but just don’t
know how they apply in this setting. You know a language that
has a structure somewhat like C, but you don’t know Objective-
C. You understand object-oriented programming, just not in this
setting. You want to learn all the techniques for working with the
Cocoa frameworks, but you are comfortable reading the doc-
umentation to explore the specific APIs that you need in your
app. Finally, you have a Mac and are currently running Snow
Leopard.

By the way, if you are a new programmer, start with our book
by Tim Isted, Beginning Mac Programming, which is available
at http://pragprog.com/titles/tibmac/.

name is and find that it is, in fact, correct. Once you tune yourself to

the Cocoa frameworks, you’ll find that they tend to obey the principle of

least surprise: you’ll usually find what you expect to find.

This is not a comprehensive book in any way. This book doesn’t cover

every nook and cranny of Objective-C. I don’t take you click by click

through all that you can do in Xcode nor do we walk through the entire

set of APIs. This book gets you up and running and gives you enough

context to find the answers you need as new questions arise.

1.2 Learning the Language

When you first learned to speak a new language in school, you probably

translated everything back and forth from and to your native language.

After a lot of work, you began to master the vocabulary and the gram-

mar and you became comfortable with the native usage patterns and

idioms. Without noticing it, one day you found yourself thinking in your

new language while you were speaking or reading it.

The same is true about Objective-C, the language of Cocoa. The syntax

is different, but much of it is similar to languages you use now. You

Report erratum

this copy is (P1.0 printing, April 2010)

http://pragprog.com/titles/tibmac/
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=18

INSTALLING THE TOOLS 19

need to be as careful of being fooled by the similarities as you are of

being challenged by the differences.3 You can get used to the square

brackets and the way that code is structured pretty quickly. You also

have to get comfortable with the common patterns that Cocoa program-

mers use.

In Chapter 3, Methods and Parameters, on page 48, we’ll get you com-

fortable reading some Objective-C. We’ll start with messages because

sending messages is the core of Cocoa programming. Even experienced

object-oriented programmers lose sight of this. We tend to think that

OO is all about the objects.

Objective-C sits on top of C, but it owes many of its ideas to Smalltalk.

It helps to reread Alan Kay’s 1998 reminder on the Squeak mailing list

every now and then in which he expresses his regret at coining the term

objects because it encourages people to focus on the wrong thing.4 Kay

explains that “The key in making great and growable systems is much

more to design how its modules communicate rather than what their

internal properties and behaviors should be.”

1.3 Installing the Tools

Check that you have installed the free developer tools. By default the in-

staller puts the developer applications, documentation, examples, and

other files in the Developer directory at the root level. Even though the

developer tools are free and included on the install discs that come

with Mac OS X, they are not installed by default. Check the Developer

directory to make sure they are installed. Also select Xcode and choose

File > Get Info or press D I to bring up the info window for Xcode. Check

the version number. The examples in this book assume you are running

at least Xcode 3.2.

Get the most recent developer tools (including beta releases) by joining

the Apple Developer Connection (ADC) at http://developer.apple.com/.

You should join the ADC. There is currently a free membership level

that gives you access to much of the prerelease software. There are

also paid membership levels that come with different benefits.

3. One of the great selling points for Java was also its weakness. Its syntax was familiar.

C programmers could easily write Java code. But they often wrote Java code that looked

a little too much like C code. The same is true for many other programming languages

including Objective-C. Objective-C sits on top of C, so you could write pure C code. Don’t.
4. http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html

Report erratum

this copy is (P1.0 printing, April 2010)

http://developer.apple.com/
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=19

EXPLORING THE FRAMEWORKS 20

Starting Fresh

You might have problems if you are moving to Snow Leopard
from an earlier version of Mac OS X or if you are moving to
the developer tools installation that features Xcode 3.2 from an
earlier version of the developer tools. These problems manifest
themselves in different ways but are often surface when dealing
with nib files.

The fix is simple. First uninstall your old developer tools, and then
do a clean install of the new developer tools. Problem solved.

We’ll spend most of our time in this book in Xcode and Interface Builder.

You’ll write your code in Xcode and design the data models that we’ll

use later in the book. You’ll use Interface Builder to create the look of

your application and to connect your visual components to the code

containing your business logic.

Even though those two applications get most of the attention, you get

a lot of other tools for free. For example, before you release an applica-

tion into production, you’re going to want to take some time to exercise

it with profiling tools such as Instruments and Shark. You’ll also find

audio tools, graphic tools, other performance tools, and a slew of utili-

ties. When you install the developer tools, you’ve also installed a ton of

command-line tools as well.

1.4 Exploring the Frameworks

We’re going to play quite a bit with the Cocoa frameworks. When you

can, you should use the objects and classes that Apple provides before

you struggle to write the code yourself. In the beginning, you will find

yourself writing a lot of code to do something you’ve seen other appli-

cations do on Mac OS X. An experienced Cocoa developer will look at

your code, make a face, and suggest, “Why don’t you just...?” As much

as you may hate to hear it, their two lines of code will do everything

that your 400 lines did. That’s just the way it’s going to be.

And then one day it will all make sense to you.

That doesn’t mean you will know the two lines of code you need to write.

But fifty lines in, you’ll be aware that you’re working too hard. You will

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=20

IN THIS BOOK 21

know that those two lines probably exist. When you don’t know what

to do yourself, you’ll know where to go to find help.

You’ll find your favorite paths into the documentation. I tend to hold

down the Option and Command keys (ED) and double-click a class

name or a method name to view the docs for the class or method. You

can also right-click or Control-click part of your code and get a pop-

up context-sensitive help menu that can include refactorings, links to

definitions, and other available actions. You don’t need to memorize

these key bindings; you can always navigate to the docs using the Xcode

menus.

You will find great third-party web sites, and you can join the cocoa-dev

mailing list that you can find at http://lists.apple.com. Lurk first to get a

feel for the list. And when you have really tried to figure out something

for yourself, go ahead and ask a question that explains what you’ve

done and what you don’t understand or are hoping to learn.

1.5 In This Book

There are four sections in this book. The first section is an introduction

to Cocoa, Objective-C, and the tools. The second section takes you to

a level where you are comfortable with the fundamental techniques of

creating a Cocoa application. The third and fourth sections consist of

material that can wait. It’s essential that you understand the concepts

presented there, but you need to wait until you have some experience.

In the first section, you’ll start to use Xcode and Interface Builder. You’ll

get used to the rhythm of bouncing back and forth between them.

We’ll start in Chapter 2, Using What’s There, on page 24 with a web

browser that you create without writing any code at all. Between there

and Chapter 9, Customizing with Delegates, on page 158, you’ll master

the basics of Cocoa and Objective-C.

In this first section, you’ll learn to create and call methods and over-

come any fear you might have of the funny-looking syntax with its

square brackets and colons. You’ll design classes in Xcode and cre-

ate objects in Xcode and in Interface Builder. You’ll embrace proper-

ties and the dot syntax and use automatic garbage collection wherever

you can. You’ll learn the rules of reference counting for situations—

like iPhone apps—when you need to manage memory manually. You’ll

be introduced to the two fundamental patterns in Cocoa development:

Report erratum

this copy is (P1.0 printing, April 2010)

http://lists.apple.com
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=21

IN THIS BOOK 22

delegation and MVC. At the end, we’ll take a deep breath and then

reimplement our web browser for the iPhone.

You’ll start the second section of the book in Chapter 11, Posting and

Listening for Notifications, on page 191 with a new application that lis-

tens for when other applications on your computer start and quit. You’ll

react to notifications sent by the workspace your application runs in

and how to send notifications of your own. You’ll create protocols that

describe what methods a class might implement, and you’ll create del-

egates to add behavior to objects without subclassing. You’ll read and

write information in key-value pairs to a dictionary—this is a technique

that we’ll build on in big ways in the third section of the book.

One of the keys to the second section is modularity. We break meth-

ods, classes, and even nibs into small pieces. By the end of this sec-

tion, we will have five nib files in this application to organize your main

menu, window, preference panel, and two views. One of the views will

be a custom view you learn to create partially in Xcode and partially

in Interface Builder. A key to this modularity is the separation of the

model, view, and controller. You’ll see this highlighted in our chapter

on custom views, in our work with tables, and in Chapter 18, Changing

Views, on page 285 where we let the user switch between two different

views in the same window.

The third section focuses on more sophisticated ways in which to send

and receive messages. You’ll begin with Chapter 19, Key Value Cod-

ing, on page 298. Key Value Coding (KVC) allows you to decide which

method you are calling at runtime based on user input. KVC works

perfectly with properties and allows you to treat your objects as if they

were dictionaries and your properties as if they were entries in the dic-

tionary. You’ll see what I mean when we get there.

You can go even further and use Key Value Observing (KVO) to register

to listen for changes in a property’s value. This low-ceremony notifica-

tion sets the stage for Bindings and Core Data. In the early parts of the

book, you will have learned to use Interface Builder instead of code to

create your views. This section lets you remove much of your controller

code and even some of the model code.

This book begins with you creating an application with almost no code.

You then spend the bulk of the book mastering different coding tech-

niques. By the end of Chapter 23, Categories, on page 368, you will

again be writing less code. This time, however, you will understand

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=22
Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

IN THIS BOOK 23

sophisticated techniques that allow you to create powerful and flexible

applications by writing only the code that is required.

The fourth section is a brief one that introduces blocks and two meth-

ods for working with concurrency. In Chapter 24, Blocks, on page 383,

you will learn a new construct that was added to Snow Leopard. Al-

though I am assuming you are developing in Snow Leopard, all of the

techniques you learn up to this point apply to code you are deploying

to Leopard as well.5 If you use blocks in your code, you cannot target

Leopard or the iPhone. You are restricted to Snow Leopard and above.

I wrestled with whether to cover concurrency in this book. It’s such

a difficult thing to get right in your code, and I could have written an

entire book on this topic. My advice is simple: don’t use threads directly.

First, reach for operation queues, and if they don’t meet your needs and

if you are on Snow Leopard or above, go ahead and work with dispatch

queues.

As you can see, the book focuses on techniques and not APIs. By the

end of this book, you should be well positioned to take on any Cocoa

task. Even though you might not have learned about the specific prob-

lem you need to tackle, you’ll have enough experience to find the right

place in the Apple documentation and figure out how to do what you

need to do.

Welcome to the neighborhood. I’m so glad you’re here. I can’t wait to

see the cool applications you develop after you read this book.

5. The APIs may differ, but the techniques are the same.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=23

Chapter 2

Using What’s There
We’re going to start by creating a web browser that looks like this:

We’ll create our browser without writing a line of code. It won’t be fancy,

but it will mostly work. You’ll be able to type in URLs to load your

favorite websites. You’ll be able to navigate around the sites by following

links the way you would in an ordinary browser, and you’ll be able to

use a couple of buttons to move forward and backward through your

browsing history.

CREATING YOUR PROJECT IN XCODE 25

In this chapter, we’ll use Interface Builder and off-the-shelf components

to build our browser. We’ll pick a couple of buttons, a text field, and a

special component for displaying web pages from a library. We’ll drag

these components onto our window, arrange them the way we want

them to look, and make sure they visually behave right when we shrink

or stretch the window. We’ll then use Interface Builder to enable the

behavior we want. Once we get everything working the best we can for

now, we’ll take a quick look behind the scenes at some of the backstage

magic.

2.1 Creating Your Project in Xcode

As we bounce back and forth between IB1 and Xcode in these first few

chapters, you’ll get a feel for what each is for. Mostly, you’ll use Xcode

as an IDE to work on your code, your data model, and your project. The

work you do in Xcode will feel familiar to you if you use other IDEs.

As you might expect, you’ll create your GUI using Interface Builder.

You’ll also use Interface Builder to connect the elements of the GUI to

data sources, to other GUI elements, and to methods described in code.

You’re going to spend almost all of your time in this first example using

Interface Builder.

Even though you won’t write any code for this SimpleBrowser example,

you’ll need to create the project from Xcode. Start Xcode, and create a

new project using either DB N or File > New Project.2

You’ll be presented with a variety of options for project templates that

you can use to develop applications for the iPhone or for Mac OS X.

Choose Mac OS X > Application > Cocoa Application. Leave the checkboxes

unselected for creating a document-based app or for using Core Data.

Click the Choose button or just press F.

I have saved the project as SimpleBrowser in ~/Dev/UsingWhatsThere/.

You can choose another name or location if you prefer.

1. This is short for Interface Builder and is pronounced “I.B.” but written IB.
2. You’ll find Xcode in the /Developer/Applications directory. You will use it enough that

you should drag it to the Dock to create a shortcut. Also, remember you can always use

Spotlight by clicking the magnifying glass in the far right of the menu bar.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=25

CREATING THE APPEARANCE WITH INTERFACE BUILDER 26

Your new project should look something like this:

There’s quite a bit of infrastructure automatically created for you. We’re

going to ignore almost all of these files for now. In this chapter, you’ll

do all of your work in the MainMenu.xib file.

Your SimpleBrowser application doesn’t do anything yet, but you can

take it for a test-drive. Click Build & Run, and after a moment of com-

piling and linking, you’ll see an empty SimpleBrowser window and a

menu bar populated with the standard set of menus and menu items.

You may also notice that SimpleBrowser.app is no longer highlighted in

red in Xcode because the file now exists. Quit SimpleBrowser,3 and let’s

get started on creating the interface.

2.2 Creating the Appearance with Interface Builder

Double-click MainMenu.xib (English) in the Xcode window. This is your

main nib file. A nib file contains all of the work you do in Interface

Builder. You create, configure, and connect objects using graphical

tools in Interface Builder. Each nib file is essentially a freeze-dried

object graph that is reconstituted at runtime. This first application will

have a single nib file. Later in the book you’ll build more complicated

applications with more than one.

Nib files used to be stored in a binary format and had the extension nib.

They are now stored as XML during development so that they work bet-

3. Closing the window doesn’t quit the application. You need to stop the task from within

Xcode, or while SimpleBrowser is active, you can press D Q or use the menu to quit.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=26

CREATING THE APPEARANCE WITH INTERFACE BUILDER 27

Joe Asks. . .

Shouldn’t We Be Writing Code?

Anything that can be done in Interface Builder can also be
done in code. But, in general, anything that can be done in
Interface Builder should be done in Interface Builder and not in
code.

If you follow this rule as strictly as possible, then most of the time
when you are coding, you will be writing code that is specific
to your application and not general-purpose code. There prob-
ably is nothing special about the way in which you need to
instantiate and place buttons in your application—so use Inter-
face Builder to do so.

In this chapter, we are only using common visual components
such as windows, buttons, text fields, and web views. We don’t
need to create our own classes because Apple has created
them for us and included (most of) them in the Cocoa frame-
works. We are going to create instances of these visual ele-
ments and arrange them so they look right in Interface Builder.

By the end of this chapter, you’ll see that we can also use Inter-
face Builder to connect a button to the action it performs. The
web view that Apple provides us with already knows how to
go to a provided URL and to navigate back and forward in the
browser history. We’ll use this built-in behavior for now and delay
writing code until we want to customize the behavior of the
browser.

ter with version control. You still should only interact with these files

using Interface Builder so the persistence format is transparent to you.

The only difference you’ll see is that the XML versions use the xib exten-

sion. Despite this change, they are mostly still referred to as nib files

(pronounced “nib” and not “N.I.B.”), although some people pronounce

xib files as “zibs.”4

SimpleBrowser consists of a single window with off-the-shelf compo-

nents. You’ll fill the MainMenu nib with a web view for rendering the

4. The name nib comes from the acronym for NeXT Interface Builder. Interface Builder

and the framework that has become Cocoa were developed at NeXT Computer. Also, when

you create a release, the xib files are compiled into nibs.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=27

CREATING THE APPEARANCE WITH INTERFACE BUILDER 28

websites, a text field for entering their addresses, and two buttons for

navigation.

You started Interface Builder when you double-clicked MainMenu.xib.

You should see several windows. One has the information for your

menu bar, and another is titled MainMenu.xib and contains the File’s

Owner and First Responder. The one you care about is empty except for

the words SimpleBrowser in the title bar. This is the window we’ll use

to hold all of our visual elements.

Open the Library using either DB L or Tools > Library. The Library is

where you’ll find all the objects that Apple provides for you as well as

objects that you will create in Xcode. You can navigate to the elements

you want, or you can use the search box at the bottom of the window

to filter the results. To see the components that Apple provides, check

that the Objects tab is selected at the top and that Library is selected

in the drop-down list just below the tab. Here I’ve typed text to find the

text field box I want to use for URL entry.

You can right-click the middle panel of the Library window to configure

it. I’ve chosen to show the icons, but we can instead show the icons

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=28

CREATING THE APPEARANCE WITH INTERFACE BUILDER 29

and labels or show the icons and descriptions for the GUI elements.

Whichever view you choose, you can always get additional details like

those shown in the box in the preceding figure by hovering your mouse

over one of the components.

Click the text field in the library, and drag it to your empty window.

As you drag the text field around the window, you will see blue guide-

lines that help you place elements according to Apple’s Human Inter-

face Guidelines.

Place the text field in the top-left corner of the window using the left

and top guidelines. You may need to increase the size of the window by

dragging the bottom-right corner of the window to the right and down.

You need enough room for two buttons to the right of the text field.

Take a look back at the browser on the first page of this chapter to be

reminded of what you are building.

Go back to the Library, and clear the word text from the search box on

the bottom. Make sure the Objects tab is selected at the top, and use

the control just below the tab to navigate to Library > Cocoa > Views & Cells

> Buttons. You will see a dozen different buttons. They are all instances

of the class NSButton, but they are each used in different situations. As

you click each one, the text at the bottom of the window changes to let

you know which type of button you have selected. You want the Push

button.

Click the Push button in the Library, and drag it to the right of the text

field you just placed in your window. You should see horizontal blue

guidelines that make sure you are on the same line as the text field,

and as you move the button closer to the text field, a vertical blue line

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=29

CREATING THE APPEARANCE WITH INTERFACE BUILDER 30

will appear at the left side of the button to indicate that you have the

right separation between the elements.

Go back and grab another Push button from the library, and drag it

to the right of the other button. The top row of your window should

now contain a text field and two buttons. We’ll be making some more

adjustments to these three elements, so you’ll have a chance to refine

their size and placement later.

You have one more element to place. Go back to the Library, and find

Library > Web Kit. This is not under Cocoa. It is part of a separate frame-

work that you will have to link into your project later using Xcode. This

framework contains a single visual element called WebView. This is the

element in which the web page will be rendered. Click the icon that

looks like Safari’s, and drag it into your window. Position the web view

to occupy the rest of the window. You should now see something like

this:

Take a moment to resize and rearrange the buttons, text field, and web

view so that everything looks the way you want it to look.

It’s easy to lose sight of the big picture while following all of these “click

here” and “drag there” directions. In this section, you’ve selected the

objects you need for your application’s interface from a palette and

positioned them in the main window as the user will see them at launch

time.

Save your work using either D S or File > Save. Close the Library window.

You won’t need it for the rest of this chapter.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=30

TESTING THE INTERFACE WITH THE COCOA SIMULATOR 31

2.3 Testing the Interface with the Cocoa Simulator

You should pause now and then to play with your interface to make

sure it is behaving the way you want it to behave. You first need to have

Interface Builder selected as your application (click any IB window).

Start the Cocoa Simulator using either D R or File > Simulate Interface.

Nothing is wired together, so you can’t check behavior yet. For now,

all you can test is that the application looks right. Resize the window.

Make it really big. Make it really small.

The items probably don’t behave the way you want them to behave.

When you make the window really big, you expect the web view to grow

accordingly. When you stretch the window out wide, you expect the

buttons and text field to stay close to each other and to have the text

field grow to make up the difference.

The problem is, you haven’t told the application how you want the com-

ponents to behave as the window is stretched and shrunk. Quit the

simulator with D Q or Cocoa Simulator > Quit Cocoa Simulator.

Let’s fix how the size of the components change when the window is

resized. You’ll need to open the Size inspector in IB. You can do this

with D 3. (You use D 3 because the Size inspector is the third tab in

the inspector window.) You can also use your mouse to choose the Size

inspector with Tools > Size Inspector. If the inspector is already open, you

can select the third tab from the left.5 That’s the one with the icon that

looks like a ruler. You can also open the inspector using DB I or Tools >

Inspector. In any case, if you select a button and the Size inspector, you

should see something that looks like the screenshot on the next page.

To change the size settings for a component, you select the component

and then make adjustments in the Size inspector. For now we’re making

adjustments to the “autosizing” settings. You should experiment with

setting the four struts, the I-beam shapes, on the outside of the inner

square.

5. There are lots of ways to get to each of the inspectors. I present more than one because

some people like menus and others like keyboard shortcuts. Choose the one you like the

best.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=31

TESTING THE INTERFACE WITH THE COCOA SIMULATOR 32

As you turn them on and off by clicking them, the animation on the

right will show you the results of making the changes. This is how you

control which sides of the component are anchored when the window

grows and shrinks. You should also experiment with turning the hor-

izontal and vertical springs on and off inside the inner square. This is

how you control the direction in which the component will stretch and

shrink when the window size changes.

Here are the settings for both buttons, for the web view, and for the text

field:

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=32

FINISHING THE INTERFACE 33

As the window grows and shrinks, the top of each of the elements will

stay the same distance from the top of the window. The right side of

both buttons will stay the same distance from the right side of the win-

dow. The text field will grow horizontally so that its two sides can stay

the same distance from the edge of the window. Finally, the web view

will grow horizontally and vertically to fill up the rest of the window.

Save your work, and test the results in the Cocoa Simulator. Shrink the

window all the way down, and then expand it back out. Chances are,

that will make your interface behave badly. You should set the mini-

mum size for your window. To do this, quit the Cocoa Simulator, and

select the Window object. In the Size inspector, you’ll see a Window Size

section. Select the Minimum Size checkbox, and click the Use Current

button. Save your work. Now the user will not be able to shrink the

window beyond its current size. If you’d like, you can set the maximum

size for the window in the same way.

Again, test your results in the Cocoa Simulator. While you are here,

take a few minutes to experiment with the settings for the struts and

springs, and try different maximum and minimum sizes for the window.

2.4 Finishing the Interface

You still have two buttons labeled Button. One way to change a button’s

label is to double-click the button and type the new name. Another way

is to use the inspector and select the Attributes tab. This is the inspec-

tor’s leftmost tab—the one with the slider icon. You can also access this

tab using D 1 or Tools > Attributes Inspector.

Set the title for the leftmost button to Back by selecting the rectangle

to the right of Title and typing Back in the data-entry field. When you

select another area of the inspector, you will see the title of the button

changes. While you’re at it, set the keyboard equivalent for this button

to D← by clicking the gray rectangle next to the label Key Equivalent

and then typing the left arrow (←) while holding down the Command

key (D).

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=33

FINISHING THE INTERFACE 34

Set the title for the other button to Forward and its keyboard equivalent

to D→. Next, select the Window, and set its title to SimpleBrowser.

Finally, let’s provide the user with a default value and a hint of how to

use our browser. Set the title of the text field to http://pragprog.com

either by double-clicking it or by selecting it and setting the value of the

title field using the Attributes inspector. Also use the drop-down list in

the text field’s Attributes inspector to set the value of Action to Sent

on Enter Only. This configures the text field to send its value when the

user presses Enter.

Where is the text field’s value sent when the user hits Enter? We haven’t

set that yet.

You’re now done creating all of the visual elements of the interface for

SimpleBrowser. Use the Cocoa Simulator to take another look at the

browse and adjust the sizes of the window or any of the components.

Your browser still doesn’t do anything—but we will fix that in the next

section.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=34

WIRING UP THE COMPONENTS 35

Reading the Nib

All of the work you have done so far is stored as XML in the
MainMenu.xib file. There is no reason for you to directly read or
change the XML you’ve generated. This is a format meant to
be created and interpreted by Interface Builder. For kicks, you
may want to open the file in your favorite text editor and take
a look around. You can find the text field, the two buttons, and
the web view. It’s not pretty, and you wouldn’t want to have to
interact with your GUI setup this way, but it may be reassuring
that the format is one that you can poke around in if you want.
Quietly close the file without saving any changes. We’ll take
another look at MainMenu.xib before the end of the chapter.

2.5 Wiring Up the Components

You’ve used Interface Builder to select and configure the visual ele-

ments you will use in this application. You’ve placed them in your win-

dow, changed their appearance, set default values, adjusted their sizes,

and set up how they would adjust as the window size changes. Now you

are ready to wire them together.

For example, you want to connect the Back button to the web view.

When you click the button, you want the web view to display the con-

tents of the previous URL. Your average button isn’t going to know a

thing about web views. A web view, however, should know how to move

back in its history and should be able to be triggered by some outside

source. So, you just need to wire up the web view’s ability to go back to

this button’s clicks.

Similarly, a text field shouldn’t know about URLs and web views. If a

text field had to know about everything it could supply text for, the API

would be huge and brittle. But a web view should know how to get a

URL from a string from some other element. So, we just need to wire

the web view’s “get the URL from a string” ability to the component

providing the string.

Connecting the Web View

It doesn’t always work, but it helps to think of who knows what. In

this case, most of the knowledge is in the web view. Much of what an

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=35

WIRING UP THE COMPONENTS 36

object can do is revealed to you in Interface Builder by the Connections

inspector.

To see some of what a web view can do, select the web view in the

layout window, and open the Connections inspector. With the web view

selected, if the inspector is already visible, you can click the blue right

arrow to open the Connections inspector tab. You can also press D 5

or navigate to Tools > Connections Inspector. The previous figure shows

the actions that the web view can receive. Those are the only ones we’ll

need for now.

This next step feels like magic to me.

Click inside the circle to the right of goBack: in the Connections inspec-

tor, and hold the mouse button down. Drag the mouse pointer over to

the Back button you created. You should see a blue line appear as you

begin to drag. As your mouse hovers over the Back button, a gray box

will appear with the words Push Button (Back). Release the mouse, and

you will have made a connection.

Here’s a slow-motion replay. A WebView knows how to go back in the

browser history. The button knows how to initiate an action when it is

pressed. We’ve used the Connections inspector to connect them. Now

that we’ve made the connection, whenever a user clicks the Back but-

ton, the WebView’s goBack: method is called, and as a result, if there is

a previous page in the browser history, it will be loaded.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=36

WIRING UP THE COMPONENTS 37

Look back at the Connection inspector. The circle you clicked next to

goBack: is now filled in. Also, goBack: is now visually connected to Push

Button (Back). See the x to the left side of Push Button (Back)? Click it.

You’ve just broken the connection.

You can reconnect goBack: and the Back button as you did before, or

you can right-click or C-click (that’s Control-click) the web view to bring

up a heads-up display version. As before, click the circle next to goB-

ack:, and drag to the Back button. Let go of the mouse, and you’ve

reconnected goBack: and the Back button.

We have two more connections to make. Select WebView again, and use

the Connections inspector or the heads-up display.

1. Connect the goForward: received action to the Forward button. This

will enable the user to click the Forward button to move forward

in the browser history.

2. Connect the takeStringURLFrom: received action to the text field. This

lets the user type a URL into the text field and click Enter to load

the web page.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=37

WIRING UP THE COMPONENTS 38

When you are done, the Connections inspector should look like this:

As if you don’t have enough options, you can also make these connec-

tions in the opposite direction. For example, choose the Back button

and look at its Connections inspector. In the Sent Actions section, you

should see the single entry, selector:.6 Select this, drag the connection

back to the WebView, and let go. A gray box with all the web view’s

actions should pop up.

Choose goBack:. You have now successfully made the connection in the

opposite direction. You will soon develop a rhythm around your favorite

method and direction. Stick with whatever you are most comfortable

doing.

Testing the Browser in the Simulator

Save your work, and open it in the Cocoa Simulator. Click in the text

field, and hit F. The Pragmatic Programmer home page should appear.

Enter another URL, and hit F. Although this mostly works, I have a

couple of quick notes:

• Don’t forget to include http://, because this is just a very basic web

browser.

6. A selector is the name of the method being called, and the colon indicates that the

method takes a single argument. You’ll learn a lot more about selectors in Chapter 3,

Methods and Parameters, on page 48.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=38

FIXING THE BUILD 39

• Don’t choose overly complicated pages or pages that need authen-

tication. This is a very basic web browser.7

• Once a second page appears, you can hit the Back and Forward

buttons to navigate back and forth between the two pages.

This is great! At least here in the simulator, you have a working web

browser.

Our browser doesn’t have some of the features you might expect to

see in even the sparest of browsers. For example, you don’t get any

feedback when a page is loading. When you first run SimpleBrowser,

you might think that nothing is happening until, after a pause, the page

appears. Also, the URL doesn’t change when you hit Back and Forward.

If you load http://pragprog.com and then http://apple.com and then hit

the Back button, you will see the Pragmatic Programmer’s home page

even though the URL will still read http://apple.com. We’ll take care of

these problems in the next few chapters.

2.6 Fixing the Build

It feels like you’re done. You can play with your application in the Cocoa

Simulator. All of your work in Interface Builder is correct and complete,

and you have no code to write for this SimpleBrowser project. You don’t,

however, have an application that you can give to someone else to run

on their machine. You need to go back to Xcode and create a release.

In Xcode, click Build & Run. The build succeeds, and it looks as if

SimpleBrowser starts to load. The icon bounces in the Dock for a while,

but nothing is happening. Depending on how you’re set up, you might

find yourself in the debugger with a stack trace and a warning.

Arrggghhhh. Click the Stop button, or choose Run > Stop.8 We need to

add WebKit.framework.

I mentioned earlier we’d have to link it in. We could have done it when

we dragged the WebView from the Library into our window. Chances are

that you’ll be more likely to remember it now that you see the problems

7. The point of this example is not to build a robust web browser but to use a web

browser as an example application that allows us to introduce you to Cocoa program-

ming. Currently, for example, you won’t be able to load pages that include Flash.
8. If your installation of Xcode doesn’t look like mine, you can always customize the

toolbar by choosing View > Customize Toolbar.... Also, you can make many adjustments from

Xcode > Preferences.

Report erratum

this copy is (P1.0 printing, April 2010)

http://pragprog.com
http://apple.com
http://apple.com
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=39

FIXING THE BUILD 40

Joe Asks. . .

How Would I Have Known to Add the WebKit Framework?

Start by opening the debugger with either Run > Debugger or
BD Y. Depending on how you’ve configured Xcode, you may
also see an icon that looks like bug spray that you can click.
In the top-left corner of your Xcode window, you will see the
warning that the application is

TERMINATING_DUE_TO_UNCAUGHT_EXCEPTION

The stack trace isn’t very helpful, but if you look at the Con-
sole, you will see the problem pretty quickly. Open the Con-
sole using DB R or Run > Console. You’ll see a gdb prompt. Scroll
back past a listing of the stack. Just above this you will see a
series of lines that each begin with a time stamp, the word Sim-
pleBrowser, and brackets around an identifier that includes the
process number. Once you pare away all of this information,
you should be left with something like this:

An uncaught exception was raised
-[NSKeyedUnarchiver decodeObjectForKey:]:

cannot decode object of class (WebView)
Terminating app due to uncaught exception

'NSInvalidUnarchiveOperationException'

A-ha! The problem is with unarchiving a WebView object. Your
nib is essentially an archive of objects and their connections.
You need to load the WebKit framework so that the WebView

can be successfully reconstituted.

that can come up. See the Joe Asks. . . on this page for an explanation

of how you might have diagnosed the problem yourself.

When we dragged the WebView instance from our library, we saw that

it is part of the WebKit framework but not part of the Cocoa framework.

I would have assumed that Xcode would automatically have added the

WebKit framework to the corresponding project to link against, but it

doesn’t. You need to do that yourself.

From the project view, select the Frameworks folder in the SimpleBrowser

group. You should see four frameworks have already been added to the

project, but if you look at the rightmost column, you’ll see that only

Cocoa.framework is active for our target.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=40

SHARING YOUR BROWSER 41

Right-click or C-click the Frameworks folder, and choose Add > Existing

Frameworks....

Choose WebKit.framework, and make sure that once it is added that the

target checkbox is selected.9

Congratulations! You can now build and run your application from

within Xcode.

2.7 Sharing Your Browser

Now that you’ve gone to all that work to create a working browser, you’d

like to share your application with your friends—at least the ones who

are running Mac OS X. Make sure that your Active Build Target setting

is set to Release and not Debug. You can do this from Project > Set Active

Build Configuration > Release or using the Active Build Configuration drop-

down in Xcode if you have set Xcode’s preferences so that this is visible.

9. You can also add a framework by selecting a target either with Add > Existing Frameworks

... or on the General tab you get after selecting Get Info.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=41

EXERCISE: RINSE AND REPEAT 42

Once the build target is set, click Build & Run again. This time, your

SimpleBrowser application should build, link, and launch fine. Look

inside your project’s build/Release directory.

You should see your SimpleBrowser application. Because we chose

Release as our target instead of Debug, this file can be distributed and

run on other machines. The easiest way is to right-click the Simple-

Browser file inside the build/Release directory and choose the Compress

“SimpleBrowser” option. That creates SimpleBrowser.zip, which you can

send to a friend.

2.8 Exercise: Rinse and Repeat

In this chapter you created a working web browser without writing any

code. You took advantage of Apple’s WebKit framework to do most of

your work for you. You spent much of the time getting the application to

look right and just a few click-and-drags at the end to get the behavior

you need.

You learned how to make this all work in discrete steps, but that’s

not the way you will tend to work. If you were doing this again from

scratch, you would combine steps. When you drag in your first button,

you would probably immediately name it Back and connect it to the

web view.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=42

THE NIB FILE 43

Although you will be tempted to skip this exercise, you will benefit

greatly from starting from scratch and re-creating this web browser.

With no one telling you step-by-step what you need to do next, the

pieces will start to fit together. Take five minutes to make your own web

browser, and you will reinforce what you have learned.

2.9 The Nib File

All the work you did in this chapter is captured in a nib file. A nib is

an archive of objects. In Cocoa, nib files contain all the information you

need to bring your UI elements to life at runtime. A typical Cocoa appli-

cation will have many nib files that are loaded only as they are needed

to create instances of the objects that make up your user interface and,

as you’ll see in Chapter 8, Creating a Controller, on page 141, nonvisual

objects as well.

The nib file represents the graph of objects you built using Interface

Builder so that your interface and other objects captured in the nib

can be reconstructed each time your application begins. You will work

in Xcode to define your classes, and you will instantiate classes into

objects in either Xcode or Interface Builder. A nib file that you create in

Interface Builder is a frozen graph of objects that will be brought back

to life at runtime.

We’ll return to Interface Builder and nib files throughout this book.

You’ll also find a great deal of information on them in Apple’s Interface

Builder User Guide [App08e]. Scott Stevenson also has a nice quick-

start tutorial of creating a different application with no code.10 It cur-

rently uses Xcode 3.1, so what you’ll see in Snow Leopard will be

slightly different from what he shows you.

The Document Window

Let’s take a look at the objects in the MainMenu nib. Double-click Main-

Menu.xib to reopen it in Interface Builder. This time, open the Document

window using the menu item Window > Document or using the keyboard

shortcut D0.

I prefer the List view mode, which you select using the middle of the

three tabs in the upper-left corner. I’ve also opened up the disclosure

10. http://cocoadevcentral.com/d/learn_cocoa/

Report erratum

this copy is (P1.0 printing, April 2010)

http://cocoadevcentral.com/d/learn_cocoa/
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=43

THE NIB FILE 44

triangles for the Window object and the objects it contains. This hierar-

chy includes all of the GUI components we placed in the layout window.

Look at the Window hierarchy, and you will see that the window con-

tains a content view that contains the four components we dragged on

the window. The nib also contains the main menu and a bunch of non-

visual elements. I’m not going to talk about what each of them does

right now, but I wanted to show you this view of the objects in the

nib because we’re going to use it later to connect visual and nonvisual

elements. This window will help us connect what we build in Interface

Builder to the code we write in Xcode. It is also a handy way to select

components that are nested in the layout window. Also, if you lose the

layout window, you can double-click the Window (SimpleBrowser) item

in the Document window, and the layout window will come to the front.

The XML Representation of the Nib

The Document window gives us one view of the nib file. For another,

let us look at the actual XML that is used to persist the nib during

development. Let’s start with a quick look back at creating and using

the nib we built in this chapter.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=44

THE NIB FILE 45

Our particular nib contains two buttons that are each instances of the

class NSButton. If you search the Interface Builder Library for NSButton,

you won’t just find one button. You should see a dozen or more buttons

like the ones shown here:

When you drag an NSButton from the Library and place it in the view,

you are creating an instance of the NSButton class. You could start with

any one of the NSButtons you see previously in the figure and turn them

into the instance of NSButton that you want. But Apple presents you with

a palette of buttons that look very different. That means that you aren’t

really focused on finding an NSButton as you browse through the library.

You are looking for a button that has a particular look or is used in a

particular way. This means that you look for components from your

end user’s point of view.

You select, place, and configure your button. You can figure out at least

part of the information that is stored by reading the XML.

We’re going to open MainMenu.xib with a text editor just to take a look

around. You will never need to do this again to view what’s in a nib file.

More importantly, promise me you will never change anything in a nib

file while it’s open in a text editor. Interface Builder is the only tool you

should use to create, view, or modify nibs.

If you haven’t already, open MainMenu.xib with a text editor. Search for

the text NSButton and look for this part of the file that describes the

look of your Back button:

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=45

THE NIB FILE 46

Download UsingWhatsThere/SampleNib/MainMenu.xib

<object class="NSButton" id="164086064">

<reference key="NSNextResponder" ref="439893737"/>

<int key="NSvFlags">265</int>

<string key="NSFrame">{{277, 258}, {93, 32}}</string>

<reference key="NSSuperview" ref="439893737"/>

<bool key="NSEnabled">YES</bool>

<object class="NSButtonCell" key="NSCell" id="941085700">

<int key="NSCellFlags">67239424</int>

<int key="NSCellFlags2">134217728</int>

<string key="NSContents">Back</string>

<reference key="NSSupport" ref="640083843"/>

<reference key="NSControlView" ref="164086064"/>

<int key="NSButtonFlags">-2038284033</int>

<int key="NSButtonFlags2">268435585</int>

<string key="NSAlternateContents"/>

<string type="base64-UTF8" key="NSKeyEquivalent">75yCA</string>

<int key="NSPeriodicDelay">200</int>

<int key="NSPeriodicInterval">25</int>

</object>

</object>

This describes an object of type NSButton. The x and y coordinates as

well as the height and the width are in the line with the NSFrame as the

key. The NSButton object also contains an object of type NSButtonCell. We

haven’t talked about NSButtonCells, but you can see that that’s where

the button name and the keyboard shortcut are set.

The nib file also contains objects that represent the connections you

made. For example, search for the string takeStringURLFrom:. You should

see this part of MainMenu.xib:

Download UsingWhatsThere/SampleNib/MainMenu.xib

<object class="IBConnectionRecord">

<object class="IBActionConnection" key="connection">

<string key="label">takeStringURLFrom:</string>

<reference key="source" ref="1029174864"/>

<reference key="destination" ref="109215417"/>

</object>

<int key="connectionID">459</int>

</object>

You can search on the reference numbers for the destination and the

source and see that this snippet describes a connection from the Web-

View object with the label takeStringURLFrom: to the destination NSTextField

object. In the next chapter, we’ll learn to say this a little differently.

As you’ll see in the next chapter, this just means that the target (the

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/UsingWhatsThere/SampleNib/MainMenu.xib
http://media.pragprog.com/titles/dscpq/code/UsingWhatsThere/SampleNib/MainMenu.xib
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=46

THE NIB FILE 47

WebView object) is being sent the message takeStringURLFrom: with the

NSTextField object passed in as the sender.

In our particular case, the nib object life cycle is straightforward. When

the application starts up, the object graph is loaded into memory and

unarchived. The components are initialized. Then all of the connections

between the objects are made, and the main menu is displayed.

Of course, any useful application has its share of code as well—that’s

the next stop on our tour.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=47

Chapter 3

Methods and Parameters
So, you’ve built a working web browser. On one hand, you’re feeling

pretty good about yourself. You just dragged and dropped and con-

nected some dots together and had yourself a web browser. That’s

power.

On the other hand, it doesn’t feel like real programming. A real pro-

grammer wouldn’t use a bunch of GUI tools. Real programmers would

build the objects with their bare hands. They would say “Arrrr” and

make other pirate sounds while they wrestle with memory manage-

ment. You aren’t going soft on me, are you? Come to think of it, you

haven’t even built yourself a “Hello, World!” program yet.

Your “Hello, World!” program will have to wait until the next chapter.

Before you start creating your own objects in code and writing your

own methods, you need to get comfortable reading the Objective-C that

sends a target an action and navigating the API documentation to find

out which messages you can send to objects in the Cocoa APIs. This

chapter is your introduction to messages in Objective-C and Cocoa.

3.1 Sending Messages Without Arguments

Back in Section 2.5, Wiring Up the Components, on page 35, you used

Interface Builder to create a connection from your Back button to the

goBack: received action in your web view. As a result, every time the

Back button is clicked, the web view’s goBack method is called.1

1. You might notice that I’ve introduced a slight simplification by dropping the : at the

end of goBack. I’ll fix that in a little bit, but it’s going to make it easier for us in the

beginning.

SENDING MESSAGES WITHOUT ARGUMENTS 49

Let’s assume you have instantiated the two objects involved in this

action. You have an instance of NSButton named backButton and an

instance of WebView named myWebView. When the user clicks the Back

button, essentially this message is sent:

[myWebView goBack]

The square brackets and everything in between make up the message

expression. In this simplest of cases, there are only two parts: the

receiver and the message. The myWebView object is the receiver. It is

the target—the object to which you are sending the message. In this

example, the message is goBack.

We are sending a message with no arguments. In this form, the call will

look like this:

[receiver message]

Depending on the programming language you use now, this might look

like a function call or method call. In other words, in your own language

the following Objective-C message:

[myWebView goBack]

looks something like this:

myWebView.goBack()

As you would expect, you can chain messages together in much the

same way as you would chain methods. In Java or C#, you might write

something like this:

myWebView.oneMethod().anotherMethod()

This invokes oneMethod() on myWebView, and then anotherMethod() is

called on the result.

In Objective-C you would write this same fictional code as follows:

[[myWebView oneMethod] anotherMethod]

You read these nested calls from the inside out. First the message

oneMethod is sent to myWebView. Then the result of this call is the

target of the message anotherMethod.

What messages can you really send to myWebView? You’ll spend a lot

of time looking through the documentation of Apple’s APIs. Let’s take

a look at the docs for WebView and find a description of this goBack

method.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=49

READING THE DOCS 50

3.2 Reading the Docs

Apple includes a comprehensive set of documentation to help you figure

out what to use and how to use it when you develop your Cocoa Apps.

You can access the docs from Xcode using Help > Developer Documen-

tation. Of course, you can make your way through the documentation

without my help—I just want to point out some of what you’ll find as a

way of encouraging you to look.

Type webview into the search box in the upper-right corner of the Doc

viewer and experiment with the different results you get depending on

whether you choose to search through the doc sets for iPhone, Mac

OS X, Xcode, or some combination.2 You can also choose whether you

are interested only in results that start with, contain, or match the

search string exactly.

You can narrow your search in many ways. For now, choose to limit the

doc sets to the Mac OS X 10.6 Core Library, enable all languages, and

choose Exact. The returned results will be grouped under the headings

API, Title, and Full Text like this:

Our first two results under API are the webView method from the Web-

Frame class and the WebView class. The only entry under the Title head-

ing and the first entry under the Full Text heading also take us to the

docs for the WebView class.

2. The docs as well as the way in which you search them and filter the results changed

in Snow Leopard. The instructions here are for Xcode 3.2 (and above), which was released

with Snow Leopard. If you are using Leopard or earlier, the differences should be clear.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=50

READING THE DOCS 51

We get more results under Full Text because webview occurs in the title

of only one document, but it appears in the body of more than thirty

documents.

If you change your Doc Sets setting to include iPhone docs and you

select Contains instead of Exact, you will also see the iPhone equivalent

of the Cocoa WebView, the UIWebView class, in each of these categories.

Select the line containing the WebView class to see the class reference

for WebView. Here’s the top of the listing:

On the right side you can trace the inheritance from WebView back to

the Cocoa root class NSObject. WebView extends NSView, which extends

NSResponder, which in turn extends the root class NSObject.

You also see what framework you’ll need to include to use the class.

Objective-C uses header files3—in this case, WebView is declared in

WebView.h, which is part of the WebKit framework. The Availability sec-

tion of the method description will let you know whether a method is

available if you want to target older versions of Mac OS X.

3. If you aren’t familiar with header files, don’t worry. Section 8.4, Declaring an Outlet

and an Action, on page 146 and the material leading up to it should give you a good feel

for how and why they are used.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=51

READING THE DOCS 52

You can search the document for specific method names, but there are

three links in that gray box on the left side that will help you figure out

how to use a Cocoa class.

• Overview: This is a quick summary of what the class is for and

how you should use it. It contains links to specific methods that

need to be called out and classes that often collaborate with the

one being described.

• Tasks: You can get alphabetical listings of the class and instance

methods later in the documentation, but this is a grouping of the

methods by what they do, in other words, by the tasks you might

want to perform. For example, the screenshot that follows shows

the methods used for moving back and forward. I’ve hovered my

mouse pointer over the canGoBack method to bring up the tooltip

describing the method.

• Companion Guide: Apple often has one or more comprehensive

documents that gives examples of using instances of this class to

accomplish some programming task. In this case, you are given a

link to the Web Kit Objective-C Programming Guide.

In addition to the Tasks listing of all the methods, you can also see a

list of the class methods and a list of the instance methods. There are

also lists of constants and available notifications.

Let’s take a quick look at a listing for a method.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=52

METHODS WITH ARGUMENTS 53

If you click the goBack method (and not the goBack: method below it),

you’ll see something like this:

This is a quick description of what the method is designed to do followed

by the method signature:

- (BOOL) goBack

The minus (-) indicates that goBack is an instance method. A plus (+)

is used to label a class method. We haven’t talked about objects and

classes much yet, but when we do, you’ll see that you send a class

method to the WebView class and an instance method to an object of

type WebView.

The return type of goBack is BOOL. You can see by the Discussion sec-

tion that in Objective-C the two boolean values are YES and NO and not

true and false. In addition to being the way experienced Objective-C pro-

grammers write code, you’ll want to use YES and NO to make your code

read more conversationally.

3.3 Methods with Arguments

If you look back at the list of tasks for moving back and forward,

you should see two methods for going back that look almost identical.

There’s the goBack method we just looked at, and there’s the goBack:

method.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=53

METHODS WITH ARGUMENTS 54

These two methods are completely different. The trailing colon on the

goBack: method indicates that it takes a single argument.

Look up the goBack: method in the WebView class reference. Its signa-

ture is very different from the no-argument goBack method:

When you connected your Back button to the web view, you chose this

goBack: method as the action. You’ll see this type of signature a lot with

methods designed to be called by GUI components. The sender argu-

ment is a handle back to the calling object. The type of sender is upcast

to id. This is the generic type for Cocoa. Any pointer to an object is at

least of type id. Having a handle to the sender allows us to communi-

cate with the object that called goBack: no matter what its type. We’ll

look at a typical example of how you might take advantage of this in

Section 3.6, Links Back to Yourself , on page 58.4

Here’s how you call a method that takes a single argument:

[myWebView goBack:self]

If you are still translating back and forth between Objective-C and

another language, you might be used to something like this:

myWebView.goBack(this)

4. The return type of goBack: is IBAction. We’re going to wait until Chapter 8, Creating a

Controller, on page 141 to talk about what that means. For now, you can treat it as a

void.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=54

METHODS WITH ARGUMENTS 55

Let’s use a method with more arguments to help you better understand

the differences. WebView contains a method with the rather lengthy

name searchFor:direction:caseSensitive:wrap:. That is the entire method

name. In other languages, this might be called searchFor, but in Objec-

tive-C the description of all the arguments is included as part of the

method name. Separate the method into pieces that end with a colon.

When you call the method, you need to supply one argument for each

colon. The method signature makes this clearer because it specifies the

return type of the method and the type of each of the arguments.

- (BOOL)searchFor:(NSString *)string

direction:(BOOL)forward

caseSensitive:(BOOL)caseFlag

wrap:(BOOL)wrapFlag

Here’s how you might use it:

[myWebView searchFor:myString direction:YES caseSensitive:NO wrap:YES]

The equivalent in Java or C# might be something like this:

myWebView.searchFor(myString, true, false, true)

Newcomers to Objective-C tend to be more put off by the colons and

by having arguments mixed in than they are by the square brackets.

I completely understand. I think part of the difficulty comes when a

method is short enough to list on one line. Instead, you might find it

easier to read if we use this more vertical orientation:

[myWebView searchFor:myString

direction:YES

caseSensitive:NO

wrap:YES]

Here we are following the Objective-C code formatting standard and

aligning the colons. It makes it easy to see the method name as the

combination of the elements to the left of the colon and that the argu-

ments sit to the right side of each colon.

The Objective-C version might look like named parameters, but they are

not. The order of the arguments cannot be changed. You can’t leave any

of them out. The method name is searchFor:direction:caseSensitive:wrap:,

which is also called the selector because it is used at runtime to select

the method that will be called.

You will come to really appreciate the fact that you don’t have to recall

what the parameters true, false, and true refer to as you do in the Java or

C# versions. In the Objective-C version, you know that you are conduct-

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=55

DYNAMIC BINDING 56

ing a search for a given string that is not case sensitive in the forward

direction with wrapping enabled.

Your Cocoa code should be readable. A month after you’ve written a

method, you should be able to quickly reconstruct your intent and

understand what the method does. In WebView, you can see the method

moveToBeginningOfSentenceAndModifySelection:. The name of a method

might be longer than its implementation—but what the method does

is immediately clear to anyone who invokes it in code or connects to it

using Interface Builder.

You’ll find more information about methods in the “Objects, Classes,

and Messaging” chapter of Apple’s The Objective-C Programming Lan-

guage [App09f]. There’s also a nice entry on Stack Overflow about pass-

ing multiple parameters in Objective-C.5 You should also check out

Apple’s Coding Guidelines for Cocoa [App06] for guidelines on naming

methods. Matt Gallagher has a nice post on Cocoa with Love about

method names.6

3.4 Dynamic Binding

Let’s take a look behind the scenes at what happens when an Objective-

C message is sent. The simplest of cases, as shown here:

[myWebView goBack]

is converted at runtime to the following function call:

objc_msgSend(myWebView, goBack)

The receiver is passed in as the first argument and the selector as the

second. The more complicated message, as shown here:

[myWebView searchFor:myString direction:YES caseSensitive:NO wrap:YES]

is converted at runtime to this function call:

objc_msgSend(myWebView, searchFor:direction:caseSensitive:wrap:,

myString, YES, NO, YES)

Again, the receiver is passed in as the first argument, and the selector is

passed in as the second. The parameters are passed in as the remaining

function arguments.

5. http://stackoverflow.com/questions/722651/how-do-i-pass-multiple-parameters-in-objective-c

6. http://cocoawithlove.com/2009/06/method-names-in-objective-c.html

Report erratum

this copy is (P1.0 printing, April 2010)

http://stackoverflow.com/questions/722651/how-do-i-pass-multiple-parameters-in-objective-c
http://cocoawithlove.com/2009/06/method-names-in-objective-c.html
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=56

PROBLEMS SENDING MESSAGES 57

Here’s more than you need to know: at runtime, the selector is matched

to an entry in the dispatch table for the object’s class, which points to

the memory location of the procedure that implements the requested

method. If no selector exists in that class, then the search continues

in the class’ superclass and on up the tree to the root class. For more

information on this, read Apple’s The Objective-C 2.0 Programming Lan-

guage, which you can access from Xcode’s Documentation window.

3.5 Problems Sending Messages

There are two basic things that could go wrong with a simple message

in Objective-C: either the receiver may not exist, in which case it has

the value nil, or the object may be valid but may not understand the

message being sent to it. You may get a compiler warning when you try

to build the application, but neither type of error will break the build or

prevent someone from trying to run the application.

In the first case, you are sending a message of the following form:

[nil someMessage];

You won’t get an error at compile time or exception at runtime. Also,

if someMessage returns an object, pointer type, or most valid numeric

types, then this message returns 0.

In the second case, you are sending a message like this:

[validObject someMessageItDoesNotUnderstand];

This time the application will terminate when the receiver is sent a

message it doesn’t understand.7 This problem snuck by you at compile

time but has led to a runtime exception. If validObject is an instance

of the fictional class CustomClass, you’ll see a message like this in the

console:

*** -[CustomClass someMessageItDoesNotUnderstand]:

unrecognized selector sent to instance 0x109280

*** Terminating app due to uncaught exception 'NSInvalidArgumentException'

7. An object will “understand” a message if it or one of its superclasses declare and

implement the corresponding method.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=57

LINKS BACK TO YOURSELF 58

This tells you that the message someMessageItDoesNotUnderstand was

sent to an instance of CustomClass and that CustomClass does not imple-

ment that method.

So, why wasn’t this caught at compile time? It probably was. You will

most likely get a warning that CustomClass may not respond to the mes-

sage someMessageItDoesNotUnderstand.8

There are times that we will take advantage of the dynamic typing and

dynamic binding and other times that we will find it helps to take

advantage of the help the compiler can give us if it knows the types

we are targeting. One way to avoid runtime errors is to become famil-

iar with Apple’s docs so that you are sending objects messages they

understand.

3.6 Links Back to Yourself

We used the WebView method takeStringURLFrom: to use the URL the user

types into the text field for the web view. The takeStringURLFrom: signature

looks a lot like the goBack: method’s.

- (IBAction)takeStringURLFrom:(id)sender

Assume that we have an instance of WebView named myWebView and

the text field is an instance of NSTextField named addressField. Then when

the user enters a string in the text field and hits F, something like this

message is sent:

[myWebView takeStringURLFrom: self]

You might want to visualize this as a message from the text field with

the target as the WebView instance.

takeStringURLFrom: self

8. There are times that you can carefully ignore this warning. You may know that at

runtime validObject will not be an instance of CustomClass but will be an instance of a

class that can handle someMessageItDoesNotUnderstand.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=58

EXERCISE: MULTIPLE CONNECTIONS 59

The web view receives this message and prepares to load a new web

page. First it needs to get the string containing the URL from some-

where. As a result of the message it just received, it knows from where.

The WebView object sends a message back to the object sending the

takeStringURLFrom: message asking for its string value.

Now I know where
 to get the URL from.
Time to send them

a message.

stringValue

The WebView object sends this message:

[sender stringValue]

The web view sends a message back to the object sending the takeString-

URLFrom: message asking for its string value. The sender is a valid object,

and we assume its type is such that it will respond to the stringValue

message, but the compiler can’t check this for us. We can’t know the

type of the sender at compile time, and yet everything works fine at

runtime.

The web view then tries to load the URL provided as a string in response

to this message.

3.7 Exercise: Multiple Connections

You can see this in action by modifying the SimpleBrowser project.

We’re going to throw out this version when we are done, so make a

copy of the existing SimpleBrowser project so you can do all of your

work in this copy.

Let’s work through this one together. When we’re done, you’ll have con-

nected the web view to more than one text field and have given it the

ability to take its string URL from any of them.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=59

EXERCISE: MULTIPLE CONNECTIONS 60

Open the nib file in this copy of your project, and add two text fields

with different default addresses so the application looks like this when

it’s running:

In Interface Builder, select the web view, and use the inspector to look

at its connections. There should be a connection between the received

action takeStringURLFrom: and your first text field, and the circle should

be filled in as before.

But we know how takeStringURLFrom: works. The first thing it does is send

a message back to the component that called the method. So, there’s

no reason we can’t connect this received action to multiple elements.

Drag from the filled-in circle to one of the two text fields you added at

the bottom of the window. Drag one more time from the filled-in circle

to the other text field you added. Your web view is now ready to take

its URL from any of the text fields. You can see the multiple selections

here:

Save your work, and test your modified application. You can enter URLs

from any of the text fields. In fact, you could have mixed and matched

the type of visual components that you used to pass in the URL. The

component just needs to be able to respond to the message stringValue

with a string containing a valid URL.

Before moving on, you may want to save a copy of this project and

revert to the version we had before adding the two text fields. Go ahead

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=60
Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

EXERCISE: MULTIPLE CONNECTIONS 61

and close this project; we’re not going to need the browser example for

the next three chapters.

Now that you know how to read methods in Objective-C, you can write a

few of your own to customize the behavior of the SimpleBrowser. Before

we get back to our browser, we’re going to take a little time to explore

classes, objects, instance variables, and properties.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=61

Chapter 4

Classes and Objects
We’re going to set our browser example aside for a few chapters. Now

that you can read methods, it’s time to write a few of our own. This is

the chapter where you begin to write Objective-C code. You’ll start with

a fairly basic “Hello, World!” application and learn to create classes,

objects, variables, and methods.

Remember that our purpose is not to create a great “Hello, World!”

application. The output of our program won’t change very much during

the course of the chapter. The point is our progression through using

different techniques. You’ll use one of Apple’s classes and then create

one of your own. You’ll communicate with these classes using class

methods. You’ll then create an instance of a class and use instance

methods to communicate with these objects. After we’ve regained our

self-respect as real developers, we’ll return to our web browser exam-

ple in Chapter 8, Creating a Controller, on page 141 and customize the

behavior by writing our own code.

4.1 Creating “Hello, World!”

Let’s create our “Hello, World!” project in Xcode. Remember in Xcode

you create a new project with File > New Project or BD N. Choose the

Application > Cocoa Application template, leaving all the check boxes

unselected, and name the project HelloWorld. Click Build & Run, and

after a pause, an empty window will appear. The application works; it

just doesn’t do anything. Quit HelloWorld, or stop the tasks from within

Xcode by clicking the stop sign, by choosing Run > Stop, or by pressing

BDF.

LOGGING OUTPUT TO THE CONSOLE 63

We aren’t going to talk much about memory until Chapter 6, Memory,

on page 102. Even so, I want you to get into the habit of turning on

automatic garbage collection for every new Cocoa project. In Xcode,

choose Project > Edit Project Settings. This will open the Project Settings

window. Choose the Build tab, and start to type the word garbage into

the filter. You won’t need to type very much of it to see the Objective-C

Garbage Collection setting.

Use the drop-down tab, and select Required. Close your settings, and

now your project supports automatic garbage collection.

4.2 Logging Output to the Console

For now we’re going to ignore the GUI and write directly to the Console

using NSLog(). You will pass in an NSString to NSLog() to be printed to the

Console window.1

Instead of just enclosing the string to be printed in quotes, you need to

indicate an NSString like this:

NSLog(@"Hello, world!");

In other words, you need to put the @ before the open quote to signal

the start of a Cocoa NSString. If you forget to include the @, you will get

a compiler warning that you are passing an argument from an incom-

patible pointer type. Unfortunately, the syntax coloring for the quoted

material without the @ is exactly the same as it is with the @, so this

omission can be tough to spot.

1. Many of the core classes such as NSString begin with NS, which stands for Apple.

Actually, NS stands for “NeXTSTEP,” and these classes were not renamed when Apple

purchased NeXT. Objective-C does not have namespaces, so we often begin a class name

with a two- or three-letter identifier. The same convention is also followed for many C

functions such as NSLog().

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=63

LOGGING OUTPUT TO THE CONSOLE 64

Functions

NSLog() looks nothing like the square brackets, colons, targets,
and actions we saw in the previous chapter.

It shouldn’t. NSLog() is not an Objective-C method—it is a C
function. Objective-C sits on top of C. Although you should pre-
fer to use the Objective-C style of sending messages to classes
and objects, you can also use good old-fashioned C for getting
things done.

You’ll see a lot of C-style functions when you work with system-
level calls and with APIs that work with graphic objects. You can
recognize C functions because they use ordinary parentheses
to capture their arguments, and you just call the function with-
out a target. In this chapter, I’ll point out the differences now
and again, and soon you’ll get used to the mixture of C and
Objective-C constructs.

In a traditional C “Hello, World!” application (or even in older versions of

Cocoa “Hello, World!” applications) that you might have seen, you would

put this line in main(). Your program has a main() in the file main.m,

which you can find in Groups & Files in the Other Sources directory.

Download Classes/HelloWorld1/main.m

#import <Cocoa/Cocoa.h>

int main(int argc, char *argv[])

{

return NSApplicationMain(argc, (const char **) argv);

}

We’re going to leave main.m alone. We aren’t going to ever add to it or

modify it. All of the action for main() is contained in the call to the func-

tion NSApplicationMain(). In our case, this function creates an instance

of the NSApplication class and loads the MainMenu nib. In other words,

it launches the application.

If you’re a C programmer, you’ll be tempted to put more of your pro-

gramming logic here in the main() function. Don’t. There is a new place

for this customization, the application delegate. You’re going to see a

lot of this delegate pattern throughout this book.

This first time through, I’m going to gloss over the details, but the big

idea is that the NSApplication class knows a lot about how an application

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld1/main.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=64

LOGGING OUTPUT TO THE CONSOLE 65

should behave in general. It can’t possibly know how any particular

application should behave. One solution would be for us to subclass

NSApplication and override the appropriate methods with our custom

behavior. We tend to take a different approach in Cocoa applications.

We assign a delegate object to the NSApplication and implement only

those methods we need to implement. And what’s a delegate? You can

think of it as an assistant class that the main class passes work to.

When the main class, in this case Application, needs something done, it

calls a method in its delegate class.

Fortunately, the Cocoa Application template created an application del-

egate for us named HelloWorldAppDelegate. You’ll find the source files in

the Classes folder under Groups & Files.2

The Cocoa Application template has created the files HelloWorldAppDel-

egate.h and HelloWorldAppDelegate.m, which together define the class

HelloWorldAppDelegate.

Inside HelloWorldAppDelegate.m, there is a method named application-

DidFinishLaunching: that contains the following comment:

// Insert code here to initialize your application

Add the log line in place of the comment like this:

Download Classes/HelloWorld1/HelloWorldAppDelegate.m

#import "HelloWorldAppDelegate.h"

@implementation HelloWorldAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

NSLog(@"Hello, World!");

}

@end

2. If you don’t find these files, you are probably using Xcode version 3.1 or earlier and

need to move to Xcode 3.2 or later.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld1/HelloWorldAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=65

USING AN EXISTING CLASS 66

How is this method ever called? We don’t call it explicitly from main().

In fact, we don’t explicitly call it from anywhere.

The simple explanation is that at runtime after the application finishes

launching, the application object sends its delegate the message appli-

cationDidFinishLaunching:. The slightly longer version is what you saw in

the previous chapter; if the delegate didn’t implement this method, then

there would be a runtime error when it is called. So, what really hap-

pens is the application object checks to make sure the delegate imple-

ments the method, and if it does, then it sends the message.

I see that my
delegate knows what

to do when the
app finishes
launching

applicationDidFinishLaunching:notification

Application App Delegate

To run the application, first show the Console with Run > Console or BD

R. Next, clear the Console by selecting Run > Clear Console, by pressing

CED R, or by clicking the Clear Console button if it is visible. Finally,

click Build & Run (or use the keyboard shortcut for this, DF).

HelloWorld should start up, the empty window will appear, and the

Console should contain a line indicating the time at which the session

started followed by a line with a time stamp, the process ID, and the

string we created. Mine looks like this:

HelloWorld[19673:10b] Hello, world!

Once you’ve admired your achievements for a bit, you can quit Hel-

loWorld and get back to work.

4.3 Using an Existing Class

We’ve got a “Hello, World” app printing out nicely to the Console. As

our next step, we’ll create a text field in code, add it to our window,

configure it a little, and then display “Hello, World!” in this text field.

Remember, our goal is not to print out “Hello, World!” in a text field. If

that were our only goal, we could just drag the widget out of the library

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=66

USING AN EXISTING CLASS 67

in Interface Builder and type in the phrase Hello, World!3 The rule of

thumb for Interface Builder is simple: any time you can use Interface

Builder, you should use Interface Builder. There is nothing you can do

in Interface Builder that can’t be done in code. There is no reason to

avoid Interface Builder for any but very esoteric cases.

This is one of those cases. Our goal in this section is to gain experience

in using code to instantiate, configure, and use a class that we didn’t

write. Then we’ll be ready to create and use our own class.

To make things a bit easier, double-click MainMenu.xib to start Interface

Builder, select your window, and use the Size inspector to set the width

of the window to 580 and the height to 90. It’s unfortunately easy to

select the view by mistake if you click the inside of the window. If you

click the title bar for the window, then the title bar for the Size inspector

should say Window Size.

I’ve set the maximum and minimum size of the window to be these

dimensions as well so that the user can’t resize the window. There’s

nothing magic about these dimensions, but it will help us if we know

the size of the window when we create and place a label.

So, think back to what happened when we placed the text field at the

top of the window in our SimpleBrowser example. You grabbed a text

field from the library and dragged it to the window and dropped it. It

was automatically added to the view hierarchy. Your Document window

looked something like this:

3. A side benefit of creating a text field in code in this example is that it should help

convince you to use Interface Builder whenever you can.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=67

USING AN EXISTING CLASS 68

Although you probably didn’t pay attention at the time, the window

contains a ContentView. When you dropped the text field onto the win-

dow, you were creating an instance of NSTextField, and you were adding

it as a subview of the ContentView.

You then repositioned the text field and changed the text to display

what you wanted. Here’s how we might do this in code:4

Download Classes/HelloWorld2/HelloWorldAppDelegate.m

#import "HelloWorldAppDelegate.h"

@implementation HelloWorldAppDelegate

@synthesize window;

-(void)applicationDidFinishLaunching:(NSNotification *)aNotification {

NSRect labelLocation = NSMakeRect(20, 20, 540, 50);

NSTextField *label = [[NSTextField alloc] initWithFrame:labelLocation];

[label setStringValue:@"Hello, World!"];

[[self.window contentView] addSubview:label];

}

@end

First, we create an NSRect that holds the information for the size and

location of the label. This matches the work we did using Interface

Builder in Chapter 2, Using What’s There, on page 24, where we resized

the text field or set its dimensions in the Size inspector. Notice that

NSMakeRect() is a C function and not a method. This is fairly typical

when we work with graphic elements. Although this is certainly too

much information for now, an NSRect or an NSPoint is a C struct and not

an Objective-C object. There will always be a corresponding C function

such as NSMakeRect() or NSMakePoint() to create and configure these

elements.

Next we create an instance of NSTextField named label and set its location

and dimensions to those described by the labelLocation variable. We set

the label’s string value to be Hello, World! and add the label as a subview

of the window’s content view.

4. I’ll assume for now you understand that self.window refers to the current object’s win-

dow instance. I’ll explain the dot syntax in Chapter 5, Instance Variables and Properties,

on page 86.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld2/HelloWorldAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=68

REFACTORING CODE 69

Click Build & Run, and you should see something like this:

I’m not very happy with the current state of this project. Sure, the out-

put looks ugly, and we’ll fix that, but mainly I’m concerned with the

state of the code. Let’s refactor it a bit.

4.4 Refactoring Code

Now and then it helps to step back from your code and look to see what

could use some cleaning up. Now that I look at it, I don’t like the name

labelLocation. Of course, we could get rid of the variable completely and

just inline the creation of the NSRect without using an explanatory tem-

porary variable. That would be one solution.

If instead we choose to rename the variable, then we need to take into

account that it’s not just the location of the label but also its size. As

you might have guessed from the method name initWithFrame, these two

pieces of information are collected in an NSRect and called a frame.

Let’s use Xcode to change the variable name from labelLocation to label-

Frame. In this case, it would be easy enough to make the change by

hand, but I’d like to introduce you to how you might use Xcode to per-

form a couple of refactorings.

I don’t know if you’ve noticed it yet, but when you click labelLocation

(go ahead, click it), all instances of labelLocation are underlined.5 If you

hover your mouse around the labelLocation you’ve selected, slightly to

the right, you will get a drop-down arrow. This is the same interface

you see when you hover over a phone number or an address that is

part of an email you read in Mail.app. Click the arrow, and you should

see the options shown here:

5. Here labelLocation appears only once, but you get the idea.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=69

REFACTORING CODE 70

Choose Edit All in Scope. Both instances of labelLocation are high-

lighted. Change Location to Frame in one of them, and you’ll see that

they both are changed to labelFrame.

Next, although it doesn’t look to be a problem right now, the applica-

tionDidFinishLaunching: method could easily get out of hand. I like to have

small, cohesive, easy-to-understand methods. Let’s perform a quick

refactoring and pull out these four lines into a separate method:

NSRect labelFrame = NSMakeRect(20, 20, 540, 50);

NSTextField *label = [[NSTextField alloc] initWithFrame:labelFrame];

[label setStringValue:@"Hello, World!"];

[[self.window contentView] addSubview:label];

Again, we could easily do this refactoring by hand, but let’s use Xcode’s

refactoring tools. Select exactly those four lines, and choose Edit > Refac-

tor ..., press BD J, or Control-click and select Refactor... in the menu

that appears. The refactoring dialog box will appear and, after analyz-

ing the code you selected, will present you with a drop-down list of

available refactorings.

Choose Extract. The default signature of the new method is -(void)

extracted_method. Change it to -(void) createLabel. Click the Preview but-

ton. You will get a list of all the files where there are changes. In this

case, the only changes that will result from this refactoring are in Hel-

loWorldAppDelegate.m. There are four changes noted. Click HelloWorldAp-

pDelegate.m in the refactoring window, and you should see this preview:

Click the Apply button to complete the refactoring.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=70

REFACTORING CODE 71

Here is the HelloWorldAppDelegate.m file that results:

Download Classes/HelloWorld3/HelloWorldAppDelegate.m

#import "HelloWorldAppDelegate.h"

@implementation HelloWorldAppDelegate

@synthesize window;

-(void)createLabel {

NSRect labelFrame = NSMakeRect(20, 20, 540, 50);

NSTextField *label = [[NSTextField alloc] initWithFrame:labelFrame];

[label setStringValue:@"Hello, World!"];

[[self.window contentView] addSubview:label];

}

-(void)applicationDidFinishLaunching:(NSNotification *)aNotification {

[self createLabel];

}

@end

Now applicationDidFinishLaunching: is nice and clean. It consists only of a

call to createLabel. Four quick notes:

• There is no reason that createLabel had to be a method. I could

have chosen during the refactoring to make it an ordinary C

function.

• Remember that we call methods by sending messages to objects.

In this case, the target of the message createLabel is self, which

points to our current instance of HelloWorldAppDelegate.

• If createLabel had instead been defined to be a C-style function,

we would have replaced [self createLabel]; with createLabel();.

• The refactoring tool will place the new method in the source code

above the line where the method is called. Think of the compiler

as reading your source code from top to bottom. When it gets

to the line in which the method is called, the compiler needs to

have already encountered the implementation of the method. If a

method occurs in the source code below where it is called, you will

get a compiler warning.

Now that we’ve separated the code that creates the label, I don’t mind

adding a bit more code to configure it the way I want. I’ll add code some

of the customization I would have done in Interface Builder using the

Attributes inspector.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld3/HelloWorldAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=71

CREATING A NEW CLASS 72

Download Classes/HelloWorld4/HelloWorldAppDelegate.m

- (void) createLabel {

NSRect labelFrame = NSMakeRect(20, 20, 540, 50);

NSTextField *label = [[NSTextField alloc] initWithFrame:labelFrame];

[label setEditable:NO];

[label setSelectable:NO];

[label setAlignment:NSCenterTextAlignment];

[label setFont:[NSFont boldSystemFontOfSize:36]];

[label setStringValue:@"Hello, World!"];

[[self.window contentView] addSubview:label];

}

I’ve set the label so that the user can’t select or edit it. I’ve centered

the text and made it both bold and 36 point. The outcome looks a little

bit better, but we’re not going to win an Apple Design Award any time

soon:

You don’t want to write a lot of code like this. Anything you can do in

Interface Builder can also be done in code. In general, though, if you

can do something in Interface Builder, then you should. Always choose

using Interface Builder over writing code.

4.5 Creating a New Class

Let’s create a class of our own. We’ll create a class named Greeter and

send it messages. Then we’ll use the class to instantiate an object and

send this object messages.

All classes are created in Xcode. You can create instances of the classes

in Xcode or Interface Builder, but the classes are created in Xcode.

From Xcode, select the Classes folder under Groups & Files so that the

files you create will appear inside this folder. Choose File > New File...,

or press D N. Choose to create a Cocoa > Objective-C class that is a

subclass of NSObject. The description should say that you are creat-

ing “An Objective-C class file, with an optional header which includes

the <Cocoa/Cocoa.h> header.” Click Next.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld4/HelloWorldAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=72

CREATING A NEW CLASS 73

Organizing Files

At the left side of your Editor window you should see a section
labeled Groups & Files. You may need to use the disclosure tri-
angle next to your application’s name to reveal folders labeled
Classes, Other Sources, Resources, Frameworks, and Products.

When you create a new class in Xcode, the implementation
and header files will appear in whatever directory is selected.
If none is selected, they will appear in the top level under the
application name. There is no correspondence between where
the files actually live on the disk and where they appear in this
organizer. The organizer works more like playlists in iTunes than
like mailboxes in Mail.

Create other folders if you like, but for small projects you want
to keep your source code in the Classes folder. Either select
Classes before you create a new class or drag the files into the
folder afterward.

Name your file Greeter.m.6 Also, make sure that the checkboxes to cre-

ate Greeter.h and to target HelloWorld are selected. Generally, if you

accept the defaults, you should be OK. Click Finish. You’ve now gener-

ated the header file Greeter.h and the implementation file Greeter.m.

The header file contains the public interface for the Greeter class. You

use it to tell other people how they can interact with your class. At the

top of the file you’ll often import the header files of other classes your

class might want to use. In this case, Xcode has already included the

directive to import Cocoa.h, which includes the header files for all of

the Cocoa classes you might need to use.

6. Begin class names with an uppercase letter, and use camel case. Begin variable

names and methods with a lowercase letter. Remember to check out Coding Guidelines

for Cocoa [App06], which includes Apples documentation on naming classes, variables,

methods, and functions.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=73

CREATING A NEW CLASS 74

Here’s the header file with two comments I’ve inserted to help our dis-

cussion:

Download Classes/HelloWorld5/Greeter.h

#import <Cocoa/Cocoa.h>

@interface Greeter : NSObject {

// you'll declare instance variables here

}

// you'll declare methods here

@end

Everything between @interface and @end is the description of the

public interface for the Greeter class. Greeter : NSObject indicates that

the Greeter class directly extends the root class NSObject. WebView,

in contrast, is a subclass of NSView, which in turn is a subclass of

NSResponder, which is a subclass of NSObject. Unless you specifically

override it, you benefit from inheriting the behavior of any of your

superclasses. The behavior that is common to all objects is specified

in the root class NSObject. You will sometimes have to look in the docu-

mentation of a superclass to find methods that are available to objects

created from your class.

In the header file, the comments I’ve added to the template code show

that you add the declaration for your instance variables inside the curly

braces, and you declare your methods between the closing brace and

the @end.

Here’s Greeter.m, the implementation file you just generated:7

Download Classes/HelloWorld5/Greeter.m

#import "Greeter.h"

@implementation Greeter

@end

The file begins by importing the header file for Greeter. Other than that,

you won’t see anything other than the beginning and end markers for

the class implementation. Notice that in this file you don’t specify that

the Greeter inherits from NSObject.

7. Note the suffixes of the two files Greeter.h and Greeter.m. The h is for header, and the

m is for implementation. You’ll find this and other fun facts in the Objective-C FAQ at

http://www.faqs.org/faqs/computer-lang/Objective-C/faq/.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld5/Greeter.h
http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld5/Greeter.m
http://www.faqs.org/faqs/computer-lang/Objective-C/faq/
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=74

CREATING AND USING A CLASS METHOD 75

You will use this combination of the Greeter.h and Greeter.m files to

define the Greeter class. A class’s header file contains the information

you are happy to share publicly. Other classes will import this header

file so they know which messages they can send this class. The imple-

mentation file contains the part of the class that is no one else’s busi-

ness. The header file tells others what they can ask this class or objects

of this type to do. The implementation hides away the details of how

this work is accomplished.

4.6 Creating and Using a Class Method

In this iteration of “Hello, World!” we’re going to define a new class but

not create any objects from it. In practice, we will usually create one or

more objects from a class and work with these instances. I want you

to see this progression so that you’ll know how to create and use both

class methods and instance methods.

The Greeter class will have the class method greeting. We can call this

method without instantiating Greeter. In other words, the target of the

greeting method is the class Greeter and not an object of type Greeter.

You’d call it like this:

[Greeter greeting];

Declare your class method in Greeter.h. You’ll use + (NSString *) in front of

the method declaration to indicate that greeting is a class method that

returns an NSString. You will declare your class methods between the

closing brace and @end.

Download Classes/HelloWorld6/Greeter.h

#import <Cocoa/Cocoa.h>

@interface Greeter : NSObject {

}

+(NSString *) greeting;

@end

The method returns an NSString containing our greeting. Here’s the

implementation file:

Download Classes/HelloWorld6/Greeter.m

#import "Greeter.h"

@implementation Greeter

+(NSString *) greeting {

return @"Hello, World!";

}

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld6/Greeter.h
http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld6/Greeter.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=75

CREATING A NEW OBJECT 76

You need to make two changes to HelloWorldAppDelegate.m. You have to

import the header file for Greeter so that the compiler doesn’t complain

when you try to call greeting. You also have to set the label’s string

value to be whatever you get back by sending the message greeting to

the class Greeter.

Download Classes/HelloWorld6/HelloWorldAppDelegate.m

#import "HelloWorldAppDelegate.h"

#import "Greeter.h"

@implementation HelloWorldAppDelegate

@synthesize window;

- (void) createLabel {

NSRect labelFrame = NSMakeRect(20, 20, 540, 50);

NSTextField *label = [[NSTextField alloc] initWithFrame:labelFrame];

[label setEditable:NO];

[label setSelectable:NO];

[label setAlignment:NSCenterTextAlignment];

[label setFont:[NSFont boldSystemFontOfSize:36]];

[label setStringValue:[Greeter greeting]];

[[self.window contentView] addSubview:label];

}

-(void)applicationDidFinishLaunching:(NSNotification *)aNotification {

[self createLabel];

}

@end

Click Build & Run, and the results should be exactly the same as

before. When you’re ready, quit the application, and let’s change this

application to create objects and to use instance methods.

4.7 Creating a New Object

Next, we’re going to create a new object and call an instance method.

Because we configured the project to use garbage collection, there are

a whole bunch of memory management details you don’t have to worry

about right now. I’ll wait to show you those until Chapter 6, Memory,

on page 102 because the details are a bit dry yet still important if you

ever want to work in a non-garbage-collected Cocoa application or want

to develop applications for the iPhone where garbage collection isn’t

supported.8 Because garbage collection is enabled, we just make a few

small changes in our code to create an object of type Greeter.

8. Actually, memory management won’t be the first detail I’ll gloss over. You may have

noticed an asterisk (*) or two float by without a comment. We also haven’t talked about

what happens when an application first starts up. How is it that our browser appeared

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld6/HelloWorldAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=76

CREATING A NEW OBJECT 77

First, change the header file Greeter.h to change the + to a - to declare

the greeting method as an instance method instead of a class method:

Download Classes/HelloWorld7/Greeter.h

#import <Cocoa/Cocoa.h>

@interface Greeter : NSObject {

}

-(NSString *) greeting;

@end

Make the corresponding change of + to - in the implementation file

Greeter.m, or your compiler will complain that you declared an instance

method that you didn’t implement (it will not complain that you imple-

mented a class method that you didn’t declare).

Download Classes/HelloWorld7/Greeter.m

#import "Greeter.h"

@implementation Greeter

-(NSString *) greeting {

return @"Hello, World!";

}

@end

Now it’s time to actually create your first object and call an instance

method. Change the createLabel method in HelloAppDelegate.m to look

like this:

Download Classes/HelloWorld7/HelloWorldAppDelegate.m

Line 1 - (void) createLabel {

- NSRect labelFrame = NSMakeRect(20, 20, 540, 50);

- NSTextField *label = [[NSTextField alloc] initWithFrame:labelFrame];

- [label setEditable:NO];

5 [label setSelectable:NO];

- [label setAlignment:NSCenterTextAlignment];

- [label setFont:[NSFont boldSystemFontOfSize:36]];

- Greeter *greeter = [[Greeter alloc] init];

- [label setStringValue:[greeter greeting]];

10 [[self.window contentView] addSubview:label];

- }

The right side of code in line 8 is the template code you will use to

create new objects. Here the variable greeter points to the object of type

all ready to work and the system knows that HelloWorldAppDelegate is where we should be

creating our initial objects in code?

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld7/Greeter.h
http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld7/Greeter.m
http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld7/HelloWorldAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=77

FURTHER REFACTORING 78

Greeter that you are creating. You create the object in two steps, as you

can see by the nested call:

[[Greeter alloc] init]

The class method alloc is responsible for allocating the memory and

returning an object whose initial values are set by the instance method

init. In the following line, you send the message greeting to greeter and

use the returned value as the string displayed in your label.

4.8 Further Refactoring

We won’t do this throughout the book, but I wanted to give you a feel

for the rhythm of writing Cocoa code. You seldom get things right the

first time, so you code a little and then clean things up when you notice

code getting out of hand.

It feels a little odd to me that the createLabel method is responsible for

creating the Greeter object. One way to try to tease these two apart is to

think of how I might describe the action at a high level from within the

applicationDidFinishLaunching: method. Let’s try this:

Download Classes/HelloWorld8/HelloWorldAppDelegate.m

-(void)applicationDidFinishLaunching:(NSNotification *)aNotification {

Greeter *greeter = [self greeter];

NSTextField * label = [self labelWithText:[greeter greeting]];

[[self.window contentView] addSubview:label];

}

In this code, you can see that we start by obtaining a Greeter object from

another method named greeter, which won’t do much for now. Then we

create and configure a label that has as its text the results of sending

the Greeter object the message greeting. Finally, we take that label and

add it to the window’s content view as a subview.

Once I’ve mapped out what my class looks like, I can now fill in the

details. I can see I need to make the following by the way I’ve called the

code that creates the label:

• I’ve changed the name of the method to labelWithText:.

• The method now takes the text it is going to display in the label as

a parameter.

• I’m expecting the method to return the label to me so that I can

add it as a subview in applicationDidFinishLaunching: and not within

the method that creates the label.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld8/HelloWorldAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=78

INITIALIZING YOUR OBJECTS 79

We can easily make those changes to the newly named labelWithText:

method:

Download Classes/HelloWorld8/HelloWorldAppDelegate.m

- (NSTextField *) labelWithText: (NSString *) labelText {

NSRect labelFrame = NSMakeRect(20, 20, 540, 50);

NSTextField *label = [[NSTextField alloc] initWithFrame:labelFrame];

[label setEditable:NO];

[label setSelectable:NO];

[label setAlignment:NSCenterTextAlignment];

[label setFont:[NSFont boldSystemFontOfSize:36]];

[label setStringValue:labelText];

return label;

}

We also need to add a greeter method that creates and returns a Greeter

object:9

Download Classes/HelloWorld8/HelloWorldAppDelegate.m

- (Greeter *) greeter {

return [[Greeter alloc] init];

}

We’d kind of like our applicationDidFinishLaunching: method to come at

the top of our code so people can glance at it and get an idea of what

the class does. Remember, the compiler reads your code from top to

bottom. If the applicationDidFinishLaunching: were at the top, the compiler

would complain that it doesn’t know about the greeter method or the

labelWithText: method. The program would still run fine, but you would

have these warnings.

We could declare the greeter and labelWithText: methods in the header

file, but they really aren’t part of the public interface. We’ll learn other

tricks, but for now we’ll leave the applicationDidFinishLaunching: method

at the bottom.

4.9 Initializing Your Objects

When we create a new Greeter object, we allocate memory, and then we

call the init method. But you’ve seen the Greeter. It doesn’t have an init

method of its own. When you call init on an instance of Greeter, you are

really calling init on Greeter’s superclass NSObject.

9. We could leave the creation of the Greeter object inlined as part of the applicationDidFin-

ishLaunching: method. I’ve split it out to emphasize small methods and to provide more

experience with creating methods and sending messages.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld8/HelloWorldAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld8/HelloWorldAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=79

INITIALIZING YOUR OBJECTS 80

All this inheritance worked fine because Greeter didn’t have any of its

own variables to initialize. There was nothing that was in a Greeter that

wasn’t already in an NSObject that needed initialization.

Let’s change that. Let’s add an instance variable named name to Greeter.

Remember, we need to add a declaration between the curly braces in

the header file Greeter.h.

Download Classes/HelloWorld9/Greeter.h

#import <Cocoa/Cocoa.h>

@interface Greeter : NSObject {

NSString * name;

}

-(NSString *) greeting;

@end

What are we going to do with our new variable? First, we’re going to

need to set its value when the object is initialized. We’re going to have

to write our own init method in which we set the value of name to World.

Then we’re going to have to change the implementation of greeting so

that it inserts the value of name between Hello, and !.

We’ll go through the following code slowly starting with init:

Download Classes/HelloWorld9/Greeter.m

Line 1 #import "Greeter.h"

-

- @implementation Greeter

-

5 -(NSString *) greeting {

- return [[NSString alloc] initWithFormat:@"Hello, %@!", name];

- }

-

- -(id) init {

10 if (self = [super init]){

- name = @"World";

- }

- return self;

- }

15 @end

Let’s start with line 10. It sure looks wrong. You might think that there

should be a double equals between self and [super init], but this really is

an assignment and not a test for equality. So, what’s going on in the

assignment?

self = [super init];

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld9/Greeter.h
http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld9/Greeter.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=80

INITIALIZING YOUR OBJECTS 81

Reading from the right, when you initialize an object, the first thing

you do is make a call to the superclass’s init method. You assign this

initialized object to self, and then you test that self is not nil. If it isn’t,

then go ahead and customize it as we’ve done in line 11. This lets you

start with all the initializations you had before you started writing this

method and then fill in the additional initializations on top of them.

Finally, you return your object in line 13.

You’ll often see this slightly more verbose way of accomplishing the

same thing:

- (id) init

{

self = [super init];

if (self != nil) {

name = @"World";

}

return self;

}

If you use this second version, I prefer you replace if (self != nil) with

if(self).10

Now let’s look at line 6 in the greeting method. We are returning a for-

matted string. This is similar to what you’ve seen in many other lan-

guages. You create a string with placeholders like %d in it. You follow

the string with a comma-separated list of the values that replace the

placeholders in the string.

In our case, we are using a new Cocoa type %@, which displays a string

representation of a Cocoa object (as specified in its description method).

In our case we have this:11

[[NSString alloc] initWithFormat:@"Hello, %@!", name]

This means we replace the %@ with the value of name, which is cur-

rently World.12 Our result is Hello, World!.

10. For a full discussion of self and [super init], see Matt Gallagher’s article at

http://cocoawithlove.com/2009/04/what-does-it-mean-when-you-assign-super.html. It’s also infor-

mative and entertaining to read Wil Shipley’s article on using self= [super init], which you

can find at http://www.wilshipley.com/blog/2005/07/self-stupid-init.html. Be sure to read to the

end where he concludes it’s a good thing to use.
11. If you already know about memory management in Objective-C, you’ll see that I am

introducing a memory leak here. It’s deliberate and is taken care of by the garbage col-

lector, and later we’ll talk about what to do when we don’t have a garbage collector.
12. For more details on formatted strings, you can look up the method stringWithFormat: in

the docs. This points to an article called “Formatting String Objects” with some examples

Report erratum

this copy is (P1.0 printing, April 2010)

http://cocoawithlove.com/2009/04/what-does-it-mean-when-you-assign-super.html
http://www.wilshipley.com/blog/2005/07/self-stupid-init.html
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=81

LOGGING OBJECTS 82

Click Build & Run, and the program should again work exactly as

before.

4.10 Logging Objects

Sometimes you want a quick view of the state of an object at partic-

ular points in a program. A quick-and-dirty solution is to use NSLog()

together with %@ to log the string description of the object. Unfortu-

nately, Apple can’t know what you want to log for your custom objects.

For example, add this highlighted line to log the value of the newly

created Greeter object:

Download Classes/HelloWorld10/HelloWorldAppDelegate.m

-(void)applicationDidFinishLaunching:(NSNotification *)aNotification {

Greeter *greeter = [self greeter];

NSLog(@"Greeter: %@", greeter);

NSLog(@"This occurred in %@ at line %d in file %s.",

NSStringFromSelector(_cmd), __LINE__, __FILE__);

NSTextField * label = [self labelWithText:[greeter greeting]];

[[self.window contentView] addSubview:label];

}

Click Build & Run. Unfortunately, the Greeter object doesn’t know how

to describe itself, so you inherit the default behavior from NSObject.

You’ll see something like this:

Greeter <Greeter: 0x10044d520>

This is just the class name for the object along with its memory location.

This probably isn’t very useful, but you can always specify how you

want an object to display itself by overriding the description method. To

help with debugging, I’ve also added information to display the name of

the method and the file and current line number.13

Download Classes/HelloWorld10/Greeter.m

-(NSString *)description {

return [[NSString alloc] initWithFormat:@"name: %@ \n created: %@",

name, [NSDate date]];

}

of how you might use the method. There is also a linked comprehensive list of string

format specifiers.
13. For more options, see Apple’s technical Q&A titled “Improved logging in Objective C”

at http://developer.apple.com/mac/library/qa/qa2009/qa1669.html.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld10/HelloWorldAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld10/Greeter.m
http://developer.apple.com/mac/library/qa/qa2009/qa1669.html
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=82

EXERCISE: OTHER INITIALIZATIONS 83

Now the Greeter knows how to describe itself, so when you rerun the

application, you now see something like this:

Greeter: name: World

created: 2010-02-10 15:57:35 -0500

This occurred in applicationDidFinishLaunching: at line 27 in file

/Volumes/Data/Prags/Bookshelf/Writing/DSCPQSL/Book/code/Classes

/HelloWorld10/HelloWorldAppDelegate.m.

There’s no set style for implementing the description method. Include

whatever data you anticipate might be useful to you or others who will

want a string description of your class. You can see in this log message

how Apple has implemented the description method for the NSDate class.

The display consists of the year, month, day, time, and time zone.

4.11 Exercise: Other Initializations

As always happens with this example, after a while you’d like to greet

something other than the whole world. Fortunately, we’re in great shape

to do so. To greet anyone we want, we need to be able to reset the name

variable.

One way to add a bit of flexibility would be to create a second init

method. This one would take the name as a parameter. The conven-

tion is to provide a more descriptive method name that begins with init.

We could call it initWithName:.

Take a minute to do just that. Declare an initWithName: method that

takes an NSString * as its only parameter and returns an id in the Greeter

header file. In Greeter.m, implement the initWithName: method to set the

value of name to the string that is passed in.14

Each class should have a designated init that all other inits call. Refactor

our current init method to call initWithName:, and pass World as the value

of the parameter.

Click Build & Run, and our application should run just as it has.

In HelloWorldAppDelegate.m, rename the greeter method greeterFor that

takes an NSString * as its only argument and creates a Greeter using

Greeter’s initWithName: method.

14. I haven’t said anything about id yet. Think of it as a type that can stand in for any

possible object type, and I’ll explain a bit more about it in Chapter 5, Instance Variables

and Properties, on page 86.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=83

SOLUTION: OTHER INITIALIZATIONS 84

Click Build & Run, and you should see a more personal greeting.

4.12 Solution: Other Initializations

Add this declaration to the Greeter header file as we are adding a new

initialization method to the public interface:

Download Classes/HelloWorld11/Greeter.h

#import <Cocoa/Cocoa.h>

@interface Greeter : NSObject {

NSString * name;

}

-(NSString *) greeting;

-(id) initWithName:(NSString *)newName;

@end

For Greeter.m, add this method:

Download Classes/HelloWorld11/Greeter.m

-(id) initWithName:(NSString *) newName {

if (self = [super init]){

name = newName;

}

return self;

}

Once you learn about properties in the next chapter, you’ll use some-

thing a bit more robust than the following:

name = newName;

You’ll use a property to set the value of the name and take care of the

memory management while you’re at it.

You can now refactor the init method to call initWithName: to eliminate

the duplicated code:

Download Classes/HelloWorld11/Greeter.m

-(id) init {

return [self initWithName:@"World"];

}

This method replaces greeter in HelloWorldAppDelegate.m:

Download Classes/HelloWorld11/HelloWorldAppDelegate.m

- (Greeter *) greeterFor:(NSString *) personName {

return [[Greeter alloc] initWithName:personName];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld11/Greeter.h
http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld11/Greeter.m
http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld11/Greeter.m
http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld11/HelloWorldAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=84

SOLUTION: OTHER INITIALIZATIONS 85

Adjust applicationDidFinishLaunching: to call this new method:

Download Classes/HelloWorld11/HelloWorldAppDelegate.m

-(void)applicationDidFinishLaunching:(NSNotification *)aNotification {

Greeter *greeter = [self greeterFor:@"Maggie"];

NSLog(@"Greeter: %@", greeter);

NSTextField * label = [self labelWithText:[greeter greeting]];

[[self.window contentView] addSubview:label];

}

Click Build & Run, and you should see something like this:

In this chapter, you’ve created and used your own classes and objects.

You’ve created custom initializers, class methods, instance methods,

and instance variables. Now let’s take a step back and look at some of

the issues we’ve swept under the carpet.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Classes/HelloWorld11/HelloWorldAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=85

Chapter 5

Instance Variables and Properties
Messages are a big deal in this book. So far, we’ve sent messages that

ask an object to perform a task like saying hello or initializing itself with

a particular name. In this chapter, we’re going to look at messages that

get or set the state of an object’s variables.

Many of your objects will have instance variables to store state. Often

that state is internal to your object—you don’t want it exposed to other

objects. But sometimes you do want other objects to be able to examine

and possibly set the value of one or more instance variables. Think

back to some of the variables we set in Interface Builder using the

Attributes inspector. We set the text for the buttons as well as the key

equivalent. In the previous chapter, we set certain attributes such as

the font size and justification for our text field in code. These publicly

visible instance variables are properties of the object. Objective-C 2.0

has a mechanism for generating the getters and setters that let other

objects access them.

We’ll start with instance variables and expose them with a getter and

a setter that we declare and write ourselves. We’ll then generate the

declaration automatically using the @property directive and implement

them automatically using the @synthesize directive. You’ll then learn to

call the accessors differently using the new dot syntax.

POINTERS 87

5.1 Pointers

Take a look back at the header file for Greeter:

Download Properties/HelloWorld12/Greeter.h

#import <Cocoa/Cocoa.h>

@interface Greeter : NSObject {

NSString *name;

}

-(NSString *) greeting;

-(id) initWithName:(NSString *)name;

@end

Every time you see the type NSString, it is followed by a space and an

asterisk (*). In particular, consider the declaration of the instance vari-

able:

NSString *name;

In Objective-C, variables that refer to objects are really pointers. The *

is how we indicate that name is a pointer. We could declare our variable

in either of these two ways:

NSString* name; // OK, but

NSString *name; // this form is preferred

In Objective-C we tend to put the * right before the variable name.

We are careful to always use the * to mark an object’s variable as being

a pointer, but we’re more casual when we talk about them. We’ll tend to

say that name is an NSString, but really name is a pointer to an NSString.1

We use pointers in method declarations as well. For example, here’s

how you’d declare an instance method named greeting that returns a

pointer to an NSString:

-(NSString *) greeting;

Again, in casual conversation, we would more likely say that greeting

returns a string, but the code makes it clear that we’re actually return-

ing a pointer to an NSString.

Finally, look at the declaration of our custom init method:

-(id) initWithName:(NSString *)newName;

1. If you’re coming from Java, the same thing is true there, but we pretend there are

no pointers in Java. Then you have some explaining to do when you throw your first

NullPointerException.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld12/Greeter.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=87

WORKING WITH NONOBJECT TYPES 88

This declares an instance method named initWithName:. The method

takes a pointer to an NSString named newName as its only argument.

The return type ofinitWithName: is id. We use id to mean a pointer to any

type when we don’t want to specify exactly what that type is. In other

words, id is what we use in Objective-C to point to an instance of a

class. We used id in Section 3.3, Methods with Arguments, on page 53

as a parameter type.

- (IBAction) goBack:(id) sender

This was the message sent to the WebView when the Back button was

clicked.2 The way we wired it up, the sender of the message was an

NSButton *. We could have introduced a completely different element and

used it to initiate the goBack: message, so the type of the sender would

have been different. We capture this need for flexibility by setting the

type of the sender to be id.

You don’t write id * because id is a pointer. This can be confusing

because id stands in for pointers like NSButton * and NSString *. But id

appears without the asterisk.

In our example, we use id as the return type for any init name (including

our own initWithName: and others), as described in Apple’s The Objective-

C Programming Language [App09f].

5.2 Working with Nonobject Types

Objective-C sits on top of C, so you can use the primitive C types such

as int and long and float, and so on. But you also come across other

types that aren’t primitives but also are not first-class objects.

For example, if you look at the first line of the labelWithText: method in

HelloWorldAppDelegate.m, you’ll see this:

NSRect labelFrame = NSMakeRect(20, 20, 540, 50);

You probably didn’t think much about this when we first typed it in,

but now it looks as if it might be missing its *. It’s not. If you check the

docs, you’ll see that an NSRect is a struct consisting of an NSPoint and

an NSSize. These are each in turn defined to be structs consisting of two

CGFloats. Follow the docs one more step, and you see that CGFloat is

2. We’ll look at theIBAction return type in Chapter 7, Outlets and Actions, on page 124.

An IBAction is the same as a void except that Interface Builder is able to expose some

information to us. Check in the docs, and you’ll see that IBAction is #defined to void.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=88

GETTERS AND SETTERS 89

typedef’d to be a float for code running under 32-bit and a double for

code running under 64-bit. In any case, a variable of type NSRect is not

a pointer, so there’s no *.3

This can get confusing. An NSNumber is an object, while an NSInteger

isn’t. You need to consult the docs to see which is which. Here’s how

you might declare two variables where one is an NSNumber while the

other is an NSInteger:

NSNumber *income;

NSInteger age;

Objective-C also has a BOOL type for handling booleans. We tend not to

do tricky and unreadable arithmetic for logical calculations. Instead, we

think of a BOOL as having one of the values YES or NO. We’re particularly

careful not to use words like true or false when talking about booleans.

We don’t want people thinking we’re from out of town.

5.3 Getters and Setters

We can easily get and set the value of name inside the Greeter class. In

the first highlighted line in the following example, we are getting and

printing out the value of name, and in the second highlighted line we

are setting its value:

Download Properties/HelloWorld12/Greeter.m

#import "Greeter.h"

@implementation Greeter

-(NSString *) greeting {

return [[NSString alloc] initWithFormat:@"Hello, %@!", name];

}

-(id) initWithName:(NSString *) newName {

if (self = [super init]){

name = newName;

}

return self;

}

-(id) init {

return [self initWithName:@"World"];

}

3. There is a great explanation of objects and simple C

structures in the answer to this Stack Overflow question

http://stackoverflow.com/questions/2189212/why-object-dosomething-and-not-object-dosomething.

The answer is written by Apple engineer Bill Bumgarner who posts under his standard

username: bbum. It’s always worth seeking out his posts on Stack Overflow and his

contributions to various other lists such as the cocoa-dev list at http://lists.apple.com.

From time to time he summarizes his thoughts on his blog at http://www.friday.com/bbum/.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld12/Greeter.m
http://stackoverflow.com/questions/2189212/why-object-dosomething-and-not-object-dosomething
http://lists.apple.com
http://www.friday.com/bbum/
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=89

GETTERS AND SETTERS 90

Joe Asks. . .

Do I Have to Follow These Naming Conventions?

Yes. It’s important to follow these naming conventions because
they will enable a lot of the magic that you’ll see before long.
These are just conventions—the compiler doesn’t enforce these
names, but it is very important that you follow them.

-(NSString *)description {

return [[NSString alloc] initWithFormat:@"name: %@ \n created: %@",

name, [NSDate date]];

}

@end

If we wanted to allow other objects to get and set the value of name, we

would declare a getter and setter in the Greeter header file and imple-

ment them in the implementation file.

The getter is an instance method that returns the current value of the

name instance variable, so the return type must be NSString *. The getter

doesn’t take any parameters. The only thing left to worry about is what

to call it. In Objective-C the getter for the property xyz is also named xyz.

You don’t insert get into the name at all.

The setter is also an instance method. It doesn’t return anything, but it

needs to take the new value of name as an NSString * that we’ll call name.

As for the method name, in Objective-C the setter for the property xyz

is named setXyz. In other words, you start the name with set and follow

it with the variable name with the first letter converted to uppercase.

Add these declarations for the accessors to your header file:

Download Properties/HelloWorld13/Greeter.h

#import <Cocoa/Cocoa.h>

@interface Greeter : NSObject {

NSString *name;

}

-(NSString *) greeting;

-(id) initWithName:(NSString *)name;

-(NSString *) name;

-(void) setName:(NSString *) name;

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld13/Greeter.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=90

GETTERS AND SETTERS 91

There’s not much to the getter. You’ve probably written code like this in

your sleep:

Download Properties/HelloWorld13/Greeter.m

-(NSString *) name {

return name;

}

If we ignore memory management for the moment, there’s not much

more to the getter than that:

Download Properties/HelloWorld13/Greeter.m

-(void) setName:(NSString *) newName {

name = newName;

}

We can now change the direct calls to the instance variable into calls to

the getter and setter. For example, in the construction of the formatted

string, we call the getter like this:

Download Properties/HelloWorld13/Greeter.m

-(NSString *) greeting {

return [[NSString alloc] initWithFormat:@"Hello, %@!", [self name]];

}

And in the initWithName: method, we call the setter like this:

Download Properties/HelloWorld13/Greeter.m

-(id) initWithName:(NSString *) newName {

if (self = [super init]){

[self setName: newName];

}

return self;

}

Even more important, you can now access the name property from

other objects. Here’s a silly example that I’ve added to HelloWorldAp-

pDelegate.m:

Download Properties/HelloWorld13/HelloWorldAppDelegate.m

-(void) setUpperCaseName:(Greeter *) greeter {

NSLog(@"The name was originally %@.", [greeter name]);

[greeter setName:[[greeter name] uppercaseString]];

NSLog(@"The name is now %@.", [greeter name]);

}

I’ve used the getter [greeter name] in every line of this method. The setter

setName: is used in the middle line of the method to take the value of

the name and transform the name to uppercase.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld13/Greeter.m
http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld13/Greeter.m
http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld13/Greeter.m
http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld13/Greeter.m
http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld13/HelloWorldAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=91

CONVERTING THE ACCESSORS TO PROPERTIES 92

To see this work, you’ll have to add a call to this method from applica-

tionDidFinishLaunching: like in the highlighted line here:

Download Properties/HelloWorld13/HelloWorldAppDelegate.m

-(void)applicationDidFinishLaunching:(NSNotification *)aNotification {

Greeter *greeter = [self greeterFor:@"Maggie"];

NSLog(@"Greeter: %@", greeter);

NSTextField * label = [self labelWithText:[greeter greeting]];

[self setUpperCaseName:greeter];

[[self.window contentView] addSubview:label];

}

Click Build & Run, and you’ll see output like this:

The name was originally Maggie.

The name is now MAGGIE.

Now let’s introduce properties and start reducing and simplifying our

code.

5.4 Converting the Accessors to Properties

Let’s take stock of where we are. We’ve exposed an attribute of the

Greeter class named name that we can get and set. We’ve done this in

three steps:

1. Declared an instance variable name in the header file.

2. Declared a getter and a setter named name and setName: in the

header file.

3. Provided mostly boilerplate code to implement the methods in the

implementation file.

Now we’ll use Objective-C 2.0 properties to make changes to these last

two steps and in some cases eliminate the first step.

Replace the declarations of the getter and the setter with this:

Download Properties/HelloWorld14/Greeter.h

#import <Cocoa/Cocoa.h>

@interface Greeter : NSObject {

NSString *name;

}

-(NSString *) greeting;

-(id) initWithName:(NSString *)name;

@property(copy) NSString *name;

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld13/HelloWorldAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld14/Greeter.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=92

DOT NOTATION 93

Ignore the copy in parentheses following the compiler directive @prop-

erty for now. You should read the rest of that highlighted line as declar-

ing a property of type NSString named name. As it stands, that line

declares a getter named name and a setter named setName:.

If you click Build & Run right now, your code will work exactly as before.

You will be able to call the getter and setter from HelloWorldAppDelegate

without any warnings or errors. In other words, this @property directive

is declaring your getter and setter—in fact, it is doing more than that,

as you’ll see in Section 5.6, Property Attributes, on page 96.

There wasn’t anything special about the way in which we implemented

the getter and setter methods. In fact, the compiler can create the

implementations for us if we ask it to do so. Replace your implementa-

tion of the getter and setter with this highlighted line:

Download Properties/HelloWorld14/Greeter.m

#import "Greeter.h"

@implementation Greeter

@synthesize name;

The @synthesize directive tells the compiler to implement the methods

that were declared in the corresponding @property directive.

So, let’s look back on our three steps of creating properties. We declare

an instance variable in the header file between the curly braces. We

declare the getter and setter in the header file outside of the curly

braces by using the @property directive. So far, we are just declaring

a variable and a property (in other words, the accessor methods), so

that’s why we do so in the header file. Now it’s time to implement the

methods we declared for the variable we declared. Implementations go

in the .m file, so that is where we put the @synthesize directive.

Click Build & Run, and the program should work exactly as before. In

other words, the getter and setter are being correctly generated.

5.5 Dot Notation

Now that you’ve declared and synthesized your properties, you should

call them differently. When you want a getter, I want you to use dot

notation instead of the method-calling syntax you’ve been using.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld14/Greeter.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=93

DOT NOTATION 94

In other words, replace this:

[self name]

with this:

self.name

To see this in the wild, it means that you are changing to this high-

lighted line in the greeting method:

Download Properties/HelloWorld14/Greeter.m

-(NSString *) greeting {

return [[NSString alloc] initWithFormat:@"Hello, %@!", self.name];

}

Similarly, you will replace this version of the setter:

[self setName:newName];

with this:

self.name = newName;

That changes the initWithName: method to this:

Download Properties/HelloWorld14/Greeter.m

-(id) initWithName:(NSString *) newName {

if (self = [super init]){

self.name = newName;

}

return self;

}

In each case, the method invocation form and the dot syntax form

behave identically. In fact, the dot syntax is just syntactic sugar that

compiles down to the method invocation form. You’ll find, however, that

if you consistently use the dot syntax for getting and setting properties,

your code will become easier to read.

This kind of feels as if we’ve come full circle. Looking at the setter for

example, we began by setting the variable directly like this:

name = newName;

Then we introduced a setter. You now were told to use the setter method

to set the value of underlying instance variable like this:

[self setName:newName];

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld14/Greeter.m
http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld14/Greeter.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=94

DOT NOTATION 95

Joe Asks. . .

Why Should I Bother Using the Dot Syntax?

There has been a fair amount of controversy over this issue.
Some people object to the fact that when you write code like
this:

self.name = newName;

you are making a method call even though it doesn’t look as if
you are. That’s true, but the advantage of using the dot syntax
is that getting or setting a property is a different activity from
sending a message to an object even if underneath the mech-
anism is the same. The dot syntax clarifies your intent.

When you send a message like this:

[greeter greeting];

it is clearly completely different from setting or getting the value
of a property. You’ll find that Apple embraces the dot syntax in
its modern APIs. As you look at the tasks for a given class, you’ll
see that many of them are actually properties. After you’ve
used the dot notation for get and set for a while, you’ll find that
your code is easier to read and to more quickly understand.

At http://eschatologist.net/blog/?p=160, Chris Hanson explains
passionately and in greater detail why you want to use dot syn-
tax for properties.

And now we’ve declared and synthesized a property, so you now set the

value of the variable like this:

self.name = newName;

We haven’t come full circle. When you use self.name = newName, you are

using the setter method and not directly setting the underlying variable.

You want to use the property and not the variable to take advantage

of the various settings we will soon add to the property. This is one of

the most common mistakes with properties. You go to all the trouble of

declaring and synthesizing a property, and then you forget to use self

and end up using the instance variable directly and not the property.

Report erratum

this copy is (P1.0 printing, April 2010)

http://eschatologist.net/blog/?p=160
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=95

PROPERTY ATTRIBUTES 96

Even more important, we can access this property from HelloWorldAp-

pDelegate. First, I want you to take a fresh look at HelloWorldApp-

Delegate:

Download Properties/HelloWorld14/HelloWorldAppDelegate.h

#import <Cocoa/Cocoa.h>

@interface HelloWorldAppDelegate : NSObject <NSApplicationDelegate> {

NSWindow *window;

}

@property (assign) IBOutlet NSWindow *window;

@end

Now that you know about properties, you can recognize that the vari-

able window of type NSWindow is declared as a property. If you look at

the top of HelloWorldAppDelegate.m, you’ll see that it’s synthesized, and

you might remember that at the bottom of applicationDidFinishLaunching:

we accessed it as a property when we added the label to its content

view.

[[self.window contentView] addSubview:label];

Once you refactor the code in the setUpperCaseName: method to take

advantage of the dot syntax, it should look like this:

Download Properties/HelloWorld14/HelloWorldAppDelegate.m

-(void) setUpperCaseName:(Greeter *) greeter {

NSLog(@"The name was originally %@.", greeter.name);

greeter.name = [greeter.name uppercaseString];

NSLog(@"The name is now %@.", greeter.name);

}

5.6 Property Attributes

The general form of the property declaration looks like this:

@property(attribute1, attribute2,...) PropertyType propertyName;

The attributes are how you indicate what sort of accessors you want

created when you synthesize them.

One set of attributes lets you determine whether you want to generate

a getter and a setter or just a getter. By default, you will generate both,

so you don’t need to use the attribute readwrite, but if you want to just

generate a getter, you will use readonly.

Another set of attributes is useful for setting the accessor names. This

is often used in the case of a boolean. You may have a variable named

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld14/HelloWorldAppDelegate.h
http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld14/HelloWorldAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=96

PROPERTY ATTRIBUTES 97

highlighted. The default getter name for this would also be highlighted,

but a more natural name for a BOOL would be isHighlighted. You change

the name of the generated accessors with the getter and setter attributes

like this:

@property(getter=isHighlighted) BOOL highlighted;

If you have a boolean property, you need to make this change in order

to follow the naming conventions that are used by the system to enable

some of the dynamism you’ll learn about later in the book.

We haven’t yet talked about memory management, so it’s going to be a

bit tricky to cover your options for the memory attribute. The following

should tide you over until we get to Chapter 6, Memory, on page 102.

The choices are assign, which is the default; retain; and copy.

Essentially, here are the differences. You want to use assign for all

nonobject types. Suppose you have a property of type NSInteger named

age. If you choose assign, your setter will look something like this:

-(void) setAge:newAge {

age = newAge;

} //assign

For object types, you are really dealing with pointers. The first thing

we determine is that the old and new pointers don’t point to the same

object. If they don’t then, as you’ll see in the next chapter, we need to

let the runtime know that we’re no longer interested in the object the

variable used to point to. We do that by sending the release message to

our variable.

Now we have two options. If the variable supports copying, we can make

a local copy of the object and work with it without changing the value

of the object that was passed in. More formally, we can use copy only if

the property type conforms to theNSCopying protocol. NSString does,4 so

when we use the copy attribute, our setter looks something like this:

-(void) setName:newName {

if (name != newName) {

[name release];

name = [newName copy];

}

} //copy

4. Check the docs up at the top, and you’ll see it listed under Conforms To.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=97

EXERCISE: ADDING PROPERTIES 98

The other option is to set our property’s underlying variable to point

to the object the argument is pointing to. This is the pointer version

of assign, and if it weren’t for the memory management, the implemen-

tation would be exactly the same. Suppose we have a property named

buddy of type Greeter. The setter looks something like this:

-(void) setBuddy:newBuddy {

if (buddy != newBuddy) {

[buddy release];

buddy = [newBuddy retain];

}

} //retain

These rules apply for both iPhone and Mac OS X development. If you

are taking advantage of the garbage collector, then you don’t need to

worry about retaining and releasing variables, so you can use assign

anywhere you would have used either assign or retain.5

You have one more attribute to set if you want to declare a property to

be nonatomic. By default, accessors are atomic. When your property is

atomic, access to that property is thread safe. In a desktop app where

you are using the garbage collector, this comes at very little cost. When

you aren’t using the garbage collector, then in a getter you will have to

set an object-level lock, retrieve the value you want, release the lock,

and then return the retrieved value. The details for implementing an

atomic setter in this situation are similar.

When you are writing code for the iPhone, you won’t have a garbage

collector available. If you access properties a lot, you will feel a dip in

performance. So when we declare our properties for the iPhone, we will

tend to set the attribute nonatomic, and when we are developing for the

desktop, we will use the default setting. For more information, read the

“Declared Properties” chapter of Apple’s The Objective-C Programming

Language [App09f].

5.7 Exercise: Adding Properties

Add these three properties to Greeter: an NSInteger named age, a Greeter

named buddy, and a BOOL named upperCase.

5. I’m assuming that your Mac OS X applications will target Leopard and above, so you

will be using the garbage collector. For desktop applications, your two memory attribute

choices are assign and copy.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=98

SOLUTION: ADDING PROPERTIES 99

For the purposes of this exercise, assume that you aren’t using garbage

collection and so need to make a distinction between assign and retain.

Use the correct attributes so that there is a getter but no setter for age

and so that the getter for upperCase is called isUpperCase.

5.8 Solution: Adding Properties

All of the hard work is in the header file. You need to declare the three

instance variables and then declare your properties like this:

Download Properties/HelloWorld15/Greeter.h

#import <Cocoa/Cocoa.h>

@interface Greeter : NSObject {

NSString *name;

NSInteger age;

Greeter *buddy;

BOOL upperCase;

}

-(NSString *) greeting;

-(id) initWithName:(NSString *)name;

@property(copy) NSString *name;

@property(assign, readonly) NSInteger age;

@property(retain) Greeter *buddy;

@property(assign, getter=isUpperCase) BOOL upperCase;

@end

The name variable is an NSString, which conforms to NSCopying, so we

use the copy attribute.

Both age and upperCase are primitives, so we use assign. Because we

are only generating a getter for age, we also use readonly. To follow the

correct naming convention for booleans, we specify that the getter for

uppercase should be isUpperCase by adding getter=isUpperCase.

The buddy property is a Greeter. It is a pointer to an object that doesn’t

conform to NSCopying and so we use retain as the memory attribute.

In the implementation file, add the names of your three new properties

to the @synthesize line, and separate them with commas. Note that we’ve

also initialized the upperCase variable in initWithName::

Download Properties/HelloWorld15/Greeter.m

#import "Greeter.h"

@implementation Greeter

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld15/Greeter.h
http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld15/Greeter.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=99

REMOVING INSTANCE VARIABLES 100

@synthesize name, age, buddy, upperCase;

-(NSString *) greeting {

return [[NSString alloc] initWithFormat:@"Hello, %@!", self.name];

}

-(id) initWithName:(NSString *) newName {

if (self = [super init]){

self.name = newName;

self.upperCase = YES;

}

return self;

}

-(id) init {

return [self initWithName:@"World"];

}

-(NSString *)description {

return [[NSString alloc] initWithFormat:@"name: %@ \n created: %@",

name, [NSDate date]];

}

@end

You can also use separate @synthesize directives for each property if you

prefer:

@synthesize name;

@synthesize age;

@synthesize buddy;

@synthesize upperCase;

We have one last simplification to make to our code.

5.9 Removing Instance Variables

If you’re running on a machine set to 64-bit and you are targeting 64-

bit machines only, then you can eliminate your instance variables and

let the runtime synthesize them for you. Unfortunately, this has not

been backported to the 32-bit runtime.

Since the 64-bit runtime can infer the underlying instance variables

from the @property and @synthesize directives, you would not be adding

information by declaring the instance variables yourself. Worse, you

could be introducing a possible source of error. Also, if you have no

instance variable backing your property, then the compiler can let you

know if you mistakenly try to access the variable directly rather than

use the property accessors. In other words, if you try to get the back-

ground color using backgroundColor and not self.backgroundColor, the

compiler can now flag your error.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=100

REMOVING INSTANCE VARIABLES 101

So, let’s remove the instance variables backing our properties. First,

let’s check your project settings. Open them from the menu bar with

Project > Edit Project Settings. Choose the Build tab, set the Architectures

setting to 64-bit Intel, and select the checkbox to build the active archi-

tecture only.

Now you can remove the instance variables from the header file:

Download Properties/HelloWorld16/Greeter.h

#import <Cocoa/Cocoa.h>

@interface Greeter : NSObject {

}

-(NSString *) greeting;

-(id) initWithName:(NSString *)name;

@property(copy) NSString *name;

@property(assign, readonly) NSInteger age;

@property(retain) Greeter *buddy;

@property(assign, getter=isUpperCase) BOOL upperCase;

@end

Click Build & Run, and the application should run exactly as before.

If you get warnings after removing the instance variables, then check

that you are running under 64-bit and that your project settings are

correct.

You can remove the instance variables that back properties if you are

developing for the iPhone,6 but not if you are developing on or for the

32-bit Mac OS X runtime.

6. At the time of this writing, you can remove the variables when targeting the iPhone,

and your code will work on the device. The removal of variables is not yet supported on

the simulator.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Properties/HelloWorld16/Greeter.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=101

Chapter 6

Memory
You’ve learned how to create objects in Interface Builder and in code.

You’ve seen how to send messages to objects, and you’ve used proper-

ties to change the state of some of your objects. In this chapter, you’ll

learn the rules for managing memory in your Cocoa applications.

Whenever you create an object, you’re using a small chunk of memory.

If, at some point later, you’re no longer using that object, you want to

make sure that that memory chunk is no longer spoken for. Over the

lifetime of a program, you may end up creating thousands or millions of

transient objects. If you don’t arrange for these to be tidied up, all that

memory will just be wasted (and, what’s worse, unavailable to other

applications). So, as responsible developers, we make sure that all these

waste objects are returned to the pool of available memory.

If you fail to reclaim objects you’re no longer using, your application

leaks memory. Over time, it will grow and grow, sometimes to the point

where it can no longer run (or it prevents other programs from running).

On the other hand, if you reclaim an object that is still being used,

there’s a chance that this object will be overwritten by other code that

grabs the reclaimed memory—this will lead to data corruption.

And that’s what this chapter is about—how to organize things so that

memory is reclaimed when it is no longer needed but not before.1

1. As you follow along in this chapter, every once in a while your program may fail when

it shouldn’t or not fail when it should. Select Build > Clean All Targets..., and try to run again.

REFERENCE COUNTING 103

6.1 Reference Counting

Reference counting is the technique we use to manage the memory of

objects ourselves. The rules for memory management are simpler to

express than to apply:

• If you own an object, you are responsible for releasing it when you

are finished with it. Claiming ownership of an object increases

its reference count. Releasing that object decreases the count. An

object is unused when its reference count is zero.

• If you don’t own an object, you should never release it.

If you violate the first rule, you cause a memory leak. If you violate the

second rule, then you could be causing an object to disappear while

others still need to send it messages.

So, when do you own an object?

Any time you create a new object using alloc, you own the object and

need to release it when you are no longer using it. There is also a class

method named new, which is a combination of alloc and init. In other

words, the following does exactly the same thing:

Greeter *host = [[Greeter alloc] init];

as the following:

Greeter *host = [Greeter new];

We tend not to use new in Objective-C even though it’s available. The

point here is that when you use it, you own the object. The reference

count is increased by one, and you are responsible for releasing it when

you are finished with it.

You may also want to take ownership of an object that has been cre-

ated elsewhere. When you are given an object you need to hold on to,

you are responsible for sending a retain or copy message to the object.

This increases its reference count by one. Whether you create an object

using alloc or new or if you hold onto one using retain or copy, you now

own that object and are responsible for releasing it when you no longer

need it.2

2. You’ll soon see that if instead you create an object using a class method, you have not

retained that object. It is autoreleased. If you want to hold onto the newly created object,

you must explicitly retain it.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=103

FINDING LEAKS WITH THE CLANG STATIC ANALYZER 104

When you are done with an object, you are responsible for sending

a release message to the object. This decreases its reference count by

one. When an object’s reference count is zero, its dealloc will be called

to clean up the object resources and release the memory.

You never call the dealloc method directly. You can’t know if someone

else is holding a reference to the object that you would be destroying.

You just call release to signal that you are no longer interested in this

object. If everyone plays by the rules, then when no one is interested in

the object, its reference count will be zero, and dealloc will be called.

That’s all there is to it. Those are the rules for when the reference

count is increased or decreased. Although the rules for manual mem-

ory management are straightforward, you can find more information

in Apple’s Memory Management Programming Guide for Cocoa [App09e]

and Garbage Collection Programming Guide [App08d].

6.2 Finding Leaks with the Clang Static Analyzer

To make things easier up to this point, you might remember that I had

you turn automatic garbage collection on. To cause a leak, we need to

turn garbage collection off. Choose the menu item Project > Edit Project

Settings, and on the Build tab, filter for the garbage collection setting.

Set the value of Objective-C Garbage Collection to Unsupported.

Now let’s cause a deliberate memory leak.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=104

FINDING LEAKS WITH THE CLANG STATIC ANALYZER 105

To start with, I’m going to remove the GUI code from HelloWorldAppDel-

egate. Clean up HelloWorldAppDelegate.h like this:

Download Memory/HelloWorld17/HelloWorldAppDelegate.h

#import <Cocoa/Cocoa.h>

@interface HelloWorldAppDelegate : NSObject <NSApplicationDelegate> {

}

@end

Reduce the implementation file so that all it does is create a Greeter

object and log it:

Download Memory/HelloWorld17/HelloWorldAppDelegate.m

#import "HelloWorldAppDelegate.h"

#import "Greeter.h"

@implementation HelloWorldAppDelegate

-(void)applicationDidFinishLaunching:(NSNotification *)aNotification {

Greeter *host = [[Greeter alloc] initWithName:@"Maggie"];

NSLog(@"Greeter %@", host);

}

@end

We caused the problem, so we can certainly see what’s wrong. We cre-

ated an instance of the Greeter class using alloc and point to this object

with the variable host. The reference count is one. We never send the

release message to host, so its reference count never reaches zero, and

the memory is never reclaimed.

This is a very short and short-lived program, so this doesn’t cause much

of a problem for us. You can imagine that it is part of a much bigger

program, and we might have to search for the problem first. In Snow

Leopard, this leak will be pretty easy for you to detect using the Clang

Static Analyzer.

Run the Clang Static Analyzer by choosing the menu item Build > Build &

Analyze or using the keyboard shortcut BD A.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Memory/HelloWorld17/HelloWorldAppDelegate.h
http://media.pragprog.com/titles/dscpq/code/Memory/HelloWorld17/HelloWorldAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=105

FIXING THE MEMORY LEAK ON MAC OS X 106

The report tells us that an object has been allocated and stored into host

with a retain count of 1. You may see three problems reported instead of

the one pictured previously—if you click each, you’ll see that they are

reporting the same issue, and when we fix it, they will all disappear.

After host is used in the log statement, it is never referenced again.

That’s our memory leak. The Greeter object is instantiated and used

and then hangs around for as long as the GUI window remains open

without ever being used again.

6.3 Fixing the Memory Leak on Mac OS X

To fix the memory leak on Mac OS X, go back to your project settings,

and change the setting for Objective-C Garbage Collection from Unsup-

ported to Required.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=106

PROPERTIES AND GARBAGE COLLECTION 107

Click Build & Analyze, and the memory leak has disappeared.

Whoa—you just learned a whole new way to manage memory. No need

for reference counting and balancing your new, alloc, retain, or copy with

a release. In this book, I’m assuming that you are deploying to Leopard

or later, so the advice is that simple:

Turn garbage collection on.

People who have mastered reference counting feel that trusting the

garbage collector is an affront to them as programmers. It’s not. If you

are programming for Mac OS X, turn on the garbage collector, and leave

reference counting behind.

The first garbage-collected system I worked with was Java. Back in

the really old days of Java, everything would come to a halt when

the garbage was collected. In fact, there was an animation that would

appear on the screen. It was a bulldozer collecting stuff.

For a while people would study the byte code generated by the compiler

and look for little optimizations. One of them involved turning for loops

around so that instead of incrementing from 0 to some limit, it was

more efficient to decrement from that limit to 0.

But while we were learning these clever little hacks, the garbage collec-

tor was getting better at optimizing for situations that naturally arose.

It turned out that our clever little hacks were now making it harder for

the garbage collector to do its job.

That’s kind of where we are now with Cocoa on the desktop.

That said, you still need to understand reference counting. We’ll soon

explore an iPhone example where you have no other choice but to man-

age your memory manually. First I want to show you what the garbage

collector can and can’t help with when it comes to the memory attribute

for properties.

6.4 Properties and Garbage Collection

Now that we have garbage collection turned on, let’s reconsider the

property declarations in the Greeter header file:

Download Memory/HelloWorld17/Greeter.h

#import <Cocoa/Cocoa.h>

@interface Greeter : NSObject {

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Memory/HelloWorld17/Greeter.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=107

PROPERTIES AND GARBAGE COLLECTION 108

-(NSString *) greeting;

-(id) initWithName:(NSString *)name;

@property(copy) NSString *name;

@property(assign, readonly) NSInteger age;

@property(retain) Greeter *buddy;

@property(assign, getter=isUpperCase) BOOL upperCase;

@end

If the memory management is being taken care of for us, can’t we just

eliminate the memory attribute from the property declarations like this?

Download Memory/HelloWorld18/Greeter.h

@property NSString *name; //this line is not correct

@property(readonly) NSInteger age;

@property Greeter *buddy;

@property(getter=isUpperCase) BOOL upperCase;

If you build, you’ll see that the answer is “mostly.”

Remember, the default memory attribute is assign, so we could have

already eliminated the attributes for age and upperCase. When garbage

collection is turned on, there is no effective difference between retain

and assign, so we no longer need to specify the memory attribute for

buddy.

When you build, you get this warning:

Default 'assign' attribute on property 'name' which implements

'NSCopying' not appropriate with -fobjc-gc-only.

The problem is that even though name is declared to be an NSString, it

could also be of type NSMutableString, which extends NSString. An NSString

is immutable, so you can use copy but not retain, whereas you would

use retain but could use either for an NSMutableString. Because of the

possible ambiguity, you need to explicitly declare the memory attribu-

ted for name.

Download Memory/HelloWorld19/Greeter.h

@property(copy) NSString *name;

@property(readonly) NSInteger age;

@property Greeter *buddy;

@property(getter=isUpperCase) BOOL upperCase;

The compiler will warn you when these problems arise. Mostly you

will find yourself having to explicitly declare copy when working with

NSString as well as the collection classes NSArray, NSDictionary, and NSSet.

Each of these has a subclass that is a mutable version.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Memory/HelloWorld18/Greeter.h
http://media.pragprog.com/titles/dscpq/code/Memory/HelloWorld19/Greeter.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=108

CREATING A FLASHLIGHT 109

Don’t worry if this isn’t clicking for you yet. I mainly want you to be

prepared when the compiler complains about this problem later in the

book. The main place you will have to think about managing your mem-

ory is when creating apps for the iPhone, iPod touch, and iPad. For the

remainder of the chapter we’ll look at an example of an iPhone app.

6.5 Creating a Flashlight

Currently, if you are targeting the iPhone or iPad, you have to use refer-

ence counting and manage the memory yourself. Let’s build the iPhone

version of our HelloWorld project so that we can experiment with some

of the rules you’ve learned.

You need to register to become an iPhone developer at http://developer.

apple.com/iphone. It’s free but requires that you agree to Apple’s terms.

When you are ready to deploy to your phone or distribute on the App

Store, you’ll need to join one of the programs that cost money.

If you are not registered as an iPhone developer, you can just continue

to work with our current example; just set garbage collection back to

being Unsupported.

Create a new project in Xcode (File > New Project...). This time choose the

iPhone > Application > Window-based Application template. Make sure the

checkbox for using Core Data is unselected, and click Choose. Name

the project Flashlight, and choose Save.

Click Build & Run, and the iPhone Simulator will launch and run your

application. You should see a plain white screen with the status bar

at the top. Congratulations, you’ve built a flashlight. People have sold

these on the App Store.

We need to copy the header and implementation files for the Greeter

class. Select the Classes folder in Groups & Files. Choose the menu item

Project > Add to Project.... Navigate to where you’ve stored your HelloWorld

project, select Greeter.h and Greeter.m, and click the Add button. Select

the check box to copy the items to the Flashlight applications folder if

needed, and click the Add button. You’ve added the Greeter class to this

project.

Your FlashlightAppDelegate.m file should look much like your HelloWorl-

dAppDelegate.m file did.

Report erratum

this copy is (P1.0 printing, April 2010)

http://developer.apple.com/iphone
http://developer.apple.com/iphone
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=109

CREATING A FLASHLIGHT 110

You should have this:

Download Memory/Flashlight1/Classes/FlashlightAppDelegate.m

#import "FlashlightAppDelegate.h"

#import "Greeter.h"

@implementation FlashlightAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

Greeter *host = [[Greeter alloc] initWithName:@"Maggie"];

NSLog(@"Greeter %@", host);

}

@end

Click Build & Run, and you’ll see there are problems to fix.

First we get an error in Greeter.h that there is no file or directory named

Cocoa/Cocoa.h. For the iPhone, the framework that includes the GUI

and the underlying frameworks is UIKit/UIKit.h. Here we don’t need any

of the graphical bits, so we’re just going to import the Foundations

framework. Replace

#import <Cocoa/Cocoa.h>

with

#import <Foundation/Foundation.h>

in Greeter.h. The other problem is an artifact of us running on the sim-

ulator. We need to explicitly declare our instance variables. Here is the

corrected Greeter.h file:

Download Memory/Flashlight1/Classes/Greeter.h

#import <Foundation/Foundation.h>

@interface Greeter : NSObject {

NSString *name;

NSInteger age;

NSDate *today;

BOOL upperCase;

}

-(NSString *) greeting;

-(id) initWithName:(NSString *)name;

@property(copy) NSString *name;

@property(assign, readonly) NSInteger age;

@property(copy) NSDate *today;

@property(assign, getter=isUpperCase) BOOL upperCase;

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight1/Classes/FlashlightAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight1/Classes/Greeter.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=110

FINDING LEAKS IN INSTRUMENTS 111

I’ve also replaced the buddy object of type Greeter with an NSDate named

today.3 I’ll use it to create an actual time stamp when the Greeter object

is created.

Download Memory/Flashlight1/Classes/Greeter.m

#import "Greeter.h"

@implementation Greeter

@synthesize name, age, today, upperCase;

-(NSString *) greeting {

return [[NSString alloc] initWithFormat:@"Hello, %@!", self.name];

}

-(id) initWithName:(NSString *) newName {

if (self = [super init]){

self.name = newName;

self.upperCase = YES;

self.today = [NSDate date];

}

return self;

}

-(id) init {

return [self initWithName:@"World"];

}

-(NSString *)description {

return [[NSString alloc] initWithFormat:@"name: %@ \n created: %@",

self.name,self.today];

}

@end

Click Build & Run, and you should see your flashlight again along with

the same output to the Console that you saw in the desktop version.

Click Build & Analyze in the simulator, and you should see the same

memory leaks reported as before.4 We’ll focus on the one that appears

in FlashlightAppDelegate.m.

6.6 Finding Leaks in Instruments

Whole books could and should be written about Apple’s performance

and debugging tools. I just want to take a minute to show you how the

Instruments application could also have identified the memory leak in

FlashlightAppDelegate.m.

3. I’ve used the convenience constructor date instead of alloc and init. By the end of the

chapter you’ll understand why.
4. I’ll assume that you are running all of your performance tools against the simulator.

You can do that for free. You need to pay to deploy apps to your device.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight1/Classes/Greeter.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=111

FIXING THE MEMORY LEAK ON THE IPHONE 112

You have already done a Build & Run, so there is a product available

for us to run in Instruments. In Xcode choose the menu item Run > Run

with Performance Tool > Leaks. The Instruments application will launch,

and your Flashlight application will launch from within Instruments.

Almost immediately you should see a vertical blue line in the top row

of the Instruments window as objects are being allocated. About ten

seconds later, you should see a red line with a series of blue lines in

the second row of the Instruments window. The red line represents the

number of leaks discovered, and the blue lines represent the bytes that

have been leaked.

The leak happened much earlier, but the default setting is to sam-

ple for leaks every ten seconds. By default the Object alloc data is

reported in the lower-right portion of the Instruments window. Select

the Leaks instrument at the top left, and you should see the leak infor-

mation. You can see in this sample output that the leak is reported to

originate in FlashlightAppDelegate’s applicationDidFinishLaunching: method.

That is enough information for us to find the leak, although if you

double-click the line reporting the leaked Greeter object, you will be

taken to the offending lines in the source code. Now that we know where

the leak is, let’s fix it.

6.7 Fixing the Memory Leak on the iPhone

Memory management is a balance of many constraints. The most ele-

mentary is that you don’t want to release the memory for an object while

something else might still be pointing to it. On the other hand, you

don’t want to create a memory leak by hanging on to objects long after

no one needs them anymore. The way to accomplish this in Objective-C

is through reference counting.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=112

USING ZOMBIES 113

You’ve seen briefly that when you create an object of type Greeter with

code that looks like this, the reference count is set to one when alloc is

called:

Greeter *host = [[Greeter alloc] initWithName:@"Maggie"];

That is exactly the error being reported by Build & Analyze. It knows

that you increased the reference count to one and never used the vari-

able again. It wants you to acknowledge that you have no further inter-

est in the variable. You do that by calling this:

[host release];

This decrements the reference count by one. In our case, that’s enough.

The reference count for host will be zero, and its dealloc method will be

called to clean up the object resources and release the memory. Send

the release message to the host object when you know that you won’t

need it anymore. In our case, you would do it here:

Download Memory/Flashlight2/Classes/FlashlightAppDelegate.m

- (void)applicationDidFinishLaunching:(UIApplication *)application {

Greeter *host = [[Greeter alloc] initWithName:@"Maggie"];

NSLog(@"Greeter %@", host);

[host release];

}

Click Build & Analyze, and this particular memory leak is now gone.

Next let’s take a minute to look at what happens when you make the

other key memory mistake. What happens when you try to send a mes-

sage to an object that has been freed?

6.8 Using Zombies

So far, we’ve created an object of type Greeter, we’ve printed its contents

to the Console, and we’ve freed that object. Now let’s deliberately send

this freed object another message. We’ll just print its contents to the

Console again like this:

Download Memory/Flashlight3/Classes/FlashlightAppDelegate.m

- (void)applicationDidFinishLaunching:(UIApplication *)application {

Greeter *host = [[Greeter alloc] initWithName:@"Maggie"];

NSLog(@"Greeter %@", host);

[host release];

NSLog(@"Greeter %@", host);

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight2/Classes/FlashlightAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight3/Classes/FlashlightAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=113

USING ZOMBIES 114

Choose the menu item Build > Build & Debug. You should see a boilerplate

message in your Console window followed by something like this:5

Greeter name: Maggie

created: 2009-09-18 14:24:43 -0400

objc[11179]: FREED(id): message respondsToSelector:

sent to freed object=0x3b06760

Program received signal: ‘‘EXC_BAD_INSTRUCTION''.

This is so unhelpful. We only know which object has been freed because

we freed it ourselves to demonstrate this, but in a large program where

objects are coming and going, it would be harder to track down the

offending object.

We’re going to use zombies to help us out here. To enable them, select

Executables > Flashlight in Groups & Files. Right-click the file, and choose

Get Info; or, with Flashlight selected, press D I. Choose the Arguments

tab, and at the bottom you should see the “Variables to be set in the

environment:” text.

Add an environment variable by clicking the + button at the bottom-left

corner. Enter NSZombieEnabled for the name of the variable and YES

for the value.

Close the window. Click Build & Debug again. This time you should see

this in the Console:

Greeter name: Maggie

created: 2009-09-18 16:13:57 -0400

*** -[Greeter respondsToSelector:]:

message sent to deallocated instance 0x380d950

This time the zombie helps us see that the type of the object is a Greeter.

This technique helps a lot when debugging and trying to figure out

which freed object you are messaging. Before going on, remove the vari-

able that enables NSZombies. You don’t want to be holding onto these

objects when you deploy your application.

5. If you don’t see this message, try to do a Build > Clean All Targets, and click Build & Run

again.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=114

CLEANING UP IN DEALLOC 115

6.9 Cleaning Up in dealloc

When the reference count for an object reaches zero, its dealloc is

called. This is where you clean up the resources used by your object.

For example, in Greeter there are two pointers to objects that we own:

name and today. We need to send each a release when our Greeter object

is about to be destroyed. We do this by overriding the dealloc method:

Download Memory/Flashlight5/Classes/Greeter.m

-(void) dealloc {

[name release];

[today release];

[super dealloc];

}

Note that in the init method we let the superclass do its initializa-

tion before we did our custom initialization. Here we clean our custom

objects up first and end with a call to [super dealloc].

You can add this line to your dealloc to output a quick message to the

Console window when your Greeter object is being freed.

NSLog(@"In Greeter dealloc.");

If you are a belt and suspenders type of person and want to make sure

that there’s no chance that you end up sending a message to a freed

object, then you may want to set the variables to nil after you release

them like this:

Download Memory/Flashlight6/Classes/Greeter.m

-(void) dealloc {

[name release];

name = nil;

[today release];

today = nil;

[super dealloc];

}

Here you are releasing the instance variable and setting it to nil. You

can combine these steps using the corresponding property like this:

Download Memory/Flashlight7/Classes/Greeter.m

-(void) dealloc {

self.name = nil;

self.today = nil;

[super dealloc];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight5/Classes/Greeter.m
http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight6/Classes/Greeter.m
http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight7/Classes/Greeter.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=115

RETAIN AND RELEASE IN A SETTER 116

As you’ll see in the next section, self.name = nil will both release name

and set it to nil.6

6.10 Retain and Release in a Setter

Here’s an example of the retain-release pattern you’ll use when chang-

ing the value of an object.7 Suppose you already have created an object

named greeter of type Greeter. An idiomatic setGreeter: method using the

retain-release pattern would look something like this:

- (void) setGreeter: (Greeter *) newGreeter {

if (newGreeter != greeter) {

[newGreeter retain];

[greeter release];

greeter = newGreeter;

}

}

You are being sent the object newGreeter. You want to own it to do

something with it, so it is your job to retain it. On the other hand, you

are about to set the variable greeter to point to the object referenced by

newGreeter.

First, check to make sure the pointers aren’t pointing at the same mem-

ory location. If they are, then there is nothing to do. If not, then go

ahead and set greeter to now point to the object referenced by new-

Greeter.

You are going to need to hold on to the object that newGreeter points

to, so you send it a retain message. On the other hand, you don’t need

the object that greeter points to anymore, so you release it. Now you

set greeter to point to what newGreeter points to. Even though you are

never going to use the variable newGreeter again, you are going to use

what it pointed to. This whole retain-release cycle was retaining and

releasing what the variables point to and not the variables themselves.

This retain-release method of memory management does have parallels

in everyday life. For example, the conference hotel where I wanted to

stay was completely booked. They put me on the waiting list, and I

6. There are potential consequences that could come up if you are using Key Value

Observing and someone else is still registered to listen to changes in the object being

released and set to nil. I tend to just send the variable the release message in dealloc and

leave it at that.
7. You saw this briefly when we were looking at property memory attributes in the previ-

ous chapter. This version is slightly different, and now you better understand the retain-

release cycle.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=116

THE AUTORELEASE POOL 117

booked a room at a nearby hotel. I entered all of this information in

iCal. Fortunately, a room opened up at the conference hotel. Think for

a minute about the order in which you make the changes, and you

will see that it corresponds completely to how you handle memory in

Objective-C.

First I retained a reservation for the new room in the conference hotel.

Then I released my existing reservation at the nearby hotel. Finally,

I reset the information in iCal to contain the information about the

changed reservation. So if you think of the iCal event as our variable, I

retained the object the variable would point to, I released the object the

variable currently points to, and then I set the variable to point to the

new object.8

If you use a property for greeter with the memory attribute set to retain,

then the setter generated for you at compile time will follow the pattern.

This is another reason that you should take advantage of properties

rather than directly accessing the underlying instance variables: let the

properties help you manage the memory correctly.

6.11 The Autorelease Pool

There’s another situation we haven’t taken care of yet. To see this prob-

lem, let’s create the instance of the Greeter object in a separate method

in FlashlightAppDelegate.m.

Download Memory/Flashlight8/Classes/FlashlightAppDelegate.m

#import "FlashlightAppDelegate.h"

#import "Greeter.h"

@implementation FlashlightAppDelegate

@synthesize window;

- (Greeter *) greeterFor:(NSString *) personName {

return [[Greeter alloc] initWithName:personName];

}

- (void)applicationDidFinishLaunching:(UIApplication *)application {

Greeter *host = [self greeterFor:@"Maggie"];

NSLog(@"Greeter %@", host);

[host release];

}

@end

8. To stretch the metaphor, having a travel agent is the analog of turning on automatic

garbage collection in this hotel reservation example.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight8/Classes/FlashlightAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=117

THE AUTORELEASE POOL 118

Click Build & Run, and the application behaves correctly. It creates the

new object, displays it properly, and then releases it and calls dealloc.

Greeter name: Maggie

created: 2009-09-17 14:12:09 -0400

In Greeter dealloc.

If instead you click Build & Analyze, you’ll see that two problems are

flagged in FlashlightAppDelegate.m. You’ll usually see this problem when

the method that returns an object (in our case greeterFor:()) is defined

in a different class than the object that calls it. For this example, both

halves of the transaction are included in the same object, and that’s

why we successfully created and released the object when we ran the

example. The Clang Static Analyzer, however, is identifying a potential

problem by looking at the two methods, greeterFor:() and application-

DidFinishLaunching:(), separately.

The second error is telling us that we released an object we didn’t own.

In fact, if you look at the applicationDidFinishLaunching: method, you’ll see

that when we released host we had no way of knowing that we owned it.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=118

THE AUTORELEASE POOL 119

We’ll ignore this problem for now and focus on the other issue. If you

look at this code, you’ll see that we own host because we created it with

an alloc:

Download Memory/Flashlight8/Classes/FlashlightAppDelegate.m

- (Greeter *) greeterFor:(NSString *) personName {

return [[Greeter alloc] initWithName:personName];

}

To highlight the problem, let’s create the object and release it in two

different steps like this:

Download Memory/Flashlight9/Classes/FlashlightAppDelegate.m

- (Greeter *) greeterFor:(NSString *) personName {

Greeter *tempGreeter = [[Greeter alloc] initWithName:personName];

return tempGreeter;

}

Where can we release tempGreeter?

You can’t just release tempGreeter before you return it, or the retain

count will be zero and tempGreeter will be dereferenced before you try to

return it. You can’t ignore the reference you hold for tempGreeter. That’s

the memory leak we’re trying to fix. If you don’t release it, you may be

holding on to tempGreeter after no object is really using it because you

haven’t decremented its retain count.9

The solution is to use an autorelease pool.10 You send tempGreeter the

autorelease message, and it is marked to be released once the method

that calls the greeterFor: method completes. You can also do this when

you create the Greeter instance. In that case, you can eliminate the

temporary variable and accomplish your needs like this:

Download Memory/Flashlight10/Classes/FlashlightAppDelegate.m

- (Greeter *) greeterFor:(NSString *) personName {

return [[[Greeter alloc] initWithName:personName] autorelease];

}

Now we can solve our second problem by removing the call to [host

release] in applicationDidFinishLaunching:. The object the host variable

points to is not retained because it is now autoreleased. Since we no

longer own this object, we are no longer allowed to release it.

9. I’ll assume that it’s obvious that you couldn’t put the call to release the object in the

line after the return.
10. For more information on autorelease pools and memory management, see Apple’s

publication Memory Management Programming Guide for Cocoa.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight8/Classes/FlashlightAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight9/Classes/FlashlightAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight10/Classes/FlashlightAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=119

USING CONVENIENCE CONSTRUCTORS 120

6.12 Using Convenience Constructors

We still have memory leaks in Greeter.m in the greeting and description

methods. Take a look at the greeting method:

Download Memory/Flashlight10/Classes/Greeter.m

-(NSString *) greeting {

return [[NSString alloc] initWithFormat:@"Hello, %@!", self.name];

}

The problem is identical to the one we just solved, and we could get rid

of this memory leak by sending the object being returned an autorelease

method. As it turns out, Apple provides another solution.

Here is a list of some of the methods that NSString provides for creating

and initializing strings:

The methods that are preceded by + are class methods, and the ones

preceded by - are instance methods and must be used together with

alloc. The class methods all have their equivalent instance method ver-

sions. For example, stringWithString: is paired with initWithString:, and string-

WithUTF8String: is paired with initWithUTF8String:.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight10/Classes/Greeter.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=120

EXERCISE: CREATING AND USING A CONVENIENCE CONSTRUCTOR 121

So instead of using this:

[[NSString alloc] initWithFormat:@"Hello, %@!", self.name]

we’ll use the following:

[NSString stringWithFormat:@"Hello, %@!", self.name]

These two versions are not exactly the same. Let’s review our rules.

If you create a string using the first version, then you own it and are

responsible for releasing it. When we use alloc, we increase the refer-

ence count by one and need to release the string either by calling release

or by using the autorelease mechanism.

On the other hand, what do the rules say about an object created using

the second method? We didn’t explicitly use alloc or new to create the

string, and we didn’t hold on to it using retain or copy. Therefore, we

don’t own it.

The stringWithFormat: is called a convenience constructor because it is

used to create and initialize an object and give it back to us already

autoreleased. In other words, the following:

[NSString stringWithFormat:@"Hello, %@!", self.name]

is equivalent to this:

[[[NSString alloc] initWithFormat:@"Hello, %@!", self.name] autorelease]

6.13 Exercise: Creating and Using a Convenience Constructor

Create your own convenience constructor for the Greeter class named

greeterWithName:. You will need to declare it in Greeter.h and implement

it in Greeter.m.

Refactor the applicationDidFinishLaunching: method in FlashlightAppDele-

gate.m to use this method to create an instance of the Greeter class.

After you are done writing to the Console, the Greeter will be autore-

leased, and Greeter’s dealloc method will be called.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=121

SOLUTION: CREATING AND USING A CONVENIENCE CONSTRUCTOR 122

6.14 Solution: Creating and Using a Convenience Constructor

Start by declaring the class method in Greeter.h:

Download Memory/Flashlight11/Classes/Greeter.h

+(id) greeterWithName:(NSString *) newName;

To implement the method, create and return an autoreleased instance

of the Greeter class:

Download Memory/Flashlight11/Classes/Greeter.m

+(id) greeterWithName:(NSString *) newName {

return [[[Greeter alloc] initWithName:newName] autorelease];

}

The highlighted line shows you how to call this convenience method.

Remember, it’s a class method, so you call it on Greeter and not an

instance.

Download Memory/Flashlight11/Classes/FlashlightAppDelegate.m

#import "FlashlightAppDelegate.h"

#import "Greeter.h"

@implementation FlashlightAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

Greeter *host = [Greeter greeterWithName:@"Maggie"];

NSLog(@"Greeter %@", host);

}

-(void) dealloc {

[window release];

[super dealloc];

}

@end

If you look at the final version in the code download, you’ll see that I’ve

also added a dealloc method to FlashlightAppDelegate.m to clean up the

window variable. The dealloc is created for you in the original project

template, but we removed it to help create memory leaks. If you click

Build & Analyze, you’ll see that we’ve taken care of all of our memory

problems.

In this chapter, you saw the two basic types of memory errors. You

learned to use reference counting in iPhone OS–based apps and to turn

garbage collection on for Mac OS X–based apps available in Leopard or

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight11/Classes/Greeter.h
http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight11/Classes/Greeter.m
http://media.pragprog.com/titles/dscpq/code/Memory/Flashlight11/Classes/FlashlightAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=122

SOLUTION: CREATING AND USING A CONVENIENCE CONSTRUCTOR 123

later. You also saw how to use the Clang Static Analyzer, Instruments,

Zombies, and logging to investigate leaks.

At the beginning of this book, we started with a working browser that we

created without writing any code. Now we’ve spent a bunch of chapters

looking at the fundamentals of working with Objective-C and Cocoa.

Now it’s time to bring those two worlds together. Before we leave our

iPhone example and head back to Mac OS X, I want to remind you

that with new projects for Mac OS X, you can and should have garbage

collection enabled.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=123

Chapter 7

Outlets and Actions
Cocoa programming separates the application logic from the look and

feel using Model-View-Controller (MVC). For the model, we’ll create the

application logic in Objective-C using Xcode. You’ve already seen how

to create the view using Interface Builder.

The controller is the bridge between the model and the view. When the

user clicks a button or types in a text field or does anything to the view,

the controller responds to these actions often by sending messages on

to the model. Similarly, when the model changes, the controller updates

the view so that the changes are visible to the user.

The controller has to have a foot in each world. There is a class file

that you use to create methods and send messages to the model or the

view. We’ll create an instance of the controller class in Interface Builder.

This gives us a visual representation of the controller that lives in a nib

that you use to wire the controller’s code to the visual components you

create in IB. It’s sort of like having the real version of the controller

living in code and its avatar living in IB.

You’ll create a controller for our Simple Browser in the next chapter. In

this chapter, we’re going to look at how you communicate from these

GUI elements created in Interface Builder to your code and how your

code can make changes in the GUI. Once you have a feel for these

actions and outlets, you will find yourself using them all the time.1

1. Although we’re starting with this simple view of outlets and actions, we’ll use them in

more sophisticated ways as we progress.

THE BIG PICTURE 125

7.1 The Big Picture

Imagine we have a window with a button and a text field. When the

user clicks the button, we will display “Hello, World!” in the text field.

We need a way to connect our button to code so that when the button

is clicked, a method will be called in our code to do the work for us. We

also need some connection back to the text field so we can set its text

to “Hello, World!”

There are basically two ways in which the controller connects to UI

elements:

• Actions: Controller methods used when an element such as a but-

ton wants to initiate an action performed by the controller

• Outlets: Controller instance variables that point to the UI elements

the controller needs to send messages to

Actions and outlets are specifically designed for connections created in

Interface Builder. Here’s a look at the basic flow:

When a user clicks a button, a message is sent to a specified target to

initiate a specific action. You create this target action in a controller,

and you make the connection in Interface Builder. The action is just a

method that will get called when the button is clicked.

There are times the controller is going to need to communicate with an

object you created using IB. One way is to give the controller a handle

to the object. Imagine that our controller has an outlet that is a text

field. In other words, the controller has an instance variable that points

to the text field. Just like a wall socket, the outlet is a place in the

controller where the visual element plugs into.

7.2 Using an Outlet

Create a new project using the Cocoa Application template with all

checkboxes unselected, and call it HelloWorldPro.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=125

USING AN OUTLET 126

Add this line to HelloWorldProAppDelegate.m:

Download Outlets/HelloWorldPro1/HelloWorldProAppDelegate.m

#import "HelloWorldProAppDelegate.h"

@implementation HelloWorldProAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

self.window.backgroundColor = [NSColor greenColor];

}

@end

Click Build & Run, and your window should appear with the back-

ground color set to green. How did this happen? We sent a message

to the window property to change its background color. How did that

message get through to the actual NSWindow that is part of the nib file?

There are two important steps to making this happen. First, check out

the header file for the HelloWorldProAppDelegate class:

Download Outlets/HelloWorldPro1/HelloWorldProAppDelegate.h

#import <Cocoa/Cocoa.h>

@interface HelloWorldProAppDelegate : NSObject <NSApplicationDelegate> {

NSWindow *window;

}

@property (assign) IBOutlet NSWindow *window;

@end

Do you see theIBOutlet keyword tucked into the middle of the @property

declaration for window? This tells Interface Builder to include window in

the list of outlets for every instance of HelloWorldProAppDelegate.

Double-click the MainMenu.xib file (remember you can find it under

Resources). When the nib opens in Interface Builder, look at the Doc-

ument window, and select the instance of the HelloWorldProAppDelegate

class.2

2. If the Document window isn’t visible, you can always bring it up using D 0 or Window

> Document.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Outlets/HelloWorldPro1/HelloWorldProAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Outlets/HelloWorldPro1/HelloWorldProAppDelegate.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=126

USING AN OUTLET 127

Open its Connections inspector (Tools > Connections inspector). The win-

dow outlet has already been connected to the NSWindow object in the

same nib.

If you’d like, you can also view the connections for the NSWindow object,

and you’ll see the window listed as a referencing outlet.

So, you can imagine the sequence of events like this. We have a win-

dow variable and property in the HelloWorldProAppDelegate class. We

have a nib that contains an instance of HelloWorldProAppDelegate and

an instance of NSWindow.

App Delegate Window

window

The window property is hidden away inside HelloWorldProAppDelegate.

You saw in the previous chapter that we could access the property in

code, but how do we connect to it in Interface Builder? The first step is

to tag the property as an IBOutlet. I picture this outlet as a handle on

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=127

EXERCISE: CREATING AND USING AN OUTLET 128

the object that is visible in Interface Builder that I can use to connect

the variable to other objects in the same nib file:

App Delegate Window

window

At this point, there is nothing that connects the window variable to the

NSWindow object. So, we use the Connections inspector to connect the

two:

App Delegate Window

window

Now the two are linked. So now when we send messages to the window

variable in code, the effect is that we are sending the message to the

object that window is connected to in the nib file. The window variable

is a proxy for the actual window. That’s why when we tell the window

variable to set its background color to green, the NSWindow object turns

green.

7.3 Exercise: Creating and Using an Outlet

Your goal in this exercise is to use outlets to create this:

In Interface Builder, drag a text field from the Library into the window,

and position it along the top using the guidelines. Go ahead and center

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=128

SOLUTION: CREATING AND USING AN OUTLET 129

justify the text in the text field, adjust the font size using the Attributes

inspector, and save your work.

Add a new property for that text field to your header file for the Hel-

loWorldProAppDelegate, and declare it to be an outlet. Use the outlet to

print “Hello, World!” after the application launches.

Back in Interface Builder, connect the outlet to the text field.

Click Build & Run, and you should see a green background in your

window with a text field on top displaying the message “Hello, World!”

7.4 Solution: Creating and Using an Outlet

There’s a rhythm to using Xcode and Interface Builder. You’ll bounce

back and forth between them. You should have had no trouble drag-

ging a text field and positioning it in your window in Interface Builder.

Before you head back to Xcode, look at the Connections inspector for

HelloWorldProAppDelegate. It should look exactly as it did before with a

single outlet that is already connected.

This next part is kind of cool. Add these two highlighted lines to your

header file:

Download Outlets/HelloWorldPro2/HelloWorldProAppDelegate.h

#import <Cocoa/Cocoa.h>

@interface HelloWorldProAppDelegate : NSObject <NSApplicationDelegate> {

NSWindow *window;

NSTextField *textField;

}

@property (assign) IBOutlet NSWindow *window;

@property (assign) IBOutlet NSTextField *textField;

@end

You’ve added an instance variable named textField to HelloWorldProAp-

pDelegate and declared the corresponding property. But even more

important for our current purposes, you’ve marked textField as an out-

let. Save the header file, and click back on the Connections inspector

in Interface Builder.

Did you see that?

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Outlets/HelloWorldPro2/HelloWorldProAppDelegate.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=129

DECLARING AN ACTION 130

A new outlet has appeared. That makes me smile every time. We’ve

added an outlet to the public interface for HelloWorldProAppDelegate to

say to the world that this property is available to you. Interface Builder

has picked up on this addition because you have labeled the outlet with

IBOutlet.

Click inside the circle to the right of the textField outlet, and drag it to

the text field you placed inside the window. Let go of the mouse, and

you should have made a new connection. Save your work. You can quit

Interface Builder for now if you’d like.

Back in Xcode, you have two small changes to make to the implemen-

tation file. You need to synthesize the accessors for textField, and you

want to display “Hello, World!” in it. You know how to do both of these

steps from before.

Download Outlets/HelloWorldPro2/HelloWorldProAppDelegate.m

#import "HelloWorldProAppDelegate.h"

@implementation HelloWorldProAppDelegate

@synthesize window, textField;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

self.window.backgroundColor = [NSColor greenColor];

[self.textField setStringValue:@"Hello, World!"];

}

@end

7.5 Declaring an Action

In Interface Builder, add a push button to your window, and change

its title to Personalize. When the button is clicked, we’ll change the

greeting from “Hello, World!” to something a little more personal.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Outlets/HelloWorldPro2/HelloWorldProAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=130

DECLARING AN ACTION 131

Joe Asks. . .

Where Do I Find the Outlet That I Just Added in Code?

If you add an outlet to a class named NSFoo, then you will find
that outlet in IB on any object of type NSFoo. This will become
second-nature, but many people new to Interface Builder will
complain that they added the outlet to the class but it’s not
showing up in IB. There are usually two reasons something is
going wrong:

• Make sure you save the header file in Xcode. Files that
need to be saved are slightly gray in the Groups & Files
panel.

• Make sure you are looking in the right object. In our exam-
ple, we added the outlet in the source file HelloWorldProAp-

pDelegate.h, so in Interface Builder, select the HelloWorldAp-

pDelegate object and look in the Connections inspector.

If these steps are obvious to you, great. You understand the
relationship between what you do in Xcode and what you do
in Interface Builder.

We’ll have to declare and implement a method in Xcode that will be

called when the button is clicked. The first step is to declare a method

using the proper syntax. For all Mac OS X Cocoa applications, your

actions have to be declared like this:

-(IBAction) actionSelector: (id) sender;

This is the same format you saw for the web view’s goBack: method. The

method must be an instance method that takes a single parameter of

return type id. By convention we name the parameter sender.

The return type is IBAction. This return type signals two things at once.

First, this helps Interface Builder understand that this method is an

action so that it can be displayed in the Connections inspector. Sec-

ond, IBAction is typedefed to a void, so IBAction tells you that the method

doesn’t return anything.3

3. The IBAction return type is not enough to get the method to show up in Interface

Builder. IB is smart enough to make sure that there is also a single parameter of type id.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=131

DECLARING AN ACTION 132

As an aside, when you are designing applications for the iPhone or the

iPod touch, you can use two additional variations. You can create an

action that has no arguments. The following signature will work fine in

Cocoa Touch:4

- (IBAction) actionSelector

This version is always my first choice when working with Cocoa Touch.

If I had this no argument signature available to me in Cocoa, it would

be my first choice here as well. In the case that I need to pass along the

sender, I love having the option to do so. But there are many times where

I don’t need to communicate with the sender and don’t need to know

anything about the sender. I’d like that to be more clearly expressed in

my code by using the no-argument version.

On the other hand, sometimes I need to know more than can be com-

municated by just passing along the sender. Sometimes I’d like to know

something about the event that triggered the message. If you are writing

a Cocoa Touch application, you can use this signature for an IBAction:

- (IBAction)respondToButtonClick:(id)sender forEvent:(UIEvent*)event;

Currently, for desktop applications, we need to use the single argument

form for declaring an IBAction. For Cocoa Touch applications, we are free

to use the no-argument and two-argument versions as well.

Back to our current example, add this highlighted declaration to the

header file, and save your work:

Download Outlets/HelloWorldPro3/HelloWorldProAppDelegate.h

#import <Cocoa/Cocoa.h>

@interface HelloWorldProAppDelegate : NSObject <NSApplicationDelegate> {

NSWindow *window;

NSTextField *textField;

}

@property (assign) IBOutlet NSWindow *window;

@property (assign) IBOutlet NSTextField *textField;

-(IBAction) changeGreeting:(id)sender;

@end

4. Cocoa Touch is how we describe the Cocoa APIs that target the iPhone OS.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Outlets/HelloWorldPro3/HelloWorldProAppDelegate.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=132

CONNECTING AND IMPLEMENTING THE ACTION 133

7.6 Connecting and Implementing the Action

You’ve created your button and declared your action in the HelloWorld-

ProAppDelegate header file. It might be helpful to picture the IBAction

similar to how we pictured the IBOutlet. Imagine we started by declaring

a method in HelloWorldProAppDelegate.h like this:

(void) changeGreeting

This gives us a method that we could call in code but have no way of

connecting to within Interface Builder:

changeGreeting

Change the signature of the method so that it is now an action:

(IBAction) changeGreeting:(id) sender

You’ve now exposed this method. This means that, for example, you can

connect buttons to this action so that this method is performed when

the button is clicked.

 changeGreeting :

Let’s take advantage of our declared action, head back to Interface

Builder, and connect the action and the button. In IB select the object

of type HelloWorldProAppDelegate in the Document window, and look at

its connections with the Connections inspector. You should now have

changeGreeting: under Received Actions.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=133

CONNECTING AND IMPLEMENTING THE ACTION 134

Click the circle to the right of changeGreeting:, and drag to the button

you created. Release the mouse, and you will have wired up your outlet.

Save your work, and quit Interface Builder.

We’ll implement the action method to change the window background

color to red and to greet the user personally. How can we possibly know

the user’s name ahead of time? We can’t. But we can use the function

call NSFullUserName() to retrieve the name the user entered when config-

uring their machine:

Download Outlets/HelloWorldPro3/HelloWorldProAppDelegate.m

-(IBAction) changeGreeting:(id)sender {

self.window.backgroundColor = [NSColor redColor];

[self.textField setStringValue:

[NSString stringWithFormat:@"Hello, %@!", NSFullUserName()]];

}

When I run this app on my laptop, I see this:

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Outlets/HelloWorldPro3/HelloWorldProAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=134

EXERCISE: HIDING THE BUTTON 135

7.7 Exercise: Hiding the Button

I don’t really like the current state of the application. After the user

clicks Personalize and the text field displays a personal greeting, the

button still says “Personalize” even though there’s nothing more for the

user to do.

After the user personalizes the output, hide the button.

7.8 Solution: Hiding the Button

You’ll tend to write less code when you are writing Cocoa apps in

Objective-C, but it will initially take you longer to find what that code

is that you need to write. You’ll spend a lot of time in the docs and

searching the Internet. A lot of Cocoa coding requires that you not do

more than you have to do.

For example, our goal here was to hide the button. We know that we

have to send a message to the button, so how do we do that? We could

create an outlet for an NSButton in HelloWorldProAppDelegate.h and con-

nect the outlet to the button in the nib. This would be correct, but it

would be unnecessary.

At least for now, the only place we need access to the button is inside

the changeGreeting: method. And you have a handle to the button there

—it’s the sender that gets passed in as a parameter. All you need to do

is turn around and send the right message to the button by adding this

single line to your changeGreeting: implementation:

Download Outlets/HelloWorldPro4/HelloWorldProAppDelegate.m

-(IBAction) changeGreeting:(id)sender {

self.window.backgroundColor = [NSColor redColor];

[self.textField setStringValue:

[NSString stringWithFormat:@"Hello, %@!", NSFullUserName()]];

[sender setHidden:YES];

}

If it would make you feel better, you can cast the sender to an NSButton

so that it is clearer who you are sending the message to:

[(NSButton *)sender setHidden:YES];

So, how did we know which message to send to the button? First you

head to the docs for NSButton and look through the tasks for anything

that has to do with hiding a button. There’s nothing there. So, you go to

the top of the documentation for NSButton, and you see that it inherits

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Outlets/HelloWorldPro4/HelloWorldProAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=135

EXERCISE: TOGGLING THE INTERFACE 136

from NSControl : NSView : NSResponder : NSObject. This sends you up the

inheritance tree. You check NSControl, and there’s nothing there, so you

move on to NSView.

Scanning through the tasks, there’s a Hiding Views heading, and one

of the methods is setHidden:. We could also have decided to remove the

button entirely using this:

[sender removeFromSuperview];

From the user’s point of view, there is no difference between these two

approaches; however, there is an important difference between these

two from a memory standpoint. When we dragged the button onto the

window in Interface Builder, the button’s superview (the window’s con-

tent view) owned the button and increased its reference count by one.

If we hide the button, it still exists; it’s just not visible. If, on the other

hand, we remove the button from its superview, then the only object

that ever owned the button will now release the button, and the button

will be freed.

Neither approach is right or wrong. You need to decide in your situation

whether you are done with the button and want to release it.

7.9 Exercise: Toggling the Interface

Instead of hiding the button, let’s set the button to toggle back and

forth between the two views. When the app launches, the button title is

“Personalize,” the background is green, and the text field reads “Hello,

World!”

When the user clicks the Personalize button, the button’s title should

change to “Generalize,” the background should become red, and the

text field should display the personalized greeting.

7.10 Solution: Toggling the Interface

There are so many ways to code this solution. Let’s start simply and go

from there. I’m going to add an instance variable of type BOOL named

isPersonalized to the header file:

Download Outlets/HelloWorldPro5/HelloWorldProAppDelegate.h

NSWindow *window;

NSTextField *textField;

BOOL isPersonalized;

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Outlets/HelloWorldPro5/HelloWorldProAppDelegate.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=136

INTRODUCING ANOTHER OUTLET 137

Now we can make the modifications to the changeGreeting: method to

set the button, text field, and background color based on whether isPer-

sonalized is YES or NO. I’ve also initialized isPersonalized in the application-

DidFinishLaunching: method. The BOOL is initialized to NO by default, but

I find that it helps to explicitly communicate this here:

Download Outlets/HelloWorldPro5/HelloWorldProAppDelegate.m

#import "HelloWorldProAppDelegate.h"

@implementation HelloWorldProAppDelegate

@synthesize window, textField;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

self.window.backgroundColor = [NSColor greenColor];

[self.textField setStringValue:@"Hello, World!"];

isPersonalized = NO;

}

-(IBAction) changeGreeting:(id)sender {

if (isPersonalized) {

self.window.backgroundColor = [NSColor greenColor];

[self.textField setStringValue:@"Hello, World!"];

[sender setTitle:@"Personalize"];

isPersonalized = NO;

} else {

self.window.backgroundColor = [NSColor redColor];

[self.textField setStringValue:

[NSString stringWithFormat:@"Hello, %@!", NSFullUserName()]];

[sender setTitle:@"Generalize"];

isPersonalized = YES;

}

}

@end

Click Build & Run, and the application will behave the way we want it

to behave.

7.11 Introducing Another Outlet

I don’t like the repeated code in the applicationDidFinishLaunching: method

and the true branch of the if statement in the changeGreeting:. We set

the background color and the text field contents to the same values

twice. I’d like to call changeGreeting: from applicationDidFinishLaunching:.

Can you see the problem with this?

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Outlets/HelloWorldPro5/HelloWorldProAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=137

INTRODUCING ANOTHER OUTLET 138

Who should be the sender? How does changeGreeting: have a handle to

the button if it’s not called in response to a button click?

Let’s introduce an outlet for our button:

Download Outlets/HelloWorldPro6/HelloWorldProAppDelegate.h

#import <Cocoa/Cocoa.h>

@interface HelloWorldProAppDelegate : NSObject <NSApplicationDelegate> {

NSWindow *window;

NSTextField *textField;

NSButton *button;

BOOL isPersonalized;

}

@property (assign) IBOutlet NSWindow *window;

@property (assign) IBOutlet NSTextField *textField;

@property (assign) IBOutlet NSButton *button;

-(IBAction) changeGreeting:(id)sender;

@end

Connect this new outlet to your button in Interface Builder. If you’d

like, you can delete the button’s title so that it is blank. Save.

In the implementation file, you’ll need to synthesize button. Now you

can change the use of sender to self.button inside changeGreeting:. Let’s

make applicationDidFinishLaunching: worse for a moment before we make

it better.

Download Outlets/HelloWorldPro6/HelloWorldProAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

self.window.backgroundColor = [NSColor greenColor];

[self.textField setStringValue:@"Hello, World!"];

[self.button setTitle:@"Personalize"];

isPersonalized = NO;

}

This code is now identical to the true branch of the if statement, so let’s

refactor. Introduce two utility methods, personalize and generalize, and

use them in applicationDidFinishLaunching: and changeGreeting:.

Download Outlets/HelloWorldPro7/HelloWorldProAppDelegate.m

#import "HelloWorldProAppDelegate.h"

@implementation HelloWorldProAppDelegate

@synthesize window, textField, button;

-(void) personalize {

self.window.backgroundColor = [NSColor redColor];

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Outlets/HelloWorldPro6/HelloWorldProAppDelegate.h
http://media.pragprog.com/titles/dscpq/code/Outlets/HelloWorldPro6/HelloWorldProAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Outlets/HelloWorldPro7/HelloWorldProAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=138

CREATING SELECTORS FROM STRINGS 139

[self.textField setStringValue:

[NSString stringWithFormat:@"Hello, %@!", NSFullUserName()]];

[self.button setTitle:@"Generalize"];

isPersonalized = YES;

}

-(void) generalize {

self.window.backgroundColor = [NSColor greenColor];

[self.textField setStringValue:@"Hello, World!"];

[self.button setTitle:@"Personalize"];

isPersonalized = NO;

}

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

[self generalize];

}

-(IBAction) changeGreeting:(id)sender {

if (isPersonalized) [self generalize];

else [self personalize];

}

@end

The code is not really much shorter, but it is easier to read. In the next

section, we’ll take advantage of another feature of Objective-C to make

one more change.

7.12 Creating Selectors from Strings

Let’s take a step back and notice that when the button’s title is “Per-

sonalize,” we call the method personalize, and when the button’s title is

“Generalize,” we call the method generalize.

It would be nice if we could take the button’s title, convert it to lower-

case, and use it as the method name we’re calling. Because its value

changes at runtime, we’ll use the function NSSelectorFromString() like

this:

NSSelectorFromString([[self.button title] lowercaseString]);

This returns a selector—you can think of that as the method’s formal

name. We then call the method with that name by sending the message

performSelector: to self with the selector we just created as the argument.

In other words, the changeGreeting: can change to this:

Download Outlets/HelloWorldPro8/HelloWorldProAppDelegate.m

-(IBAction) changeGreeting:(id)sender {

[self performSelector:

NSSelectorFromString([[self.button title] lowercaseString])];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Outlets/HelloWorldPro8/HelloWorldProAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=139

CREATING SELECTORS FROM STRINGS 140

While we’re at it, we can get rid of the BOOL named isPersonalized because

we’re not using it anymore. I’m not suggesting that you replace every

boolean and if statement, but I did want to show you one way of using

selectors for a clear path through your code without making any deci-

sions.5

We began our journey by creating a web browser without writing any

code. In the chapters since, you’ve learned a lot about the code and the

connections that were created for you. In the next chapter, we’ll return

to our web browser and create a controller to add some functionality to

what we got for free.

5. In this case, I’ve coupled our decision to the label on the button. This makes it harder

when it comes time to internationalize our application. I wanted to introduce you to

NSSelectorFromString(). You will learn more robust ways of using this technique.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=140

Chapter 8

Creating a Controller
You can’t accomplish everything you want your application to do just by

dragging connections between the visual elements in Interface Builder.

On the one hand, it’s pretty amazing how easily we created a simple

web browser in Chapter 2, Using What’s There, on page 24 just using

visual tools. On the other hand, the browser leaves a lot to be desired.

There are some things we’re just going to need to code ourselves.

In this chapter, we’ll create a controller for our SimpleBrowser exam-

ple. To keep things simple, we won’t have a model—we’ll just have a

view and a controller. The main point of this example is creating a new

class and instantiating it to communicate with objects you created in

Interface Builder.

8.1 How We’ve Created Objects

We have created and connected objects in two different ways. In the

SimpleBrowser example, all of our objects are created in the nib. We

dragged in buttons, a text field, and a web view, and they joined the

SimpleBrowserAppDelegate and all of the other objects that are created in

the nib.

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

HOW WE’VE CREATED OBJECTS 142

There is effectively no code for this application. All of the connections

between the objects have been made in Interface Builder. Here are the

actions that the web view receives. It gets the goBack: message from the

Back button, the goForward: message from the Forward button, and the

takeStringURLFrom: message from the text field.

Contrast this with the “Hello, World!” application we built in Chapter 4,

Classes and Objects, on page 62. There we created a text field in code in

our application delegate. We then created a custom Greeter. We instan-

tiated it in code in our app delegate, and all of our communication

among the objects we created was in code.

In Chapter 7, Outlets and Actions, on page 124, you learned how to con-

nect code that you created with objects that were created in Interface

Builder. If you needed to talk to a widget from your code, you created

an outlet for that widget in your header file and then connected the

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=142

CREATING OUR CONTROLLER CLASS 143

outlet to the widget in IB.1 If you needed a widget to trigger a method

that you created in code, you declared this action in the header file and

then connected the triggering widget to the action in Interface Builder.

The key to all of this is that there must be an object in your nib of the

type that you are adding these outlets and actions to. For now, that will

mean that we are creating an instance of our class in Interface Builder.

Let’s make this more concrete. We’ll create a controller class in code

and then create our instance in Interface Builder.

8.2 Creating Our Controller Class

All classes are created in Xcode.

Reopen the SimpleBrowser project, or quickly re-create it. In Xcode,

choose File > New File... or D N. Choose to create a Cocoa > Objective-

C class. I know this doesn’t look like a controller class, and there are

other options that include the word Controller. Don’t choose them. What

makes this class a controller is how you will configure and use it.

Name your class BrowserController, and make sure that the checkboxes

to create BrowserController.h and to target SimpleBrowser are selected.

Generally, if you accept the defaults, you should be OK. Click Finish,

and save your work.

Our next step is to create an instance of the class and allow it to inter-

act with the GUI elements you’ve already created. You can instantiate

BrowserController using code you write in Xcode or in much the same way

we instantiated the GUI elements like NSButton in Interface Builder.

Even though we always write out class code in Xcode, you’ve seen that

we can instantiate them in code or using Interface Builder. We will cre-

ate objects that belong to the model in Xcode because they don’t need to

directly know about or communicate with any of the GUI elements. We

will create objects that are controller elements in Interface Builder so

that we can drag connections between the controllers and the objects

they communicate with.

1. I’m using widget to informally refer to one of the GUI elements like buttons, text fields,

and so on.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=143

CREATING AN INSTANCE OF OUR CONTROLLER IN IB 144

At first, this will feel a bit odd. After all, you are creating an instance of

a class that has no visual representation using a tool named Interface

Builder. In no time, this will feel completely natural to you.

8.3 Creating an Instance of Our Controller in IB

We’re now going to create an instance of the BrowserController class in

Interface Builder.2

When we created instances of our buttons, we just looked in the Library

for an NSButton that looked like the one we wanted and dragged it into

our window. We can’t do that with our BrowserController because there’s

no way that Interface Builder’s Library would contain our BrowserCon-

troller class—we just made it up. Fortunately, Snow Leopard and Xcode

3.2 have made this a lot easier for us.3

Double-click MainMenu.xib to open the nib file in IB. You aren’t inter-

ested in the Window view anymore because there is no visual represen-

tation of the controller for the end user to see. Instead, bring up the

Document window in Interface Builder with the key sequence D 0 or

Window > Document.

Interface Builder provides us with a representation of our BrowserCon-

troller object. In IB, go to the Library, and this time choose the Classes

tab and look for BrowserController.

2. Actually, the instance isn’t really created until the nib is unarchived when the appli-

cation starts up. We can think of the instance being created at this point in the same

way we talked about creating an object in code when we learned to use a call like this

[[BrowserController alloc] init].
3. If you are running an earlier version of Xcode, you will need to adjust the directions

that follow so that you drag an NSObject into the Document window and change its type

using the Identity inspector.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=144

CREATING AN INSTANCE OF OUR CONTROLLER IN IB 145

Our BrowserController class has a simple lineage since it directly extends

NSObject. If you look at the lineage for a class like the NSButton, you’ll

see a much deeper hierarchy.

In addition to the Lineage tab, there are also tabs for looking at the

class’s outlets and actions and also where the class is defined. You’ll

notice the + and - in the bottom-left corner of both the Outlet and Action

tabs. Do not add or remove outlets or actions in Interface Builder. I

know it seems as if it would be easier, but changes you make in IB are

not picked up by Xcode. Make your changes in the code, and let those

changes be picked up in IB.

Back in our example, drag the BrowserController into the Document win-

dow, and drop it. Congratulations! You’ve just created an instance of

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=145

DECLARING AN OUTLET AND AN ACTION 146

BrowserController in the nib. Here is the icon view of your Document win-

dow with the newly added instance of the BrowserController:

I prefer using the list view but wanted to show you this view in case you

like it better.

8.4 Declaring an Outlet and an Action

Right now the Back button is connected to the web view’s goBack:

method. Let’s insert the BrowserController in between. We’re going to need

a method in the controller that we use for loading the previous web

page. It will be called by the Back button and will, in turn, have to send

the message goBack: to the web view. This means we’ll need an outlet

for the web view and an action for the method.

Back in Xcode, add an IBAction named loadPreviousPage: to BrowserCon-

troller.h. You’ll also need to add an IBOutlet named myWebView using an

instance variable and a property.4 The myWebView variable is a pointer

to a WebView object.

 myWebView loadPreviousPage:

4. If you are using and are targeting 64-bit, you can create your property without declar-

ing the instance variable.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=146

DECLARING AN OUTLET AND AN ACTION 147

With this set up, when the Back button is clicked, the loadPreviousPage:

method will be called on the BrowserController object. The loadPrevious-

Page: method will call the goBack: method on the myWebView variable.

Since the myWebView variable is also an outlet that is connected to the

WebView object, this has the effect of calling the goBack: method on this

WebView object. You can read more about objects and actions in Apple’s

Communicating with Objects [App08c].

Remember to synthesize myWebView in the implementation file. Here’s

the header:

Download CreatingAController/SimpleBrowser1/BrowserController.h

#import <Cocoa/Cocoa.h>

@interface BrowserController : NSObject {

WebView *myWebView;

}

@property(assign) IBOutlet WebView *myWebView;

-(IBAction) loadPreviousPage: (id) sender;

@end

Before you hit Build & Run, can you see any problems? If you can,

fix them. If not, I’ll explain how in a minute. Hit Build & Run, and

you should get the message “Build failed (9 errors, 6 warnings).” In the

bottom right of your open window, you should see this:

You can click Failed, the yellow triangle with the exclamation point that

indicates warnings, or the red circle with the ! that indicates errors

to take you to a window that contains more details about what went

wrong. These three errors and two warnings are repeated three times:

Let’s deal with the error first. Your IBOutlet uses the WebView class. But

your program doesn’t know anything about the WebView class. You have

to import the appropriate header file. At the top of the WebView docs,

you can see that it is part of the WebKit framework and is declared in

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CreatingAController/SimpleBrowser1/BrowserController.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=147

DECLARING AN OUTLET AND AN ACTION 148

Joe Asks. . .

What’s the Difference Between a Warning and an Error?

An error means that there is something that keeps your code
from compiling. It’s a showstopper. Your code won’t compile,
so there’s no app to run. You don’t have any choice but to fix
errors.

A warning lets you know there may be a problem, but it wasn’t
severe enough to keep your code from compiling. This could
mean that everything will be fine, or it could mean that you end
up with a runtime error. A warning could be a note at compile
time telling you that you’ve sent a message to an object that
didn’t declare a method with that signature. It doesn’t mean
that the object can’t handle the message, just that the com-
piler can’t verify that the object can.

It is easy to ignore warnings. Your code compiles—why worry?
Some experienced developers think that it’s too easy to ignore
these warnings, so they select the option Treat Warnings as
Errors.

Select the menu item Project > Edit Project Settings, go to the Build
tab, and select the Treat Warnings as Errors checkbox. Search
on the word treat.

WebView.h. One solution is to add this import to BrowserController.h below

the line importing the Cocoa headers:

Download CreatingAController/SimpleBrowser2/BrowserController.h

#import <Cocoa/Cocoa.h>

#import <WebKit/WebKit.h>

@interface BrowserController : NSObject {

WebView *myWebView;

}

@property(assign) IBOutlet WebView *myWebView;

-(IBAction) loadPreviousPage: (id) sender;

@end

Click Build & Run again. This time the build will succeed. There will be

two unique warnings because the header file promised there would be

a method named loadPreviousPage and we haven’t implemented it yet.

Even with this unfinished work, the program builds and launches and

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CreatingAController/SimpleBrowser2/BrowserController.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=148

FORWARD DECLARATION 149

works the same way it did before. Stop the running application by using

the red Tasks stop sign.

8.5 Forward Declaration

There’s another solution to the errors we were getting in the previous

section: You can use the @class directive in the header file in place of

the import statement.

Download CreatingAController/SimpleBrowser3/BrowserController.h

#import <Cocoa/Cocoa.h>

@class WebView;

@interface BrowserController : NSObject {

WebView *myWebView;

}

@property(assign) IBOutlet WebView *myWebView;

-(IBAction) loadPreviousPage: (id) sender;

@end

In the BrowserController.h file, the compiler only needs to know that Web-

View is a legitimate class. It doesn’t need to know anything about it.

The @class directive does exactly that. It doesn’t bring in the whole

header file that tells us what an object of type WebView can do—we

don’t need to know that yet. It just reassures us that a class named

WebView exists.

Whenever you use the @class directive in a header file, you will most

likely need the corresponding import statement in the implementation

file. Go ahead and add it now near the top of the implementation file.

While you’re at it, stub out the loadPreviousPage: action.

Download CreatingAController/SimpleBrowser3/BrowserController.m

#import "BrowserController.h"

#import <WebKit/WebKit.h>

@implementation BrowserController

@synthesize myWebView;

-(IBAction) loadPreviousPage: (id) sender{

NSLog(@"loadPreviousPage:");

}

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CreatingAController/SimpleBrowser3/BrowserController.h
http://media.pragprog.com/titles/dscpq/code/CreatingAController/SimpleBrowser3/BrowserController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=149

WIRING UP THE CONTROLLER 150

Click Build & Run. There should be no warnings or errors, and your

browser should run as it did before.

8.6 Wiring Up the Controller

Go back to Interface Builder; in the Document window click the Browser

Controller object, and open the Connections inspector.

Under Outlets, you now find myWebView, and under Received Actions

you see loadPreviousPage:. Connect the loadPreviousPage: action to the

Back button. The Back button should now only be connected to the

controller and not be directly connected to the web view. Also connect

the myWebView outlet to the web view.

Save your work, and click Build & Run. Type in a few URLs. Try out

the Back button. For now, when you click the Back button, the loadPre-

viousPage: message is sent to the BrowserController object, which prints

the method name in the Console.

8.7 Implementing the Loading of the Previous Page

Back in Xcode, there’s not much code to write. When the Back button

sends the loadPreviousPage: message to the BrowserController object, the

BrowserController object just turns around and sends the goBack message

to myWebView.

The only decision we have to make is what to send to the web view as

the sender. We can send self, or we can pass along the identity of the

object calling the loadPreviousPage:. In our case, it doesn’t really matter.

I’ve decided to take the latter approach and pass on the Back button as

the sender.

Download CreatingAController/SimpleBrowser4/BrowserController.m

-(IBAction) loadPreviousPage: (id) sender{

[self.myWebView goBack:sender];

}

That’s it! Click Build & Run, and you have a working Back button again.

8.8 Exercise: Finishing the Controller

Add another action to BrowserController named loadNextPage:, and use it

to make the Forward button work through the controller.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CreatingAController/SimpleBrowser4/BrowserController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=150

SOLUTION: FINISHING THE CONTROLLER 151

Once that is working, add one last action to BrowserController. Name it

loadURLFrom:, and use it to make the URL entry from the text field work

through the controller. Remember that the text field will send a message

to the controller when Enter is clicked, and then the web view is going to

need to send a message back to the text field to get the text field’s string

value. You can do this in more than one way. You might be tempted to

introduce an outlet for the text field. In this case, you don’t have to do

this. Use the sender to talk back to the text field.

8.9 Solution: Finishing the Controller

The first half of the exercise mirrors the step we took together. You’ll

need to make three changes.

First, you need to add an action to the header file BrowserController.h

using Xcode and save:

-(IBAction) loadNextPage: (id) sender;

Second, go back to Interface Builder, and select the BrowserController.

In the Connections inspector, drag from the circle to the right of load-

NextPage: to the Forward button to make the connection. Save your

work.

Finally, you need to implement the method. Looking at the web view’s

connections, you can see that the method you need to call is goForward:.

Back in Xcode, modify BrowserController.m to add this method:

Download CreatingAController/SimpleBrowser5/BrowserController.m

-(IBAction) loadNextPage: (id) sender{

[self.myWebView goForward:sender];

}

Save your work. Click Build & Run, and you should find that you now

have working Back and Forward buttons. Enter a few URLs, and you

should be able to use the buttons to move back and forward through

your list.

For the second half of the exercise, we’ll follow three similar steps. First,

in Xcode add an action named loadURLFrom: to the header file and save

it:

-(IBAction) loadURLFrom: (id) sender;

Select the BrowserController in your Document window in IB, and open

the Connections inspector.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CreatingAController/SimpleBrowser5/BrowserController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=151

AWAKE FROM NIB 152

Drag from the circle to the right of loadURLFrom: to the text field to make

the connection. We’ve already configured the text field to send an action

to its target when the user hits the Enter key. You can check that the

Action value is still set this way using the Attributes inspector for the

text field. Save your work. Back in Xcode, implement your method like

this:

Download CreatingAController/SimpleBrowser5/BrowserController.m

-(IBAction) loadURLFrom: (id) sender{

[self.myWebView takeStringURLFrom:sender];

}

8.10 Awake from Nib

Back in Chapter 4, Classes and Objects, on page 62, we created and

initialized our instance of the Greeter using a combination like this:

[[Greeter alloc] initWithName:@"Maggie"];

We were able to initialize our variables and do whatever customization

we needed in the initWithName: method. We don’t have a comparable

method in BrowserController, and our BrowserController is being initialized

when the nib is loaded and not with an explicit call to alloc and some

form of init.

I’ll go into more depth later about what happens when the nib is unar-

chived and loaded. For now, when the application starts up, the graph

of objects archived in the nib is reconstructed. The objects are created,

and the connections between them are made. Next, before anything

is displayed to the end user, an awakeFromNib message is sent to all

objects that have this method.5 Just add this method to any file that

needs to perform tasks just after initialization:

-(void) awakeFromNib {

}

For example, I’d like our browser to load our default web page when it

launches. Now the user has to click into the text field and hit Enter to

get the page to load. So in awakeFromNib, I’m going to set the text field

to have the string value http://pragprog.com and then have the web view

display this page.

5. No message is sent to objects that don’t implement this message so that you don’t get

a runtime error.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CreatingAController/SimpleBrowser5/BrowserController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=152

DISABLING AND ENABLING THE BUTTONS 153

This means I’m going to need to be able to interact with the text field in

the body of awakeFromNib. We’ll need to add an outlet to our header file

for the NSTextField. Let’s call it address.

Download CreatingAController/SimpleBrowser6/BrowserController.h

#import <Cocoa/Cocoa.h>

@class WebView;

@interface BrowserController : NSObject {

WebView *myWebView;

NSTextField *address;

}

@property(assign) IBOutlet WebView *myWebView;

@property(assign) IBOutlet NSTextField *address;

-(IBAction) loadPreviousPage: (id) sender;

-(IBAction) loadNextPage: (id) sender;

-(IBAction) loadURLFrom: (id) sender;

@end

In IB connect the address outlet to the text field. I also removed the

default value for the text field using the Attributes inspector, but it

doesn’t really matter. Back in Xcode, synthesize address in BrowserCon-

troller.m, and add this for awakeFromNib:

Download CreatingAController/SimpleBrowser6/BrowserController.m

-(void)awakeFromNib {

[self.address setStringValue:@"http://pragprog.com"];

[self loadURLFrom:self.address];

}

8.11 Disabling and Enabling the Buttons

There are still some fundamental things wrong with our web browser

from a usability standpoint. For example, one problem is that the but-

tons are enabled all the time. This implies that the user can click them

at any time. If we only look at this from the viewpoint of Objective-C pro-

grammers, we know that this is fine. We can send the goBack: method

to the web view as often as we like. If there is no previous page to load,

then it won’t bother trying.

But one thing that distinguishes Cocoa programming is that we need

to look at our application from the end user’s point of view. If there’s

no point in clicking a button, then there should be a visual cue that

lets us know that. In this section, you will write the code to enable and

disable the buttons. It will mostly work.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CreatingAController/SimpleBrowser6/BrowserController.h
http://media.pragprog.com/titles/dscpq/code/CreatingAController/SimpleBrowser6/BrowserController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=153

DISABLING AND ENABLING THE BUTTONS 154

Try implementing this on your own before reading on because the solu-

tion is included with the following code.

We’ll need to send messages to the two buttons, so add two outlets to

your header file:

Download CreatingAController/SimpleBrowser7/BrowserController.h

#import <Cocoa/Cocoa.h>

@class WebView;

@interface BrowserController : NSObject {

WebView *myWebView;

NSTextField *address;

NSButton *backButton;

NSButton *forwardButton;

}

@property(assign) IBOutlet WebView *myWebView;

@property(assign) IBOutlet NSButton *backButton;

@property(assign) IBOutlet NSButton *forwardButton;

@property(assign) IBOutlet NSTextField *address;

-(IBAction) loadPreviousPage: (id) sender;

-(IBAction) loadNextPage: (id) sender;

-(IBAction) loadURLFrom: (id) sender;

@end

Save the header file, and move back to Interface Builder’s Document

window. Select the Browser Controller, and open the Connections inspec-

tor. You should have new outlets labeled backButton and forwardButton.

Connect them to their buttons. The Browser Controller should now have

four outlets and three received actions.

Before you move on, click the Back button, and open the Attributes

inspector (click the leftmost icon at the top of the inspector window).

Look most of the way down to find the Enabled checkbox in the Control

group. Unselect the check box. Do the same for the Forward button.

Save your work. Now your browser will start up with the two buttons

disabled.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CreatingAController/SimpleBrowser7/BrowserController.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=154

DISABLING AND ENABLING THE BUTTONS 155

Before you write the code to reset the buttons, let’s think about what

you want it to do. For the Back button, you want to set it to be enabled

or not enabled based on whether the web view can go back. Similarly,

the state of the Forward button will depend whether the web view can go

forward or not. A quick look at the docs for NSButton and WebView shows

us the canGoBack and canGoForward methods we can use to reset the

buttons. Here’s how we’d do it:

Download CreatingAController/SimpleBrowser7/BrowserController.m

-(void) resetButtons {

[self.backButton setEnabled:[self.myWebView canGoBack]];

[self.forwardButton setEnabled:[self.myWebView canGoForward]];

}

You now need to call the resetButtons method from the action methods

in BrowserController.

[self resetButtons];

We don’t declare resetButtons in the header file because we aren’t encour-

aging other objects to send a message to our controller to reset the but-

tons. In other words, the resetButtons method is not part of the public

interface for the BrowserController. To keep the compiler happy, we move

resetButtons to the top of the implementation so the other methods know

about it.

Here’s the complete implementation file as it now stands:

Download CreatingAController/SimpleBrowser7/BrowserController.m

#import "BrowserController.h"

#import <WebKit/WebKit.h>

@implementation BrowserController

@synthesize myWebView, address, backButton, forwardButton;

-(void) resetButtons {

[self.backButton setEnabled:[self.myWebView canGoBack]];

[self.forwardButton setEnabled:[self.myWebView canGoForward]];

}

-(IBAction) loadPreviousPage: (id) sender{

[self.myWebView goBack:sender];

[self resetButtons];

}

-(IBAction) loadNextPage: (id) sender{

[self.myWebView goForward:sender];

[self resetButtons];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CreatingAController/SimpleBrowser7/BrowserController.m
http://media.pragprog.com/titles/dscpq/code/CreatingAController/SimpleBrowser7/BrowserController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=155

STILL NEEDS WORK 156

Order Matters

Imagine you’re the compiler reading your way through an
Objective-C implementation file of the class SampleClass. While
you are working your way through the method foo, you come
across a reference to the method bar, which is also defined in
SampleClass.

There are basically two ways for you to know about bar. First, bar

could be declared in the header file, in which case you and
anyone who imports the SampleClass header file knows about
bar. The other way is for bar to be defined before foo. In that
case, the compiler nods its head and says, “Oh, I’ve read about
you.”

If you haven’t heard about bar, you issue a warning. But the pro-
grammer need not worry. The warning is that an object of type
SampleClass may not respond to the method bar. Since Sample-

Class does, in fact, implement bar, there will be no problems at
runtime despite this warning at compile time.

-(IBAction) loadURLFrom: (id) sender{

[self.myWebView takeStringURLFrom:sender];

[self resetButtons];

}

-(void)awakeFromNib {

[self.address setStringValue:@"http://pragprog.com"];

[self loadURLFrom:self.address];

}

@end

Everything looks good. Save your work, build the application, and try

it.

8.12 Still Needs Work

Uh-oh. The buttons now work worse than they did before. Before we

made these latest changes, the buttons were always enabled. The prob-

lem with that was the user could sometimes click the buttons without

anything happening. Now the opposite is true. Sometimes the buttons

aren’t enabled when they should be. There are two related problems.

To see one problem, launch the application, and enter a URL. Once the

page loads, enter another URL. The Back button should be enabled, but

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=156

STILL NEEDS WORK 157

it isn’t. Once the second page loads, enter a third URL. Now the Back

button is enabled, and you can use it to navigate all the way back to the

first page. The problem is that it takes a while for the URL to load, and

you have already set the state of the buttons based on the status just

after the request to load the URL was made. It would be better if you

selected canGoBack: and canGoForward: after the URL starts to load.

Quit the application, and launch it again. Enter a URL. Once the page

loads, click a link. Once that page loads, follow another link. As long

as you continue to use the links in the web view, the buttons are never

enabled. The history is being maintained, but there’s no callback to

resetButtons. You can see this if you enter a URL. Once the page loads,

you can use the buttons to move back and forward through the history.

All of the methods we’ve seen so far execute immediately. What we need

is a way of delaying when a message is sent—don’t ask me if I can go

back or forward until I have loaded the page you requested. Fortu-

nately, this notification mechanism is built into Cocoa with the notion

of delegates. We’ll look into how they work in the next chapter.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=157

Chapter 9

Customizing with Delegates
Stuff happens.

In fact, lots of stuff is happening as your end user enters URLs and

clicks buttons and links in your SimpleBrowser. The most basic type of

event is target-action. The user clicks a button, and an action is sent to

a target. You’ve learned two ways of working with these events: you can

use Interface Builder to directly wire the object sending the message

to the target object that will perform the action, or you can create a

controller.

But once you enter a URL or use the Back or Forward button, additional

events and messages are flying by that you don’t even see. For example,

when you load a page in Safari, you’ve probably noticed that the title of

the new page is displayed above your toolbar before the page actually

loads. Meanwhile, you can see the progress of the page being loaded

by the blue bar that works its way across the text field containing your

URL. There are messages being sent that Safari is able to capture and

respond to. What about us?

There are plenty of messages zipping by us all the time. In this chapter,

you’ll learn to listen for them and how to respond to them. We’ll display

the title of the web page we’re loading and fix the buttons and the URL

while we’re at it. Delegates will let us customize behavior for a class

without creating a subclass.

9.1 Understanding Delegates

Before we apply delegates to our browser example, we will use the

NSWindow class to explore how delegates work.

UNDERSTANDING DELEGATES 159

Imagine that our NSWindow object is appearing on a Cocoa game show. If

you look at the documentation for NSWindow, you will see more than 200

methods listed as tasks that our window might be asked to perform.

Our window object is pretty confident that it knows how to respond

to most of the messages it might be sent. For example, it knows how

to respond to the message setShowsToolbarButton:. If our window has a

toolbar, then passing in YES displays the toolbar button, and passing in

NO hides the toolbar button. If our window doesn’t have a toolbar, then

calling this method doesn’t do anything.

On the other hand, there are some tasks that our window doesn’t know

how to react to. For example, what if our window is asked this on the

talk show?

What would happen
if your close button

is clicked?

Uh-oh.
I better phone
 my delegate.

The answer is not as simple as you may think. Usually, when someone

clicks the red button, the window will close, and the application will

continue to run. Even though this is the default behavior, it is not the

only possibility. For example, if you open System Preferences and click

the red button, the window closes, and this time the application quits

too.

You’ll see a third type of behavior if you open a web page in Safari

and then create a new tab (with tabbed browsing enabled, select File >

New Tab or DT). Open a web page in the new tab, and then hit the red

button.

Even though you’ve clicked the same red button in the same applica-

tion, the window doesn’t automatically close when you have multiple

tabs open. Instead, it asks you, “Are you sure you want to close this

window?”

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=159

UNDERSTANDING DELEGATES 160

These variations present a dilemma for our window. What should it

answer if it is asked by the game show host, “What would happen if I

click your red button”?

The window wants to answer “It depends,” but that’s not an acceptable

answer in a game show or in a running Cocoa application. So, the win-

dow chooses to get help answering this question by phoning a friend.

Here’s the way the rules work for this game. The window identifies all

the messages that it might need help with ahead of time and labels

those as delegate methods.1 In the case of the NSWindow class, here are

all of the delegate methods:

window:shouldDragDocumentWithEvent:from:withPasteboard:

window:shouldPopUpDocumentPathMenu:

window:willPositionSheet:usingRect:

windowDidBecomeKey:

windowDidBecomeMain:

windowDidChangeScreen:

windowDidChangeScreenProfile:

windowDidDeminiaturize:

1. In this chapter, we’re using protocols and delegates that Apple created. We’ll cre-

ate our own delegate and protocol in Chapter 12, Creating Protocols for Delegation, on

page 203.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=160

UNDERSTANDING DELEGATES 161

windowDidEndSheet:

windowDidExpose:

windowDidMiniaturize:

windowDidMove:

windowDidResignKey:

windowDidResignMain:

windowDidResize:

windowDidUpdate:

windowShouldClose:

windowShouldZoom:toFrame:

windowWillBeginSheet:

windowWillClose:

windowWillMiniaturize:

windowWillMove:

windowWillResize:toSize:

windowWillReturnFieldEditor:toObject:

windowWillReturnUndoManager:

windowWillUseStandardFrame:defaultFrame:

The delegate methods come in three flavors: something will happen,

something did happen, and something should happen. You implement

the will version to change the behavior before an action happens and

the did version to respond after the action happens. The should version

returns a BOOL that allows you to cancel an action if you determine it

shouldn’t happen.

Just like the game shows where a contestant can “call a friend,” each

window object gets to designate a single friend that can be called when

any of these methods is called. That friend is the delegate.

We don’t really expect one friend to be able to respond to all of these

messages, but our window must choose only one delegate ahead of

time. Unfortunately, the window can’t say, “I know who would know

how to answer that question” and decide who will be called at runtime.

The delegate is chosen before the question is asked.

Before the game begins, we preinterview the delegate. This way, we

know which messages the delegate can handle and which ones it can’t.

In Cocoa terms, the delegate may implement none, any, or all of the

delegate methods for an object. If a delegate has not implemented a

method, it will not be called to handle that message. The window will

have to come up with its own answer.

These rules might seem complicated—but a quick example should clar-

ify the situation.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=161

THE DEFAULT WINDOW BEHAVIOR 162

9.2 The Default Window Behavior

Create a new project in Xcode that is a Mac OS X > Application > Cocoa

Application called WindowDressing. We’re going to use a delegate to

change the default behavior of the green and red buttons.

Click Build & Run. When you click the green button, the window should

zoom up to fill most of the screen. Click it again, and the window will

zoom to its original size. Click the red button and the window closes,

but the application doesn’t quit. Once you click the red button, there’s

not much more you can do. We can’t create a new window so we have

to quit this application anyway.

So far, we’ve seen the default behavior when the green or red button is

clicked. This is the behavior the window provides when it isn’t allowed

to phone a friend. In the next section, we’ll provide alternate behavior

using a delegate.

9.3 Turning the Background Red

Let’s change the behavior so that when the user clicks the red button,

the background of the window turns red. We’ll follow these steps:

1. We’ll need to create a new class that we can instantiate to create

the window’s delegate.

2. We’ll designate that object as the window’s delegate.

3. We’ll identify the delegate method we need to implement.

4. Finally, we’ll implement the method.

The second and third steps are where people often make small, hard-to-

trace mistakes. It’s easy to forget to connect the window to its delegate

in Interface Builder. Also, make sure that you save your nib file after

you make a change. When you build your project in Xcode, you will

be asked whether you want to save any source files that have been

changed, but you may have unsaved changes in Interface Builder as

well.

I guarantee this is going to bite you at some point. If you have been

bouncing back and forth between Xcode and Interface Builder and your

project isn’t behaving the way you expect, take a look at your nib’s

Document window. If you see a dark dot in the middle of the red close

button, then your file is dirty and needs to be saved.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=162

TURNING THE BACKGROUND RED 163

If there are no unsaved changes, then the red close button should be

clear like the yellow minimize button and green zoom button. It’s a

subtle hint used across Mac OS X apps and one worth watching for.

You also need to be careful to spell the delegate method name exactly

as it appears in the NSWindow documentation. When we worked with

buttons, we were free to assign any object as the target and make up

the name of the method. Now with delegates, the name of the method

is chosen for you.

In Xcode, create a new class file by selecting File > New File... or DN.

Choose the template Mac OS X > Cocoa Class> Objective-C class, and name

it WindowHelper.

Just like the previous chapter, we’ll now create a representation of

this class in Interface Builder. Double-click MainMenu.xib to open it

in Interface Builder. Find WindowHelper under the Classes tab in the

Library, and drag it into the Document window.2 Control-click the Win-

dow object—not the WindowHelper object—inside the Document window

to bring up this connections window.

Drag from the circle next to the delegate outlet to the WindowHelper

object inside the Document window. This sets the window’s delegate to

be an instance of the WindowHelper. Save your work, and quit Interface

Builder.

Back in Xcode, you don’t really have to make any changes to the Win-

dowHelper header file. You’ve made the connection to the delegate in

Interface Builder. As a developer, you know the signature of the meth-

ods you can implement. At runtime the system knows the messages it

2. You’ll find it a lot quicker if you start typing Win into the search field at the bottom of

the Library window.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=163

TURNING THE BACKGROUND RED 164

can send. You can, however, make the intent of the WindowHelper clearer

by indicating that it implements the NSWindowDelegate protocol.

A protocol declares a collection of methods that a class may or may not

implement. You declare one or more protocols at the top of your header

file between angle brackets like this:

Download Delegates/WindowDressing2/WindowHelper.h

#import <Cocoa/Cocoa.h>

@interface WindowHelper : NSObject <NSWindowDelegate> {

}

@end

If you check the docs for the NSWindowDelegate protocol, you’ll see that

all of the methods are listed as optional. In other words, you are free to

implement only the ones you need.

There are only two delegate methods that have anything to do with

a window closing. There’s windowShouldClose: and windowWillClose:. The

windowShouldClose: method is called when the user clicks the red but-

ton and gives you an opportunity to say “Don’t close the window.” The

windowWillClose: method is called just before the window closes. That’s

too late for our needs.

We’ll use the windowShouldClose: method. Because it’s so easy to intro-

duce typos that are hard to detect and debug, I often go to the docs and

cut and paste the method signature.

The windowShouldClose: method needs to do two things. It has to set the

window’s background color to red. This time, the sender is the window,

so we can just tell the sender to set its background color to red.

The method also has to return NO so that the window doesn’t close. If

you return YES, the window will close. Here’s WindowHelper.m:

Download Delegates/WindowDressing2/WindowHelper.m

#import "WindowHelper.h"

@implementation WindowHelper

- (BOOL)windowShouldClose:(id)sender {

[sender setBackgroundColor:[NSColor redColor]];

return NO;

}

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Delegates/WindowDressing2/WindowHelper.h
http://media.pragprog.com/titles/dscpq/code/Delegates/WindowDressing2/WindowHelper.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=164

EXERCISE: TURNING THE BACKGROUND GREEN 165

Click Build & Run, and the window will now turn red when you click

the red button. More specifically, when you click the red button, the

message windowShouldClose: message is sent to the object you’ve desig-

nated as the delegate for the window object. Quit WindowDressing with

DQ or by choosing Stop from Xcode.

9.4 Exercise: Turning the Background Green

Find the method that is called when someone clicks the green button

to zoom your window to another frame size. Implement this method so

that the window does not change size and so that the background of

the window turns green when the green button is clicked.

9.5 Solution: Turning the Background Green

All that you need to do is implement the windowShouldZoom:toFrame:

method. The body should look almost exactly like windowShouldClose:.

Download Delegates/WindowDressing3/WindowHelper.m

- (BOOL)windowShouldZoom:(NSWindow *)window toFrame:(NSRect)newFrame {

[window setBackgroundColor:[NSColor greenColor]];

return NO;

}

Click Build & Run. You can now change the window color to red and

green by clicking the corresponding buttons.

9.6 Application Delegate

We’ve actually been using delegates since our very first project. The

Cocoa Application template introduced in Xcode 3.2 includes an appli-

cation delegate. Now that you understand the idea in the context of

windows, you should be able to see how it applies to applications.

When an application launches, there are lots of things that must hap-

pen, and Apple takes care of that for you. But there are also things that

are special to your application that Apple can’t possibly know about. If

there are particular things that you want to occur after the application

finished launching, you implement the application delegate’s applica-

tionDidFinishLaunching: method.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Delegates/WindowDressing3/WindowHelper.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=165

DELEGATES FOR YOUR WEB VIEW 166

Notice that your app delegate header file has the protocol declaration

NSApplicationDelegate included, and the delegate outlet is connected in

Interface Builder from your application to the app delegate.

If you check the NSApplicationDelegate docs, you’ll find methods that

help you specialize your application’s behavior at dozens of different

key points in your application’s life. There are delegate methods that

deal with launching and terminating the app, hiding the app, managing

its windows, and so on.

Delegates are an important design pattern for Cocoa applications. You’ll

mainly find them in the modern Cocoa desktop APIs like WebKit. You’ll

also find delegates used throughout the iPhone APIs.

9.7 Delegates for Your Web View

During the rest of the chapter, we’ll apply what we’ve learned about del-

egates to our SimpleBrowser example. Let’s close the WindowDressing

project and reopen our SimpleBrowser project.

In object-oriented programming, if you want to change the behavior of

a class, you often create a subclass and override one or more methods.

Delegation allows us to avoid creating inheritance chains every time we

want to modify something in a base class. With delegation, we iden-

tify the methods that will most often need to be changed, label them

delegate methods, and provide default behavior that will be executed

unless we provide a delegate and implement that method with custom

behavior.

An object of type NSWindow can specify a single delegate object. That

is the way delegates usually work in Cocoa. Sometimes, though, you’ll

have a class with multiple delegates. For example, the WebView class

designers looked at all of the behavior that you might want to customize

and grouped them into four delegates.

These four delegates are listed in the overview section of the WebView

class reference:

• WebFrameLoadDelegate

• WebPolicyDelegate

• WebResourceLoadDelegate

• WebUIDelegate

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=166

SETTING THE WINDOW TITLE 167

You can think of our WebView back on our Cocoa game show, but this

time it can choose to call one of four friends depending on which cate-

gory the question is in.

These four Delegate collections are protocols and not classes. They

specify the method signatures that can be used by a class implementing

the protocol. This ensures that when a message is sent to the delegate

object, the corresponding method will be called. This also means that

the compiler can let you know whether there’s a problem.

Look in the “Tasks” section of the WebView docs under “Getting and Set-

ting Delegates,” and you will see ten methods for assigning and working

with delegates. You can set delegates using outlets in Interface Builder,

or you can set them programmatically using a method like setUIDele-

gate:.

9.8 Setting the Window Title

Next let’s update the browser window’s title bar with the title of the page

you’re loading. We’ll use the webView:didReceiveTitle:forFrame: method in

the WebFrameLoadDelegate.

Which object should be our delegate? We can either create a new class

and instantiate it or use an instance of an existing class. In this case,

the BrowserController object that we’ve already created is the best choice

because it has connections to the GUI elements we need to access.

Connect the delegate to our controller in Interface Builder like this:

Select the web view, and open the Connections inspector. You should

see the four delegate methods mixed in with the other outlets. Drag

to connect frameLoadDelegate to your BrowserController. Save your work.

We’ll head back to Xcode to finish up.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=167

SETTING THE WINDOW TITLE 168

The webView:didReceiveTitle:forFrame: method is called when the title is

available. You can see that the message we receive also includes the

title as a parameter. Here’s how we’ll use it:

• We don’t add anything to the header file. All fifteen of the methods

listed in the WebFrameLoadDelegate protocol are now available to

us in BrowserController. The docs tell us that the WebFrameLoadDel-

egate is an informal protocol, so we don’t declare it in the Browser-

Controller header file.

• We need to implement webView:didReceiveTitle:forFrame: in Browser-

Controller.m by filling in the body of this method:

-(void)webView:(WebView *)sender didReceiveTitle:(NSString *)title

forFrame:(WebFrame *)frame{

}

We copied the signature of the method from the WebFrameLoadDel-

egate protocol documentation.

• We wait. The webView:didReceiveTitle:forFrame: method gets called

once the title for the URL being loaded is available.

When this method is invoked, you want to set the title attribute of the

application window to the title that is returned to you. Looking at the

method signature, you can see that when the method is called, you will

be passed a handle to the web view you are using and to the title of

the new page. You can use the web view to get a pointer to the window

containing the web view like this:

[sender window];

Unfortunately, you won’t find the method you need in the WebView doc-

umentation. You have to look at the superclass NSView, where you will

find the window method. The window method is also highlighted in the

NSView as a commonly used method that “Returns the NSWindow object

that contains the NSView object.”

Once you have this window, you ask it to set its title to the title that you

get when this delegate method is called. You need to add this method

to BrowserController.m:

Download Delegates/SimpleBrowser8/BrowserController.m

- (void)webView:(WebView *)sender

didReceiveTitle:(NSString *)title

forFrame:(WebFrame *)frame {

[[sender window] setTitle:title];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Delegates/SimpleBrowser8/BrowserController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=168

EXERCISE: UPDATING THE URL AND SETTING BUTTONS 169

Save your work. Click Build & Run, and now no matter how you nav-

igate to a website in your browser, the title will appear as soon as it

is available. All you had to do was find the right method, create and

configure the outlets, and implement the method with a single line of

code:

[[sender window] setTitle:title];

Again, we did not list the webView:didReceiveTitle:forFrame: method in the

BrowserController header. This method is not part of the public interface

for BrowserController. The only object that needs to know that BrowserCon-

troller implements this method is the delegating object myWebView. The

message will be sent only if the delegate is assigned and the method is

implemented.

9.9 Exercise: Updating the URL and Setting Buttons

Now that you’ve seen how to display the page title as the window’s title

when it’s available, you can reset the buttons and update the URL once

the page is loaded. Until now, if the user clicks a link in a web page,

the new page will load, but the URL won’t change in the text field as

the user would expect from experience with pretty much every other

browser.

To reset the buttons and update the URL after the page is loaded, iden-

tify a method in the WebFrameLoadDelegate protocol that is called when

the frame has completed loading. Implement the delegate method to

do two things: (a) set the text field’s string value to be the URL for the

page’s main (and only) frame and (b) call resetButtons.

Hint 1: If you look in the NSTextField class reference for a method to set

the text field’s string value, you won’t find what you are looking for.

Remember, the inherited methods do not appear in the Cocoa docs.

So, you need to look at the class reference for NSTextField’s superclass

NSControl. You’ll find setStringValue: in “Tasks” under “Setting the Con-

trol’s Value.”

Hint 2: WebView has a lot of methods. It’s easy to miss the one you

want for fetching the right URL. Look in the “Tasks” section under the

heading “Getting and Setting Frame Contents.”

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=169

SOLUTION: UPDATING THE URL AND SETTING BUTTONS 170

Completing Your Thought

You can adjust Xcode’s Code Sense settings in the preferences.
You can adjust how quickly code completions appear. Instead
of having to look up the entire hierarchy for the method you
want, you can choose Edit > Completion List to see all of the avail-
able completions. In the example in the exercise, if you do that
after typing [inputField, you would have seen setStringValue: in the
list.

9.10 Solution: Updating the URL and Setting Buttons

Implement the webView:didFinishLoadForFrame method like this:

Download Delegates/SimpleBrowser9/BrowserController.m

- (void)webView:(WebView *)sender didFinishLoadForFrame:(WebFrame *)frame {

[self.address setStringValue:[sender mainFrameURL]];

[self resetButtons];

}

Click Build & Run. Your code should run perfectly. The window title is

set at the right time, the URL changes as you navigate back and forward

using the buttons, and the buttons are enabled and disabled properly.

You should be feeling pretty good right now, but before you run off to

the next chapter to learn something new, you’ve got some cleaning up

to do.

The code is a mess. We have a lot of redundancy, and we could probably

get rid of some of our outlets. There’s nothing wrong with the path we’ve

taken. First we got the code working, and now we’re going to tidy up a

bit.

9.11 Cleaning Up

You have some waste to take care of. Look at the last line of each of

these methods:

Download Delegates/SimpleBrowser9/BrowserController.m

-(IBAction) loadPreviousPage: (id) sender{

[self.myWebView goBack:sender];

[self resetButtons];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Delegates/SimpleBrowser9/BrowserController.m
http://media.pragprog.com/titles/dscpq/code/Delegates/SimpleBrowser9/BrowserController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=170

CLEANING UP 171

-(IBAction) loadNextPage: (id) sender{

[self.myWebView goForward:sender];

[self resetButtons];

}

-(IBAction) loadURLFrom: (id) sender{

[self.myWebView takeStringURLFrom:sender];

[self resetButtons];

}

There’s no need to call resetButtons in any of these methods because it’s

being called when the frame is done loading. Remove those three lines,

and rerun your application. You’ll find that it still runs fine.

Now that you have removed [self resetButtons]; from loadPreviousPage:,

loadNextPage:, and loadURLFrom:, the methods don’t do very much. There

really isn’t a need to use the controller for these actions anymore.

To make a point, I want you to leave these methods for a moment and

head over to Interface Builder. Click the BrowserController in the Doc-

ument window, and select the Connections inspector. Disconnect the

three received actions by clicking the Xs. Now click the web view, and

use the Connections inspector to reconnect the three actions you had

before. Drag from goBack: to the Back button, from goForward: to the

Forward button, and from takeStringURLFrom: to the text field. Save your

work in Interface Builder, and then click Build & Run in Xcode. Your

application runs perfectly.

That should worry you a bit.

You have just redirected your control flow entirely from IB. You have

three methods in Xcode that are no longer being called. This is some-

thing you need to remember when you are working with Cocoa pro-

grams. You can’t figure out the whole story merely by reading through

the code. You have to look at the connections you have created else-

where.3

But, you should also make it easier for people (including yourself) who

will come back to this project and try to figure out what is going on.

Since these three methods are not called anymore, you should elimi-

nate them from both the header and implementation files.

3. If you want to use Test-Driven Development, then you should read Chris Hanson’s

blog posts on unit testing Cocoa user interfaces at http://eschatologist.net/blog/?p=205 and

his introductory articles to unit testing Cocoa code at http://eschatologist.net/blog/?p=24 and

http://chanson.livejournal.com/119303.html.

Report erratum

this copy is (P1.0 printing, April 2010)

http://eschatologist.net/blog/?p=205
http://eschatologist.net/blog/?p=24
http://chanson.livejournal.com/119303.html
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=171

CLEANING UP 172

Once you’ve removed these, you’ll need to refactor the awakeFromNib

method to pass the URL to the web view without going through one of

the methods we just deleted. Here’s the current state of the implemen-

tation file:

Download Delegates/SimpleBrowser10/BrowserController.m

#import "BrowserController.h"

#import <WebKit/WebKit.h>

@implementation BrowserController

@synthesize myWebView, address, backButton, forwardButton;

- (void) resetButtons {

[self.backButton setEnabled:[self.myWebView canGoBack]];

[self.forwardButton setEnabled:[self.myWebView canGoForward]];

}

-(void)awakeFromNib {

[self.address setStringValue:@"http://pragprog.com"];

[self.myWebView takeStringURLFrom:self.address];

}

- (void)webView:(WebView *)sender

didReceiveTitle:(NSString *)title

forFrame:(WebFrame *)frame {

[[sender window] setTitle:title];

}

- (void)webView:(WebView *)sender

didFinishLoadForFrame:(WebFrame *)frame {

[self.address setStringValue:[sender mainFrameURL]];

[self resetButtons];

}

@end

Here’s the current header file:

Download Delegates/SimpleBrowser10/BrowserController.h

#import <Cocoa/Cocoa.h>

@class WebView;

@interface BrowserController : NSObject {

NSTextField *address;

NSButton *backButton;

NSButton *forwardButton;

WebView *myWebView;

}

@property(assign) IBOutlet NSButton *backButton;

@property(assign) IBOutlet NSButton *forwardButton;

@property(assign) IBOutlet NSTextField *address;

@property(assign) IBOutlet WebView *myWebView;

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Delegates/SimpleBrowser10/BrowserController.m
http://media.pragprog.com/titles/dscpq/code/Delegates/SimpleBrowser10/BrowserController.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=172

EXERCISE: ADDING A PROGRESS INDICATOR 173

Take a minute to look at how little code we need when we work with

the existing Apple frameworks. Whenever your code gets long and com-

plicated, you should pause and consider whether there’s an easier way

to accomplish what you are trying to do. Your goal is to write sim-

ple code that is clear and understandable. Cocoa programmers do not

value code that is short and clever to the point of being obscure.

9.12 Exercise: Adding a Progress Indicator

A lot of what we’re doing at this point is adding muscle memory as we

jump back and forth between Xcode and Interface Builder. Let’s take

this example one step further—at least on the desktop.

Add a small circular progress indicator to the top-right side of your

browser. It should be initially hidden. When a user enters a new URL or

navigates to a different page, the progress indicator should appear and

start to spin. We want to give the user some feedback that something

is happening. Once the page has fully loaded, the progress indicator

should stop spinning and should be hidden again.

Think through the steps. You need to place a progress indicator using

IB. You need to add an outlet for that indicator in the BrowserController

header file and then connect it in IB. You need to synthesize the prop-

erty you just created and use it when the page starts and stops loading.

9.13 Solution: Adding a Progress Indicator

You can look at the solution provided in the code download to investi-

gate the nib and header file. Here’s the Attributes inspector settings for

the progress indicator:

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=173

SOLUTION: ADDING A PROGRESS INDICATOR 174

Under Behavior, I’ve unselected Display When Stopped, and under

Drawing, I’ve unselected Hidden.

Here’s the final version of the implementation file. We need to add a cou-

ple of lines of code to the webView:didFinishLoadForFrame: method to stop

the progress bar’s animation and hide it. We also need to unhide the

progress indicator and start it spinning in the webView:didStartProvisional-

LoadForFrame: method.

Download Delegates/SimpleBrowser11/BrowserController.m

#import "BrowserController.h"

#import <WebKit/WebKit.h>

@implementation BrowserController

@synthesize myWebView, address, backButton, forwardButton, progress;

- (void) resetButtons {

[self.backButton setEnabled:[self.myWebView canGoBack]];

[self.forwardButton setEnabled:[self.myWebView canGoForward]];

}

-(void)awakeFromNib {

[self.address setStringValue:@"http://pragprog.com"];

[self.myWebView takeStringURLFrom:self.address];

}

- (void)webView:(WebView *)sender

didReceiveTitle:(NSString *)title

forFrame:(WebFrame *)frame {

[[sender window] setTitle:title];

}

- (void)webView:(WebView *)sender

didFinishLoadForFrame:(WebFrame *)frame {

[self.address setStringValue:[sender mainFrameURL]];

[self resetButtons];

[self.progress stopAnimation:self];

}

- (void)webView:(WebView *)sender

didStartProvisionalLoadForFrame:(WebFrame *)frame {

[self.progress startAnimation:self];

}

@end

That’s still not much code. In the next chapter, we’ll see what needs to

be changed to implement our SimpleBrowser for the iPhone.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Delegates/SimpleBrowser11/BrowserController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=174

Chapter 10

Adapting Our Browser
to the iPhone

Although the Cocoa concepts you learn in this book apply to both Mac

OS X and the iPhone, you will notice some differences in the APIs and

in the application. You’ll see that in this chapter as we re-create our

browser for the iPhone and iPod touch.1 I’m targeting the iPhone 3.x

SDK in this book. Downloading the SDK is free, but first you need to

agree to Apple’s terms at http://developer.apple.com/iphone.

There are three reasons to port our browser to the iPhone. First, the

iPhone APIs embrace the new features of Objective-C 2.0, such as prop-

erties. Second, delegates are a big part of why the iPhone APIs are

cleaner. Finally, porting the browser lets you retrace your steps armed

with more of an idea of where you are heading. This second pass at

creating a Cocoa project should help pull everything together for you.

10.1 Creating the iPhone Project

Let’s create a new project in Xcode. This time choose iPhone OS > Appli-

cation > View-based Application, and name it MobileBrowser. Go ahead

and run your MobileBrowser application by clicking Build & Run in

Xcode. The code should compile and build, and then the iPhone Simu-

lator should launch. The main window is filled with a single view with

a gray background color.

1. Because these are the same, I’ll talk about this target collectively as the iPhone.

http://developer.apple.com/iphone

CREATING THE IPHONE PROJECT 176

More formally, when the browser application starts up, an instance of

the UIApplication class is created, and the MainWindow nib is loaded.2

The nib contains an object that represents the application whose del-

egate outlet is connected to the MobileBrowserAppDelegate. The nib file

also contains the MobileBrowserViewController. In the app delegate’s appli-

cationDidFinishLaunching: method, the view controller’s view is added to

the window.

Download iPhoneBrowser/MobileBrowser1/Classes/MobileBrowserAppDelegate.m

- (void)applicationDidFinishLaunching:(UIApplication *)application {

// Override point for customization after app launch

[window addSubview:viewController.view];

[window makeKeyAndVisible];

}

This is the way most iPhone apps work. They have a single window for

the entire application. What you think of as a screen are the contents

of a view, and when you switch from one screen to another using the

tab bar, nav bar, or some other means, you are replacing the window’s

old view with the new view by working with their view controllers.

Generally, each of these top-level views is contained in its own nib file

with its view controller as the File’s Owner. I’m not going to talk about

the File’s Owner yet. Let’s just say that most of our work for this appli-

cation will happen in the second nib file and in the view controller.

A view controller’s job, as you might have guessed, is to control a

view. While the view is all about appearance, the controller defines the

2. iPhone-specific classes often begin with UI and not NS as you saw in desktop applica-

tions.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/iPhoneBrowser/MobileBrowser1/Classes/MobileBrowserAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=176

CREATING THE LOOK OF OUR BROWSER 177

behavior. To start with, as you saw in the applicationDidFinishLaunching:

method, when you want to add a view to a window as its subview,

you ask the view controller for the view it controls. Once everything is

arranged, you can reveal the window and its contents to the user and

set it to accept touches and other input.

We’re not going to customize the application’s behavior at launch time,

so let’s move our attention to the nib containing the view and its con-

troller to create our web browser.

10.2 Creating the Look of Our Browser

Double-click MobileBrowserViewController.xib to open it in IB. We’re going

to transform this empty view into something that looks like this:

As before, you drag components out of the library and position them

on the view. Place a UIToolbar at the top of the view. Drag a UITextField

on top of it to the left of the UIBarButtonItem that was at the left of the

UIToolbar. Drag another UIBarButtonItems and place it to the right of the

text field. In our desktop version, we had room for the words Forward

and Back. Here we’ll borrow images provided for audio interfaces. Open

the inspector.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=177

THE WEBVIEW’S LIMITATIONS 178

It looks a little different than the inspector window when you are creat-

ing Mac OS X applications. You have four tabs that you’ll use to inspect

and change the attributes, connections, size, and identity. Choose the

Attributes inspector for the Back button.

Use the pull-down menu to set Identifier to Rewind. While you’re at

it, unselect the Enabled checkbox so that initially the user can’t click

the Back button. Similarly, set the Forward button’s Identifier to Fast

Forward, and unselect the Enabled checkbox.

Lastly, select a UIWebView, and position it to occupy all of the view below

the toolbar. Open the Attributes inspector for the web view, and check

the box Web View > Scales Page to Fit. Save your work. That’s our interface

for now.

Let’s click Build & Run and see what happens. Our app should start up

fine. The Forward and Back buttons are disabled. Try to enter a URL.

Click the text field. This looks promising. The text field clears, and the

keypad appears. You can type in a new URL.

Now what?

You hit F, and nothing happens. If you click in another area of the

screen, the keyboard is dismissed, but the next time you select the text

field, the URL will be cleared, and you need to start all over again. How

can you enter a URL and navigate to the site? It turns out, we’re going

to need two more delegates.

10.3 The WebView’s Limitations

A UIWebView can’t do as much as the WebView that we looked at before.

You can see that in the Connections inspector for our UIWebView.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=178

LOADING A WEB PAGE AT LAUNCH 179

There’s a lot missing, but the most immediate issue for us is that a Web-

View was able to receive the message takeStringURLFrom: and a UIWebView

can’t. That’s a problem. In the desktop version, it meant that we could

wire the web view up to the text field and pass the URL without any

code. Now we need to find another way.

10.4 Loading a Web Page at Launch

We can’t wire the text field and the web view directly to each other, so

both will need to be connected to our controller. Add two outlets to the

header file for the MobileBrowserViewController.

Download iPhoneBrowser/MobileBrowser1/Classes/MobileBrowserViewController.h

#import <UIKit/UIKit.h>

@interface MobileBrowserViewController : UIViewController {

UIWebView *webView;

UITextField *address;

}

@property(nonatomic,retain) IBOutlet UIWebView *webView;

@property(nonatomic, retain) IBOutlet UITextField *address;

@end

Unlike the desktop version, the UIWebView is part of the iPhone frame-

work that we are importing at the top of this file, so we don’t have to do

any special import, and we don’t have to add a framework to our target

as we did before.

The properties are different as well. Because we are writing for the

iPhone, we’ll add the nonatomic attribute to our properties as we’re

writing for UIKit’s single-threaded, single-core model. We also don’t have

garbage collection available to us so we have to use retain instead of

assign for the memory attribute. Don’t forget to synthesize these prop-

erties in the implementation file.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/iPhoneBrowser/MobileBrowser1/Classes/MobileBrowserViewController.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=179

LOADING A WEB PAGE AT LAUNCH 180

Open the MobileBrowserViewController nib file, and use the Connections

inspector to wire these outlets from the File’s Owner to the correspond-

ing components in the view.3 Save and quit Interface Builder.

Back in Xcode, we want to create a method that can load a URL that

we will pass in as a string. Let’s head to the docs for UIWebView and see

whether there’s a method there that will do what we want.

Hmmm. When I look under Tasks > Loading Content, the closest thing I

find is this:

- (void)loadRequest:(NSURLRequest *)request

That’s pretty close, but it takes an NSURLRequest and not a string as

its parameter. Let’s follow the link to the NSURLRequest docs and see

whether there’s anything there. This time when I look at Tasks > Creating

Requests, I find this:

+ (id)requestWithURL:(NSURL *)theURL

It feels as if we’re getting closer, but now we have to figure out how to

create an NSURL from a string. Follow the link to the NSURL docs, and

look under Tasks > Creating an NSURL. There it is!

+ (id)URLWithString:(NSString *)URLString

Put these together to create our loadURLFromTextField method.4 Add this

just after the @synthesize line in MobileBrowserViewController.m:

Download iPhoneBrowser/MobileBrowser1/Classes/MobileBrowserViewController.m

-(void) loadURLFromTextField {

NSURL *url = [NSURL URLWithString:self.address.text];

NSURLRequest *request = [NSURLRequest requestWithURL:url];

[self.webView loadRequest:request];

}

We create the URL using the text property of our text field. We create

the URL request from the URL, and then we send the message to the

webView outlet to have it load the URL using the request we created.

We’re almost there—we just need somebody to call our loadURLFrom-

TextField after the application launches. In the desktop version, we used

the awakeFromNib method. In iPhone development, you often do this as

3. We know to use the File’s Owner because of its type.
4. Note that we’re using class methods to construct autoreleased instances of the

request and the URL. We don’t need to release them ourselves.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/iPhoneBrowser/MobileBrowser1/Classes/MobileBrowserViewController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=180

TWEAKING THE TEXT FIELD IN IB 181

part of the viewDidLoad method.5 If you look around in your implemen-

tation file, you should see that method commented out. Remove the

comments, and add this line to load the URL:

Download iPhoneBrowser/MobileBrowser1/Classes/MobileBrowserViewController.m

- (void)viewDidLoad {

[super viewDidLoad];

self.address.text = @"http://pragprog.com";

[self loadURLFromTextField];

}

Click Build & Run; the application should launch, and the Pragmatic

home page should load scaled down so that it is viewable in the browser.

You can navigate by clicking links, but you can’t yet enter other URLs.

Let’s take care of that next.

10.5 Tweaking the Text Field in IB

As powerful and cool as the iPhone is, it is still a device with many

constraints. For most of us, it is easier to enter text using our laptops

than it is using an iPhone. Although the iPhone’s display is beautiful

and the resolution is good, we have a lot more real estate on our desktop

monitors or on our laptops. When we’re programming the iPhone, we

need to consider the limitations of the device and make it as easy as

possible for our users to interact with our application.

Let’s configure the text field and keyboard to make it easier for users

to enter URLs. Open the MobileBrowserViewController nib, and look at the

text field using the Attributes inspector.

The first thing that I find annoying when working with this text field

is that every time I click it, all of the content clears. I’d really like the

option to clear it or the option to edit what’s there in case I’ve fat-

fingered a URL and am off only by a character or two. Unselect the box

labeled Clear When Editing Begins, and use the pull-down menu to set

the Clear Button to Appears while editing.

Click Build & Run, and now you will see a little x at the right of the

text field when you are editing the field. The text field also no longer

5. Other methods we often use for this type of work is viewWillAppear and viewDidAppear.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/iPhoneBrowser/MobileBrowser1/Classes/MobileBrowserViewController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=181

TWEAKING THE TEXT FIELD IN IB 182

clears when you select it, and you can double-click the text and use

the iPhone’s cut and paste.

Look at the Text Input Traits listed in the Attributes inspector. Let’s

choose a keyboard that is more suited to web navigation. Here you can

see the available choices:

Choose URL. This is a small but very important change to make. It

exposes the keys to make URL entry easier and will vastly improve the

user experience. As a final tweak, change Return Key from Default to

Go. Save your work, and run the application again. Now the keyboard

looks like this:

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=182

USING THE TEXT FIELD DELEGATE 183

10.6 Using the Text Field Delegate

You just used the text field to set its look and the look of the keyboard

associated with it. But the virtual keyboard doesn’t know how to react

after the user has entered data and clicks the Go button. For that we

need a delegate.6

In Interface Builder, use the Connections inspector to connect the text

field’s delegate outlet to the File’s Owner and save. In Xcode, add the

declaration of the UITextFieldDelegate to the MobileBrowserViewController’s

header file in angle brackets:

Download iPhoneBrowser/MobileBrowser3/Classes/MobileBrowserViewController.h

@interface MobileBrowserViewController : UIViewController

<UITextFieldDelegate> {

With that we’ve just announced to the world that our MobileBrowserView-

Controller knows how to respond to any of seven optional messages for

beginning and ending editing, responding to Return, clearing the field,

and changing some of the characters.

For example, let’s disable the web view when the user starts to edit the

URL:

Download iPhoneBrowser/MobileBrowser3/Classes/MobileBrowserViewController.m

-(void)textFieldDidBeginEditing:(UITextField *)textField {

[self disableWebView];

}

To disable the web view, we’ll prevent the user from interacting with it,

and we’ll dim it by adjusting the alpha value to visually imply that it is

not currently active.7 We’ll also reenable the web view by reversing the

steps we took in disabling it.

Download iPhoneBrowser/MobileBrowser3/Classes/MobileBrowserViewController.m

-(void) disableWebView {

self.webView.userInteractionEnabled = NO;

self.webView.alpha = 0.25;

}

-(void) enableWebView {

self.webView.userInteractionEnabled = YES;

self.webView.alpha = 1.0;

}

6. In the case of an NSTextField, you’re working with a physical keyboard and don’t need

a delegate.
7. Note that alpha is a property of UIView, so you can adjust this value for any subclass

of UIView and not just a UIWebView.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/iPhoneBrowser/MobileBrowser3/Classes/MobileBrowserViewController.h
http://media.pragprog.com/titles/dscpq/code/iPhoneBrowser/MobileBrowser3/Classes/MobileBrowserViewController.m
http://media.pragprog.com/titles/dscpq/code/iPhoneBrowser/MobileBrowser3/Classes/MobileBrowserViewController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=183

USING A THIRD DELEGATE TO IMPLEMENT THE BUTTONS 184

When the user clicks Go on the keyboard, the URL is loaded, and we

tell the text field to resignFirstResponder to dismiss the keyboard. We also

reenable the web view. We put all of this in the delegate method textField-

ShouldReturn:.

Download iPhoneBrowser/MobileBrowser3/Classes/MobileBrowserViewController.m

-(BOOL) textFieldShouldReturn:(UITextField *)textField {

[self loadURLFromTextField];

[textField resignFirstResponder];

[self enableWebView];

return YES;

}

Click Build & Run; you should be able to enter URLs and click Go to

load the corresponding website. We have a mostly functioning browser.

Let’s get the buttons working next.

10.7 Using a Third Delegate to Implement the Buttons

If you look back at our BrowserController, you’ll see that we need to know

when the web page finished loading to reset the buttons. The only way

to know when the page is finished loading is to use the UIWebView-

Delegate.

We’ll use our MobileBrowserViewController as the web view’s delegate. We’ll

also add outlets for the Forward and Back buttons. Here’s what our

header file now looks like:

Download iPhoneBrowser/MobileBrowser4/Classes/MobileBrowserViewController.h

#import <UIKit/UIKit.h>

@interface MobileBrowserViewController : UIViewController

<UITextFieldDelegate> {

UIWebView *webView;

UITextField *address;

UIBarButtonItem *backButton;

UIBarButtonItem *forwardButton;

}

@property(nonatomic,retain) IBOutlet UIWebView *webView;

@property(nonatomic, retain) IBOutlet UITextField *address;

@property(nonatomic, retain) IBOutlet UIBarButtonItem *backButton;

@property(nonatomic, retain) IBOutlet UIBarButtonItem *forwardButton;

@end

Open the MobileBrowserViewController nib in Interface Builder. We have

five connections to make.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/iPhoneBrowser/MobileBrowser3/Classes/MobileBrowserViewController.m
http://media.pragprog.com/titles/dscpq/code/iPhoneBrowser/MobileBrowser4/Classes/MobileBrowserViewController.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=184

EXERCISE: ADDING AN ACTIVITY INDICATOR 185

1. Select the File’s Owner, and connect the backButton outlet to the

Back button and the forwardButton outlet to the Forward button.

2. Select the web view, and connect its delegate to the File’s Owner.

3. Still in the web view, connect the goBack received action to the

Back button and the goForward to the Forward button.

Save your work. Now let’s implement the button reset exactly as we did

in the desktop browser. Don’t forget to synthesize your properties. Next,

we’ll call a method that we create named resetButtons: from the delegate

method that tells us when the web page is done loading. In the case of

the iPhone, that method is webViewDidFinishLoad:.

Download iPhoneBrowser/MobileBrowser4/Classes/MobileBrowserViewController.m

-(void) resetButtons:(UIWebView *) theWebView {

[self.backButton setEnabled:[theWebView canGoBack]];

[self.forwardButton setEnabled:[theWebView canGoForward]];

}

-(void)webViewDidFinishLoad:(UIWebView *)theWebView {

[self resetButtons:theWebView];

}

Run the browser, and navigate or enter the URL for a second web page.

Once the page loads, the Back button should be enabled. Click the

Back button; you will be taken to the previous page, and the Forward

button will be enabled. We have a basic web browser working on the

iPhone.

10.8 Exercise: Adding an Activity Indicator

Add a UIActivityIndicatorView to your application. In Interface Builder, set

its Style to Large White, and select the Hide When Stopped checkbox.

Your activity indicator should spin while the website is loading. The web

view should remain disabled until the page is done loading. Finally, if

you navigate to a page, the text field should display the URL of this page

instead of continuing to contain the last web address the user typed in.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/iPhoneBrowser/MobileBrowser4/Classes/MobileBrowserViewController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=185

SOLUTION: ADDING AN ACTIVITY INDICATOR 186

10.9 Solution: Adding an Activity Indicator

To start with, add this outlet to your MobileBrowserViewController header

file:8

Download iPhoneBrowser/MobileBrowser5/Classes/MobileBrowserViewController.h

#import <UIKit/UIKit.h>

@interface MobileBrowserViewController : UIViewController

<UITextFieldDelegate> {

UIWebView *webView;

UITextField *address;

UIBarButtonItem *backButton;

UIBarButtonItem *forwardButton;

UIActivityIndicatorView *activityView;

}

@property(nonatomic,retain) IBOutlet UIWebView *webView;

@property(nonatomic, retain) IBOutlet UITextField *address;

@property(nonatomic, retain) IBOutlet UIBarButtonItem *backButton;

@property(nonatomic, retain) IBOutlet UIBarButtonItem *forwardButton;

@property(nonatomic, retain) IBOutlet UIActivityIndicatorView *activityView;

@end

Now open up the nib file, and drag an activity indicator view on top of

the web view. Connect it to the outlet using the Connections inspector,

and then use the Attributes inspector to set its Style to Large White and

select the Hide When Stopped checkbox. Save your work, and return to

Xcode.

We can make all of the changes we need in the webViewDidStartLoad: and

webViewDidFinishLoad: methods. In addition, you can remove the call to

enableWebView: in the textFieldShouldReturn: method. Let’s stop and take

a look back at the code we’ve written in this chapter. I find it striking

that we’ve implemented a web view, text field and its keyboard, Forward

and Back buttons, and an activity indicator with so little code.

Download iPhoneBrowser/MobileBrowser5/Classes/MobileBrowserViewController.m

#import "MobileBrowserViewController.h"

@implementation MobileBrowserViewController

@synthesize address, webView, backButton, forwardButton, activityView;

8. Remember that once the simulator is fixed, you can eliminate the instance variable

declarations from the header file.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/iPhoneBrowser/MobileBrowser5/Classes/MobileBrowserViewController.h
http://media.pragprog.com/titles/dscpq/code/iPhoneBrowser/MobileBrowser5/Classes/MobileBrowserViewController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=186

SOLUTION: ADDING AN ACTIVITY INDICATOR 187

//View Controller Utility Methods

-(void) disableWebView {

self.webView.userInteractionEnabled = NO;

self.webView.alpha = 0.25;

}

-(void) enableWebView {

self.webView.userInteractionEnabled = YES;

self.webView.alpha = 1.0;

}

-(void) loadURLFromTextField {

NSURL *url = [NSURL URLWithString:self.address.text];

NSURLRequest *request = [NSURLRequest requestWithURL:url];

[self.webView loadRequest:request];

}

-(void) resetButtons:(UIWebView *) theWebView {

[self.backButton setEnabled:[theWebView canGoBack]];

[self.forwardButton setEnabled:[theWebView canGoForward]];

}

//Initialization

- (void)viewDidLoad {

[super viewDidLoad];

self.address.text = @"http://pragprog.com";

[self loadURLFromTextField];

}

//Web View Delegate methods

-(void)webViewDidStartLoad:(UIWebView *) theWebView {

[self disableWebView];

[self.activityView startAnimating];

}

-(void)webViewDidFinishLoad:(UIWebView *)theWebView {

[self enableWebView];

[self.activityView stopAnimating];

[self resetButtons:theWebView];

self.address.text = [[self.webView.request URL] absoluteString];

}

//Text Field Delegate methods

-(void)textFieldDidBeginEditing:(UITextField *)textField {

[self disableWebView];

}

-(BOOL) textFieldShouldReturn:(UITextField *)textField {

[self loadURLFromTextField];

[textField resignFirstResponder];

return YES;

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=187

ORGANIZING WITH PRAGMA MARKS 188

//Memory Management

- (void)didReceiveMemoryWarning {

// Releases the view if it doesn't have a superview.

[super didReceiveMemoryWarning];

}

- (void)dealloc {

self.address = nil;

self.webView = nil;

self.backButton = nil;

self.forwardButton = nil;

self.activityView = nil;

[super dealloc];

}

@end

We’ve used three delegates and a bunch of properties, and the longest

method body is four lines long. I hope with this second look at creating a

web browser, this time as an iPhone app, is helping you feel the rhythm

of developing a Cocoa application.

10.10 Organizing with Pragma Marks

I added comments to the last code listing to help organize the meth-

ods into categories. This helps me locate the methods I need when I’m

scanning through the source code, but there is a better way.

If you look at the top of the editor window, you’ll see several drop-

downs. One shows you the other files that have been opened and allows

you to move between them quickly. Another shows you all the method

names. Select one, and you move to that spot in the source code. It

currently looks like this:

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=188

ORGANIZING WITH PRAGMA MARKS 189

Everything is jumbled together. It’s still better than searching through

a long source code listing, but we can make it better using #pragma

mark. Replace the following comment:

//Memory Management

with this:

#pragma mark -

#pragma mark Memory Management

Now the drop-down list of methods looks like this:

The #pragma mark - draws the horizontal line separator, and #pragma

mark Memory Management produces the bold heading.9 Introduce these

headings in place of all of the sections, and your code becomes a lot

more navigable, as we can see on the next page.10

Our desktop and iPhone web browsers have served us well. I’ve used

them to illustrate creating classes in code and instantiating objects in

code or in a nib. You’ve written and called methods with and without

parameters.

9. Don’t add trailing spaces after the - or #pragma mark - will render as a dash instead of

a horizontal line in the drop-down list.
10. If you synthesized each property on a separate line, they will appear on separate lines

and not all on one line as mine do.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=189

ORGANIZING WITH PRAGMA MARKS 190

You’ve worked with properties and learned to manage memory. You’ve

wired your application together with actions and outlets and learned to

use delegates. These are some of the fundamental techniques that you

will use all the time as a Cocoa developer.

But there’s more....

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=190

Chapter 11

Posting and Listening
for Notifications

There are so many things that you need to keep track of in your life. It

wouldn’t be practical for you to stop and check on the progress of all of

them every few minutes or even once a day. For most of them, you just

want to know when something has changed.

Maybe you want an alert when a stock hits a certain price. Maybe the

alert should go to a broker instead with a specific set of instructions.

How might you set this up?

You would have to arrange with the notification center that you are

interested in knowing about a specific event. In our case, it is something

like “Tell me when XXX drops to yyy.” You have to tell the notification

center who it should notify. Should it send the notification to you or to

some agent?

Now whether the message comes to me or to someone else, we need to

figure out what to do about it quickly. We get lots of notifications in

a day. It’s easier to parse them and figure out what to do next if the

context is clear to us. In code this happens by telling the notification

center what message to send us. The message might be buy: or sell:. In

other words, we are telling the notification center the action it will be

sending for the target we’ve already set.

The notification center will then send our target a notification as part

of the message. In code, this means that a notification object is the

parameter of the message. The notification will contain information that

the recipient might need. You’ll always find the name of the notification

EXERCISE: CREATING A MODEL 192

and information about who posted the notification. You will also get

other information that you may need to act on the notification.1

11.1 Exercise: Creating a Model

Our next running example will display the name and icon of applica-

tions as they launch and terminate. As with the browser, the point of

this application is not to build a full-featured application but rather

to use it to learn more about aspects of Cocoa programming. In this

chapter, we’ll start with notifications.

Create a new Cocoa application, and name it HelloApplication. Remem-

ber, we’re back in the world of Mac OS X apps, so we won’t need to

manage our own memory. Change the Project setting so that garbage

collection is required. You’ll do that for every project we create from

here on out.

Add two classes that each extend NSObject. The CurrentApp class will

represent your model for this application. Don’t customize it in any

way yet. The class ActivityController will be our controller. Instantiate it in

MainMenu.xib. Create an instance of CurrentApp in the ActivityController’s

awakeFromNib, and store it in a property named currentApp.

11.2 Solution: Creating a Model

By now you should be building some muscle memory for creating new

projects and files. You created your HelloApplication with all of the

checkboxes unselected. You created a new file CurrentApp.m that was

an Objective-C class that extends NSObject. You then repeated the pro-

cess for ActivityController.m.

Now instantiate your classes. In Interface Builder drag an instance of

ActivityController into the MainMenu.xib’s Document window.

In Xcode, declare an instance variable and a property named currentApp

of type CurrentApp to ActivityController.h. Remember to use @class to for-

ward declare the CurrentApp class.

1. In this chapter we won’t be looking at this notification object. Our example will focus

on registering to receive notifications and responding to receiving a notification. We’ll

return to this subject and show you how to work with the notification object in Chap-

ter 13, Working with Dictionaries.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=192

SOLUTION: CREATING A MODEL 193

Warning

We’ll soon have a problem with this project because the Activi-

tyController and CurrentApp objects are being released just after
they are created. That’s fine for now, but soon we will want
them to stay around as long as the application is running. That
is a subtle and significant problem that might be hard to spot.
We’ll retain the objects once we can see our problem in action.

Download Notification/HelloApplication1/ActivityController.h

#import <Cocoa/Cocoa.h>

@class CurrentApp;

@interface ActivityController : NSObject {

CurrentApp *currentApp;

}

@property CurrentApp *currentApp;

@end

I hope that you remembered to include the forward declaration for Cur-

rentApp just below the import statement. The property declaration may

look a little naked. Without garbage collection, the memory attribute

would have to be retain. With garbage collection, this is equivalent to

assign, and assign is the default value, so we can leave it out altogether.2

In ActivityController.m, you need to synthesize currentApp and create an

instance of it in awakeFromNib. Be sure to import CurrentApp.h.

Download Notification/HelloApplication1/ActivityController.m

#import "ActivityController.h"

#import "CurrentApp.h"

@implementation ActivityController

@synthesize currentApp;

-(void)awakeFromNib {

self.currentApp = [[CurrentApp alloc] init];

}

@end

2. Of course, if you are writing on and for 64-bit machines, you can also leave out the

instance variable.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Notification/HelloApplication1/ActivityController.h
http://media.pragprog.com/titles/dscpq/code/Notification/HelloApplication1/ActivityController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=193

REGISTERING FOR NOTIFICATIONS 194

11.3 Registering for Notifications

Here’s how an object registers to receive notifications:

[[NSNotificationCenter defaultCenter]

addObserver:observerObject

selector:@selector(methodName:)

name:NameOfNotification

object:notifyingObject];

Zero, one, or many objects can register with a notification server for

the same notification, and an object can register for as many different

types of notifications it wants to receive. Let’s take a closer look at each

of the arguments used in registration:

• You are sending the addObserver:selector:name:object: message to

the default notification center.

• In our case, we will set the observerObject to self, but it can be any

object interested in receiving the notification. This will be the tar-

get for the action you are setting to be triggered by the notification.

• The selector specifies the action. This is the name of the method

belonging to the observer that will be called when the notification

is received.

– The name of this method ends with a colon because this

method will take a single parameter.

– This single parameter is the notification object that is passed

in when the notification is sent.

• The name is the name of the notification being registered for.

• The object refers to the object whose notifications you are inter-

ested in. In our SimpleBrowser example, you may have more than

one web view that is posting notifications, and you might only

want to monitor a particular one. You can also pass in nil to receive

this type of notification posted by any object in your application.

In the stock example, the observerObject is you or your agent. The selec-

tor is the action to be performed like buy: or sell:. The name is the notifi-

cation you are registering for like “price drops to $yyy.” The object could

be the name of the stock to which you are listening.

The big idea is that you register to listen for a notification by pass-

ing in the name of a method that will be called on a particular object.

When the method is called, it receives an NSNotification object as its only

parameter.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=194
Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

RESPONDING TO WORKSPACE ACTIVITY 195

Every notification object contains two or three pieces of information

including the name of the notification and the object that initiated

the notification. If a notification needs to contain more information,

it stores it in a third object, an NSDictionary named userInfo.

NSNotification’s three instance methods are essentially getters for these

properties:

- (NSString *)name

- (id)object

- (NSDictionary *)userInfo

The name method returns the name of the notification, and the object

method returns a handle to the object responsible for issuing the notifi-

cation. The userInfo method returns key-value pairs of information about

the specific notification. We’ll look at userInfo in Chapter 13, Working

with Dictionaries, on page 213.

In the next section, we’ll make all this more concrete. We’ll register to

receive notifications of changes of status to our workspace.

11.4 Responding to Workspace Activity

Your application runs inside a workspace. We can track what is going

on in the workspace by listening for notifications. By the end of the

chapter, we’ll restrict ourselves to listening for when an application

launches or terminates—but let’s start by listening for any of the noti-

fications sent by the NSWorkspace.

We use a class method to get the singleton that represents our shared

workspace and then ask it for a reference to its notification center like

this:

NSNotificationCenter *defaultCenter = [[NSWorkspace sharedWorkspace]

notificationCenter];

Next we register to receive the notifications we are interested in:

[defaultCenter addObserver:self

selector:@selector(reportActivity:)

name:nil

object:nil];

We could have asked to be notified of a particular event by passing it

as the name: parameter. But we passed a name of nil, so the notification

center will inform us of all notification events. The combination of self for

the observer and reportActivity: for the selector specifies the target and

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=195

RESPONDING TO WORKSPACE ACTIVITY 196

action that will be called when a notification is received. The notification

will be sent as the parameter.

Here’s the entire CurrentApp.m listing:

Download Notification/HelloApplication2/CurrentApp.m

#import "CurrentApp.h"

@implementation CurrentApp

-(void) reportActivity: (NSNotification *) notification {

NSLog(@"%@", notification.name);

}

-(void) registerNotifications {

NSNotificationCenter *defaultCenter = [[NSWorkspace sharedWorkspace]

notificationCenter];

[defaultCenter addObserver:self

selector:@selector(reportActivity:)

name:nil

object:nil];

}

-(id) init {

if (self = [super init]) {

[self registerNotifications];

}

return self;

}

@end

In reportActivity:, we just write out the name of the notification to the

Console window. Click Build & Run. What happens?

A window opens for the app, and I also see something like this in my

Console window:

NSWorkspaceDidLaunchApplicationNotification

For kicks I start up iCal. I should see another NSWorkspaceDidLaunch-

ApplicationNotification in the Console window. I don’t.

I quit iCal. I should see NSWorkspaceDidTerminateApplicationNotification in

the Console. I don’t.3

Grrrrrr. This is the memory problem I was talking about. Let’s pause

and fix it.

3. If you do see these additional notifications, check your project settings, and make

sure that garbage collection is set to Required.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Notification/HelloApplication2/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=196

HOLDING ON TO THE CONTROLLER 197

11.5 Holding on to the Controller

We’ve set our instance of CurrentApp up as an observer for notifica-

tions. The only object that holds a strong reference to this object is our

instance of ActivityController. The ActivityController is created in the nib

file, but nothing holds on to it.4

Let’s add an outlet in the app delegate:

Download Notification/HelloApplication3/HelloApplicationAppDelegate.h

#import <Cocoa/Cocoa.h>

@class ActivityController;

@interface HelloApplicationAppDelegate : NSObject <NSApplicationDelegate> {

NSWindow *window;

ActivityController *ac;

}

@property IBOutlet NSWindow *window;

@property IBOutlet ActivityController *ac;

@end

Jump over to the implementation file, and synthesize ac:

Download Notification/HelloApplication3/HelloApplicationAppDelegate.m

#import "HelloApplicationAppDelegate.h"

@implementation HelloApplicationAppDelegate

@synthesize window, ac;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

}

@end

Save your work, and open MainMenu.xib in Interface Builder. Connect

the outlet you just created to the ActivityController. Save that work, and

click Build & Run.

Now when I start up and quit iCal, the Console window looks like this:

NSWorkspaceDidLaunchApplicationNotification

NSWorkspaceWillLaunchApplicationNotification

NSWorkspaceDidActivateApplicationNotification

NSWorkspaceDidDeactivateApplicationNotification

NSWorkspaceDidLaunchApplicationNotification

4. At great risk to my reputation, this reminds me of a scene from the Superman movie

where Superman catches Lois Lane as she falls and says, “Don’t worry, I’ve got you.” She

looks quite worried as she asks, “But who has you?”

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Notification/HelloApplication3/HelloApplicationAppDelegate.h
http://media.pragprog.com/titles/dscpq/code/Notification/HelloApplication3/HelloApplicationAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=197

EXERCISE: REGISTERING FOR NOTIFICATIONS 198

NSWorkspaceDidActivateApplicationNotification

NSWorkspaceDidDeactivateApplicationNotification

NSWorkspaceDidTerminateApplicationNotification

NSWorkspaceDidActivateApplicationNotification

NSWorkspaceDidDeactivateApplicationNotification

There’s a lot of activity going on, and now our ActivityController and Cur-

rentApp objects live long enough to tell us about it. First our HelloAppli-

cation project launches, and we get the notification that the application

did launch. When I start iCal, I get a notification that iCal will launch

and that iCal did launch mixed in with notifications of the applications

activating and deactivating. Next, let’s alter our code to focus in on just

the information we want: launching and terminating apps.

11.6 Exercise: Registering for Notifications

Modify the code to listen for NSWorkspaceDidLaunchApplicationNotification

and NSWorkspaceDidTerminateApplicationNotification. Display “Launched.”

and “Terminated.” in the Console window in response.

11.7 Solution: Registering for Notifications

Let’s start by registering for and responding to the launch notifications:

Download Notification/HelloApplication4/CurrentApp.m

-(void) registerNotifications {

NSNotificationCenter *defaultCenter = [[NSWorkspace sharedWorkspace]

notificationCenter];

[defaultCenter addObserver:self

selector:@selector(applicationDidLaunch:)

name:NSWorkspaceDidLaunchApplicationNotification

object:nil];

}

The main change was specifying the name of the notification we’re lis-

tening for instead of getting all of them by specifying nil. I also changed

the name of the callback method to applicationDidLaunch:.

If I follow the same pattern to register for and respond to the terminate

notification, I’ll get a lot of duplicated code.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Notification/HelloApplication4/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=198

POSTING NOTIFICATIONS 199

So, I’ll introduce a utility method named setUpNotification:withSelector:

and refactor like this:

Download Notification/HelloApplication5/CurrentApp.m

#import "CurrentApp.h"

@implementation CurrentApp

-(void) applicationDidLaunch: (NSNotification *) notification {

NSLog(@"Launched.");

}

-(void) applicationDidTerminate: (NSNotification *) notification {

NSLog(@"Terminated.");

}

-(void)setUpNotification:(NSString *)notification withSelector:(SEL)methodName {

[[[NSWorkspace sharedWorkspace] notificationCenter]

addObserver:self

selector:methodName

name:notification

object:nil];

}

-(void) registerNotifications {

[self setUpNotification:NSWorkspaceDidLaunchApplicationNotification

withSelector:@selector(applicationDidLaunch:)];

[self setUpNotification:NSWorkspaceDidTerminateApplicationNotification

withSelector:@selector(applicationDidTerminate:)];

}

-(id) init {

if (self = [super init]) {

[self registerNotifications];

}

return self;

}

@end

Now when I click Build & Run, launch, and quit iCal, I see this in the

Console:

Launched.

Launched.

Terminated.

11.8 Posting Notifications

Suppose we now want to add a text field to the window and display

“Launched.” or “Terminated.” in that text field. How might you do that?

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Notification/HelloApplication5/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=199

POSTING NOTIFICATIONS 200

Start by adding an outlet to the controller of type NSTextField named

activityDisplay:

Download Notification/HelloApplication6/ActivityController.h

#import <Cocoa/Cocoa.h>

@class CurrentApp;

@interface ActivityController : NSObject {

CurrentApp *currentApp;

NSTextField *activityDisplay;

}

@property CurrentApp *currentApp;

@property IBOutlet NSTextField *activityDisplay;

@end

In Interface Builder, drag a multiline text field into your application

window. Unselect the Selectable checkbox in the Attributes inspector.

Connect the outlet to the text field, and save.

How should we communicate the launch and terminate notifications to

this view? The controller should be the object that lets the view know,

but how should the controller get the news?

We could register the controller to get the launch and terminate notifi-

cations and then pass the news on to the model. The controller knows

about the model (after all, it creates the model), so this would be per-

fectly natural. The model could contact the controller when there are

changes to report. This is less natural because the model doesn’t know

about the controller yet. In the next chapter, we’ll set the controller up

as the model’s delegate, and much later in the book we’ll learn how to

use the Key Value Observing mechanism.

Another solution is for us to post notifications of our own. Here’s how

to post notifications named Launched and Terminated from the applica-

tionDidLaunch: and applicationDidTerminate: methods:

Download Notification/HelloApplication6/CurrentApp.m

-(void) applicationDidLaunch: (NSNotification *) notification {

[[NSNotificationCenter defaultCenter]

postNotificationName:@"Launched" object:self];

}

-(void) applicationDidTerminate: (NSNotification *) notification {

[[NSNotificationCenter defaultCenter]

postNotificationName:@"Terminated" object:self];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Notification/HelloApplication6/ActivityController.h
http://media.pragprog.com/titles/dscpq/code/Notification/HelloApplication6/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=200

EXERCISE: RECEIVING THE CUSTOM NOTIFICATIONS 201

First we obtain our application’s notification center with this call:

[NSNotificationCenter defaultCenter]

Note that this is a different call than when we were getting a handle to

the notification center for our workspace. Once we have the notification

center, we can post notifications using postNotificationName:object:. All

that remains is for us to register for and respond to these notifications.

11.9 Exercise: Receiving the Custom Notifications

Register observers in the ActivityController for the notifications we cre-

ated in the previous section. Implement methods applicationDidLaunch:

and applicationDidTerminate: in ActivityController that print “Launched.”

or “Terminated.” in the text field when the appropriate notification is

received.

11.10 Solution: Receiving the Custom Notifications

You know how to do every step in this exercise; now let’s put it all

together. Add the registerNotifications and setUpNotification:withSelector:

methods that we used in CurrentApp. Call registerNotifications from awake-

FromNib.

When you receive a notification, you need to change the activeDisplay’s

string value to either “Launched.” or “Terminated.”

Download Notification/HelloApplication6/ActivityController.m

#import "ActivityController.h"

#import "CurrentApp.h"

@implementation ActivityController

@synthesize currentApp, activityDisplay;

-(void) applicationDidLaunch: (NSNotification *) notification {

[self.activityDisplay setStringValue:@"Launched."];

}

-(void) applicationDidTerminate: (NSNotification *) notification {

[self.activityDisplay setStringValue:@"Terminated."];

}

-(void)setUpNotification:(NSString *)notification withSelector:(SEL)methodName {

[[NSNotificationCenter defaultCenter]

addObserver:self

selector:methodName

name:notification

object:nil];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Notification/HelloApplication6/ActivityController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=201

SOLUTION: RECEIVING THE CUSTOM NOTIFICATIONS 202

-(void) registerNotifications {

[self setUpNotification:@"Launched"

withSelector:@selector(applicationDidLaunch:)];

[self setUpNotification:@"Terminated"

withSelector:@selector(applicationDidTerminate:)];

}

-(void)awakeFromNib {

self.currentApp = [[CurrentApp alloc] init];

[self registerNotifications];

}

@end

You can read more about notifications in Apple’s Notification Program-

ming Topics for Cocoa [App08h].

In the next chapter, we’ll rearchitect this application to use delegates

instead of notifications to communicate between the model and the con-

troller. We’ll need to create our own protocol and implement the dele-

gating methods ourselves.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=202

Chapter 12

Creating Protocols for Delegation
Notifications are great when more than one object might need to be

told about a change or when you might not know ahead of time which

object(s) might be interested in being notified. For example, the applica-

tion we wrote in the previous chapter is listening for notifications that

the NSWorkspace sends out. That’s a great use of notifications in our

application.

On the other hand, the communication between our model and our con-

troller is not a very good use of notifications.1 The CurrentApp object’s

applicationDidLaunch: and applicationDidTerminate: methods each do little

more than call methods of essentially the same name in the Applica-

tionController object. This is being accomplished in a roundabout way

right now. The CurrentApp methods are posting notifications that the

ApplicationController has registered to observe. We’d be better off using a

delegate instead of notifications.

You’ve used protocols and delegates before. In this chapter, we will cre-

ate our own protocol and add it to the controller’s header file. We’ll

make the controller the delegate for our model. Then comes the tricky

part. The model will turn around and call the delegate methods if they

exist.

1. If it’s not a good use of notifications, then why did I show it to you? I used notifications

in this way so that I could show you how to generate your own notifications. My goal is

to use this example to show you a range of useful techniques.

EXERCISE: CREATING AND SETTING THE DELEGATE 204

12.1 Exercise: Creating and Setting the Delegate

Create a new property named delegate in the CurrentApp class. For now

we use id as the type of delegate, so any object can be assigned to it.

Remove all the methods from ActivityController.m except for awakeFrom-

Nib. We’ll put some of it back before we’re done, but this will help you

see some of the details in declaring and implementing a protocol. Set

CurrentApp’s delegate to self in awakeFromNib.

12.2 Solution: Creating and Setting the Delegate

Add the delegate instance variable and property to CurrentApp.h:

Download Protocols/HelloApplication7/CurrentApp.h

#import <Cocoa/Cocoa.h>

@interface CurrentApp : NSObject {

id delegate;

}

@property id delegate;

@end

We’ve labeled the delegate as an id so that an object of any type could

be set as the CurrentApp delegate. Remember to synthesize the property

in CurrentApp.m.

For now, we’re doing just three things in the ActivityController’s awake-

FromNib method: we’re creating an instance of CurrentApp, we’re assign-

ing this to our instance variable, and we’re setting that object’s delegate

to be ourselves.

Download Protocols/HelloApplication7/ActivityController.m

#import "ActivityController.h"

#import "CurrentApp.h"

@implementation ActivityController

@synthesize currentApp, activityDisplay;

-(void)awakeFromNib {

self.currentApp = [[CurrentApp alloc] init];

self.currentApp.delegate = self;

}

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Protocols/HelloApplication7/CurrentApp.h
http://media.pragprog.com/titles/dscpq/code/Protocols/HelloApplication7/ActivityController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=204

CREATING AND USING A PROTOCOL 205

At this point, I checked that it was working by adding (and later remov-

ing) this simple method to ActivityController.m:

-(void) sayHi {

NSLog(@"Hi");

}

and this call to the end of awakeFromNib:

[self.currentApp.delegate sayHi];

I ran the app and saw “Hi” in the Console window. This lets me know

everything is working, so I can remove sayHi and the call to it. It was a

silly exercise, but it gave me the confidence to move on.2

12.3 Creating and Using a Protocol

A protocol is a collection of method declarations that are made avail-

able to any class that wants to implement some or all of the methods.

It’s like a header file that others may freely adopt. A protocol allows

you to capture common behavior in a group of classes that might not

inherit from each other or be related in any way other than that they

all implement the same protocol.

Objective-C is a single inheritance language. A class can extend only

one class. Often you are going to want to communicate to people using

your class that it extends a certain class, but it can respond to other

collections of behavior. We saw this in Chapter 9, Customizing with Dele-

gates, on page 158 when we had a delegate for the window. The delegate

was a WindowHelper object that extended NSWindow and implemented

the NSWindowDelegate protocol. You might remember that this gave us

a list of methods we could implement without explicitly declaring them

in the header file.3

By default, all of the methods you declare in the protocol are required

to be implemented by any class that adopts it. However, if you add an

@optional directive, the methods that follow need not be implemented

in a class that adopts the protocol. The @required directive toggles back

2. I know many readers will object that I should be developing test first, and then I

wouldn’t need to depend on such hacks. That’s true, but I haven’t found a unit testing

framework I really like enough for Objective-C to include in this book. I do use OCUnit,

which comes with Xcode. You can get started with Apple’s Automated Unit Testing with

Xcode 3 and Objective-C [App09a].
3. An Objective-C protocol is similar to an interface in Java.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=205

CREATING AND USING A PROTOCOL 206

to listing required methods. In this code snippet, aRequiredMethod and

anotherRequiredMethod are required, while anOptionalMethod is optional.

@protocol SomeProtocol

-(void) aRequiredMethod;

@optional

-(void) anOptionalMethod;

@required

-(void) anotherRequiredMethod;

@end

Let’s create a protocol that we’ll use to define our delegate. First create

a new header file in Xcode. Select the Classes folder in Groups & Files.

Create a new file, and choose the template Mac OS X > Cocoa Class >

Objective-C protocol. Name the file ActivityMonitorDelegate.h, and save it.

The first line of the file is @protocol followed by the name of the pro-

tocol, which is the same as the name of the file.4 Protocols are lists of

method declarations. There are no imports, no classes, and no instance

variables, so we don’t need any curly braces. Here we declare applica-

tiondidLaunch: and applicationDidTerminate: in our protocol. Notice that

these methods take a parameter of type CurrentApp.

Download Protocols/HelloApplication7/ActivityMonitorDelegate.h

@class CurrentApp;

@protocol ActivityMonitorDelegate

@optional

-(void)applicationDidLaunch: (CurrentApp *) app;

-(void)applicationDidTerminate: (CurrentApp *) app;

@end

Now let’s use this protocol in the ActivityController class. You’ll need to

add an import statement to the top of ActivityController.h. You’ll also have

to add the declaration that ActivityController conforms to the protocol

by adding ActivityMonitorDelegate in angle brackets after the name of

ActivityController’s superclass NSObject.

4. The protocol and filename could have different name, but by convention they are the

same.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Protocols/HelloApplication7/ActivityMonitorDelegate.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=206

REQUIRING METHODS 207

Download Protocols/HelloApplication7/ActivityController.h

#import <Cocoa/Cocoa.h>

#import "ActivityMonitorDelegate.h"

@class CurrentApp;

@interface ActivityController : NSObject <ActivityMonitorDelegate> {

CurrentApp *currentApp;

NSTextField *activityDisplay;

}

@property CurrentApp *currentApp;

@property IBOutlet NSTextField *activityDisplay;

@end

Click Build & Run. There should be no warnings, but nothing much

should happen when you run the application.

12.4 Requiring Methods

Remove the @optional line from the protocol, and click Build & Run.

You’ll get warnings like these:

Now that applicationDidLaunch: and applicationDidTerminate: are required,

we’ll need to implement them in ActivityController.m:

Download Protocols/HelloApplication8/ActivityController.m

-(void) applicationDidLaunch: (CurrentApp *) app {

[self.activityDisplay setStringValue:@"Launched"];

}

-(void) applicationDidTerminate: (CurrentApp *) app {

[self.activityDisplay setStringValue:@"Terminated"];

}

Click Build & Run, and the warnings are gone again. We’ve set up the

delegate and created a protocol that declares the methods we need.

We’ve used the protocol and implemented the required methods. Now

let’s finish by replacing posting notifications in CurrentApp with sending

messages to the delegate.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Protocols/HelloApplication7/ActivityController.h
http://media.pragprog.com/titles/dscpq/code/Protocols/HelloApplication8/ActivityController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=207

RESPONDING TO SELECTOR 208

12.5 Responding to Selector

Here’s how you’ll test whether you can call the delegate method from

your delegating object:

Download Protocols/HelloApplication8/CurrentApp.m

-(void) applicationDidLaunch: (NSNotification *) notification {

if ([self.delegate

respondsToSelector:@selector(applicationDidLaunch:)]) {

NSLog(@"Delegate implements applicationDidLaunch:.");

} else {

NSLog(@"We're on our own.");

}

}

You ask the delegate whether it implements the method before you call

it. You check by sending the respondsToSelector: message to the delegate

and passing in the name of the method on which you are checking.

Click Build & Run. You should see the message “Delegate implements

applicationDidLaunch:.” in the Console window.

Let’s cause a problem or two. Comment out this line in ActivityCon-

troller.m:

self.currentApp.delegate = self;

Click Build & Run. This time you should see “We’re on our own.” in the

Console.

Uncomment that last line, and comment out the applicationDidLaunch:

method in ActivityController.m. Click Build & Run. Ignore the warning.

Again, you’ll see “We’re on our own.” in the Console.

Uncomment the method, and click Build & Run one more time to con-

firm that the delegate method can be called successfully.

12.6 Exercise: Calling the Delegate Methods

We’re ready to finish our delegate. In CurrentApp’s applicationDidLaunch:

method, check to see that the delegate responds to a method named

applicationDidLaunch:. If it does, call the method, and pass in self as the

CurrentApp object.

Do the analogous thing in CurrentApp’s applicationDidTerminate: method.

When you click Build & Run, you should see “Launched.” and “Termi-

nated.” in the text field when you start and quit applications.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Protocols/HelloApplication8/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=208

SOLUTION: CALLING THE DELEGATE METHODS 209

12.7 Solution: Calling the Delegate Methods

This is one of those exercises that might have taken longer to describe

than actually do. Here are your changes in applicationDidLaunch: and

applicationDidTerminate::

Download Protocols/HelloApplication9/CurrentApp.m

-(void) applicationDidLaunch: (NSNotification *) notification {

if ([self.delegate

respondsToSelector:@selector(applicationDidLaunch:)]) {

[self.delegate applicationDidLaunch:self];

}

}

-(void) applicationDidTerminate: (NSNotification *) notification {

if ([self.delegate

respondsToSelector:@selector(applicationDidTerminate:)]) {

[self.delegate applicationDidTerminate:self];

}

}

You’ll also need to import ActivityMonitorDelegate.h in your CurrentApp

header file. You could use a forward declaration in your header file and

import in your implementation file, but I know we’re going to need to

move it in a minute, so I’m placing the import in the header file.

12.8 Exercise: Cleaning Up

Here’s a rule of thumb for you: if you can do something in Interface

Builder, then you should do it in Interface Builder.

Sure, there are exceptions, and we’ll experiment with doing things in

code that can be done in IB, but you’ll go much further if you follow

that principle.

Let’s apply that to our current example to do a little cleaning up. Create

your CurrentApp object in the nib, and set its delegate there as well.

You’ll need to hold onto this object, so let’s set an outlet in the app

delegate and connect it to the CurrentApp object.

12.9 Solution: Cleaning Up

We can get rid of the awakeFromNib method in ActivityController.m because

we’re going to create the object and set the delegate in the nib.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Protocols/HelloApplication9/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=209

SOLUTION: CLEANING UP 210

Download Protocols/HelloApplication10/ActivityController.m

#import "ActivityController.h"

#import "CurrentApp.h"

@implementation ActivityController

@synthesize activityDisplay;

-(void) applicationDidLaunch: (CurrentApp *) app {

[self.activityDisplay setStringValue:@"Launched"];

}

-(void) applicationDidTerminate: (CurrentApp *) app {

[self.activityDisplay setStringValue:@"Terminated"];

}

@end

We don’t need the currentApp property anymore. Make sure you remove

the variable and property declaration from the header file along with

the forward declaration:

Download Protocols/HelloApplication10/ActivityController.h

#import <Cocoa/Cocoa.h>

#import "ActivityMonitorDelegate.h"

@interface ActivityController : NSObject <ActivityMonitorDelegate> {

NSTextField *activityDisplay;

}

@property IBOutlet NSTextField *activityDisplay;

@end

We’ll add an outlet to the app delegate so that the CurrentApp instance

stays around as long as we need it:

Download Protocols/HelloApplication10/HelloApplicationAppDelegate.h

#import <Cocoa/Cocoa.h>

@class ActivityController;

@class CurrentApp;

@interface HelloApplicationAppDelegate : NSObject <NSApplicationDelegate> {

NSWindow *window;

ActivityController *ac;

CurrentApp *currentApp;

}

@property IBOutlet NSWindow *window;

@property IBOutlet ActivityController *ac;

@property IBOutlet CurrentApp *currentApp;

@end

Remember to synthesize the currentApp property in the implementation

file.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Protocols/HelloApplication10/ActivityController.m
http://media.pragprog.com/titles/dscpq/code/Protocols/HelloApplication10/ActivityController.h
http://media.pragprog.com/titles/dscpq/code/Protocols/HelloApplication10/HelloApplicationAppDelegate.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=210

SOLUTION: CLEANING UP 211

Download Protocols/HelloApplication10/HelloApplicationAppDelegate.m

#import "HelloApplicationAppDelegate.h"

@implementation HelloApplicationAppDelegate

@synthesize window, ac, currentApp;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

}

@end

Lastly, now that we’ll be setting the delegate in IB, we need to more

carefully specify the type. Modify CurrentApp.h like this:

Download Protocols/HelloApplication10/CurrentApp.h

#import <Cocoa/Cocoa.h>

#import "ActivityMonitorDelegate.h"

@interface CurrentApp : NSObject {

NSObject <ActivityMonitorDelegate> *delegate;

}

@property IBOutlet NSObject <ActivityMonitorDelegate> *delegate;

@end

We changed id to NSObject. I’ve also inserted the protocol name in angle

brackets. Notice that the * belongs with the variable. This won’t compile

if you try to keep it with NSObject. We also labeled the delegate property

as an outlet.

There’s a nice side effect of this change in the type declaration for the

delegate property. We can now remove this guard clause from the appli-

cationDidLaunch: method in CurrentApp.m:

if ([self.delegate

respondsToSelector:@selector(applicationDidLaunch:)])

We no longer need this check now that we’ve declared the delegate

to implement the ActivityMonitorDelegate protocol, which requires the

applicationDidLaunch: method. The same is true for the applicationDidTer-

minate: method. Here are the simplified methods in CurrentApp.m:

Download Protocols/HelloApplication10/CurrentApp.m

-(void) applicationDidLaunch: (NSNotification *) notification {

[self.delegate applicationDidLaunch:self];

}

-(void) applicationDidTerminate: (NSNotification *) notification {

[self.delegate applicationDidTerminate:self];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Protocols/HelloApplication10/HelloApplicationAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Protocols/HelloApplication10/CurrentApp.h
http://media.pragprog.com/titles/dscpq/code/Protocols/HelloApplication10/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=211

SOLUTION: CLEANING UP 212

Save your work, and let’s head over to Interface Builder. Find Cur-

rentApp on the Classes tab of the Library, and drag it into the Document

window. Open the Connections inspector. Select the HelloApplicationAp-

pDelegate object, and connect its currentApp outlet to the CurrentApp

object. Select the CurrentApp object, and connect its delegate outlet to

the ActivityController object. Save your work, and quit IB.

Click Build & Run, and your application should run exactly as before.

We’re now receiving notifications when applications launch or termi-

nate and communicating between the model and the controller using a

protocol and delegate. We haven’t done much with the notification we

receive, however. There’s a lot of information contained inside of it that

we are just ignoring. We’ll fix that in the next chapter.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=212

Chapter 13

Working with Dictionaries
In the past couple of chapters, we used notifications and delegates to

output “Launched.” and “Terminated.” In this chapter, you’ll learn to

work with dictionaries to answer the questions “Launched what?” and

“Terminated what?”

There is a lot of information contained in the notification that we are not

yet using. Remember that an NSNotification has the name of the notifica-

tion, the object sending the notification, and a dictionary named userInfo

filled with key-value pairs of information about the specific notification.

In this chapter, we’ll dig into the contents of that dictionary.1 It turns

out that this is an important technology to know—Cocoa frameworks

use dictionaries all over the place.

13.1 Looking at the User Info

There are three basic usage patterns for notifications:

• In the first case, all that matters is that you get the notification—

all you need to know is that the event you were waiting to hear

about has occurred.

• In the second case, you might use the notification’s name or object.

• In the third case, you need further information contained in the

userInfo dictionary. For example, when you get notification that an

application has launched, you may want to know the name of

1. Depending on which language you’re coming from, you may use the term hash

instead of dictionary.

READING FROM A DICTIONARY 214

the application and where it is located on your hard drive. This

information would be stored as key-value pairs in an NSDictionary

returned by userInfo.

Add this line to your applicationDidLaunch: method in CurrentApp.m:

Download Dictionaries/HelloApplication11/CurrentApp.m

-(void) applicationDidLaunch: (NSNotification *) notification {

[self.delegate applicationDidLaunch:self];

NSLog(@"%@", notification.userInfo);

}

Click Build & Run. You should see the userInfo dictionary in the Console

window when you launch applications. For example, when I launch

iCal, I see this in my Console:

{

NSApplicationBundleIdentifier = "com.apple.iCal";

NSApplicationName = iCal;

NSApplicationPath = "/Applications/iCal.app";

NSApplicationProcessIdentifier = 7130;

NSApplicationProcessSerialNumberHigh = 0;

NSApplicationProcessSerialNumberLow = 987377;

NSWorkspaceApplicationKey = "<NSRunningApplication:

0x200019ae0 (com.apple.iCal - 7130)>";

}

You can see the name of the application and its location on the disk.

You can see its bundle identifier and other identifiers. We’ll start by

pulling out the name.

13.2 Reading from a Dictionary

There are many ways to read from a dictionary. You can use a key

enumerator to move through the dictionary entries in order and pick

out values. You can get an array of all the keys or all the values. We’ll

use the objectForKey: method:

[notification.userInfo objectForKey:@"NSApplicationName"]

Now when we click Build & Run, we’ll log the name of the applications

that are launched to the Console window. That’s all there is to reading

from a dictionary.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication11/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=214

EXERCISE: DISPLAYING THE NAME 215

13.3 Exercise: Displaying the Name

Add a property named name of type NSString to CurrentApp. Set the value

of name property when you receive a notification by reading it from the

userInfo dictionary. Your application window should look something like

this:

In other words, when you update the text field, the message should read

“Launched: iCal” or “Terminated: iCal,” respectively, when you start or

quit iCal.

13.4 Solution: Displaying the Name

Add the name instance variable and property to the header file. Specify

the memory model as copy because NSString conforms to the NSCopying

protocol.

Download Dictionaries/HelloApplication13/CurrentApp.h

#import <Cocoa/Cocoa.h>

#import "ActivityMonitorDelegate.h"

@interface CurrentApp : NSObject {

NSObject <ActivityMonitorDelegate> *delegate;

NSString *name;

}

@property IBOutlet NSObject <ActivityMonitorDelegate> *delegate;

@property(copy) NSString *name;

@end

Set the name in the applicationDidLaunch: and applicationDidTerminate:

methods in CurrentApp.m:

Download Dictionaries/HelloApplication13/CurrentApp.m

-(void) applicationDidLaunch: (NSNotification *) notification {

self.name = [notification.userInfo objectForKey:@"NSApplicationName"];

[self.delegate applicationDidLaunch:self];

}

-(void) applicationDidTerminate: (NSNotification *) notification {

self.name = [notification.userInfo objectForKey:@"NSApplicationName"];

[self.delegate applicationDidTerminate:self];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication13/CurrentApp.h
http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication13/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=215

REDUCING REDUNDANCY 216

The objectForKey: lets us read a particular entry from the dictionary.

We pass in the key NSApplicationName and get back the name of the

launching or terminating application as an NSString.

Use the fact that the app is passed in as a parameter to the applica-

tionDidLaunch: and applicationDidTerminate: methods to create formatted

strings in ActivityController.m to enhance the output.

Download Dictionaries/HelloApplication13/ActivityController.m

#import "ActivityController.h"

#import "CurrentApp.h"

@implementation ActivityController

@synthesize activityDisplay;

-(void) applicationDidLaunch: (CurrentApp *) app {

[self.activityDisplay setStringValue:

[NSString stringWithFormat:@"Launched: %@", app.name]];

}

-(void) applicationDidTerminate: (CurrentApp *) app {

[self.activityDisplay setStringValue:

[NSString stringWithFormat:@"Terminated: %@", app.name]];

}

@end

13.5 Reducing Redundancy

The two applicationDidXxx: method implementations in CurrentApp are

nearly identical. In each case, I’ve reinserted the check that the delegate

does respond to our selector to guard against passing a method name

in that isn’t implemented.

if ([self.delegate

respondsToSelector:@selector(applicationDidXxx:)]) {

self.name = [notification.userInfo objectForKey:@"NSApplicationName"];

[self.delegate applicationDidXxx:self];

}

We just need a way of making sure that Xxx is Launch in one case and Ter-

minate in the other. We could pass the notification on to a utility method

and choose the method to call based on the name of the notification like

this:

Download Dictionaries/HelloApplication14/CurrentApp.m

-(void) respondToChange:(NSNotification *) notification {

SEL methodName;

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication13/ActivityController.m
http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication14/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=216

REDUCING REDUNDANCY 217

if (notification.name == NSWorkspaceDidLaunchApplicationNotification) {

methodName = @selector(applicationDidLaunch:);

} else {

methodName = @selector(applicationDidTerminate:);

}

if ([self.delegate respondsToSelector:methodName]) {

self.name = [notification.userInfo objectForKey:@"NSApplicationName"];

[self.delegate performSelector:methodName withObject:self];

}

}

-(void) applicationDidLaunch: (NSNotification *) notification {

[self respondToChange:notification];

}

-(void) applicationDidTerminate: (NSNotification *) notification {

[self respondToChange:notification];

}

This is much nicer.2 We’ve captured the common behavior in the

respondToChange: method. We start by setting the method name to appli-

cationDidLaunch: or applicationDidTerminate: based on the value of notifi-

cation.name.

One difference is the way in which we call the method and pass self in

as a parameter. When we have the method name, we could make a call

like this:

[self.delegate applicationDidLaunch:self]

Now we need to use performSelector:withObject::

[self.delegate performSelector:methodName withObject:self];

I’m happy that we’ve eliminated the repeated code, but I’m bothered

by the if statement. Control statements like if, for, case, and so on, are

not necessarily bad, but you should consider whether there might be a

more direct path through your code.

In our simple case, there are many ways of eliminating the if. I’m going

to show you a technique that uses dictionaries.

2. As one reviewer noted, we could eliminate the applicationDidLaunch: and application-

DidTerminate: methods altogether at this point and eliminate redundancy further. Unfor-

tunately, we’d have to add them back in just a few sections, so I’m leaving them in.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=217

USING A DICTIONARY FOR FLOW CONTROL 218

13.6 Using a Dictionary for Flow Control

Let’s take another look at that if statement:

Download Dictionaries/HelloApplication14/CurrentApp.m

if (notification.name == NSWorkspaceDidLaunchApplicationNotification) {

methodName = @selector(applicationDidLaunch:);

} else {

methodName = @selector(applicationDidTerminate:);

}

Let’s create a dictionary that has the notification names as the keys

and the names of the methods as values. Then we can replace the if

statement with this:

Download Dictionaries/HelloApplication15/CurrentApp.m

SEL methodName = NSSelectorFromString(

[delegateMethods objectForKey:[notification name]]);

There’s no decision to make. We just pull the method name from the

dictionary.

We need to declare an instance variable named delegateMethods of type

NSDictionary in CurrentApp.h. We don’t need it to be a property. We’ll

initialize it like this:3

Download Dictionaries/HelloApplication15/CurrentApp.m

-(void) initializeMethodDictionary {

delegateMethods = [[NSDictionary alloc] initWithObjectsAndKeys:

@"applicationDidLaunch:",

NSWorkspaceDidLaunchApplicationNotification,

@"applicationDidTerminate:",

NSWorkspaceDidTerminateApplicationNotification,

nil];

}

We pass in the key-value pairs as a comma-separated nil-terminated

list. In each pair, we pass in the value first followed by the key. We

store the method names as NSStrings because the values we put into our

dictionary must be objects.

13.7 Adding and Removing Entries with a Mutable Dictionary

There are times when you want to add an entry to the dictionary or

remove one or more entries from the dictionary. You can’t make these

3. Add a call to initializeMethodDictionary to the end of the init method.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication14/CurrentApp.m
http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication15/CurrentApp.m
http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication15/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=218

ADDING AND REMOVING ENTRIES WITH A MUTABLE DICTIONARY 219

changes to an NSDictionary because it is immutable. Instead, you have

to use the NSMutableDictionary. This is the subclass of NSDictionary that

allows such changes.

By now you have probably found it frustrating that the Apple documen-

tation for a class doesn’t at least list all of the methods that are available

for objects of a particular type. The documentation contains in-depth

descriptions of methods defined for that class but doesn’t show you the

methods that are inherited from superclasses. You have to follow the

documentation up the tree to find that a particular method is defined

several levels up (often in a class you would never have thought to

look at).4

This general inconvenience can sometimes be a benefit. For example, if

you look at the documentation for NSMutableDictionary, you can quickly

see how it differs from NSDictionary. Only the additional methods are

listed. There are methods for creating a mutable dictionary that allow

you to specify the initial capacity of the dictionary.5 There are addi-

tional methods for adding entries to and removing entries from a muta-

ble dictionary. In every other way, an NSMutableDictionary is just an

NSDictionary, so all of those methods in the superclass are available to

us in the NSMutableDictionary as well.

So, let’s play with the NSMutableDictionary a bit. First declare an instance

variable named runningApps in CurrentApp.h.

Download Dictionaries/HelloApplication16/CurrentApp.h

#import <Cocoa/Cocoa.h>

#import "ActivityMonitorDelegate.h"

@interface CurrentApp : NSObject {

NSObject <ActivityMonitorDelegate> *delegate;

NSString *name;

NSDictionary *delegateMethods;

NSMutableDictionary *runningApps;

}

@property IBOutlet NSObject <ActivityMonitorDelegate> *delegate;

@property(copy) NSString *name;

@end

4. You can always press Escape after typing the name of your target and a space to see

all of the methods available to you. Use this in conjunction with Quick Help to quickly

understand what each method does.
5. As the dictionary grows, more memory will be allocated to it as needed.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication16/CurrentApp.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=219

ADDING AND REMOVING ENTRIES WITH A MUTABLE DICTIONARY 220

We create our mutable dictionary in the init method. Use the setOb-

ject:forKey method to add a new entry to the dictionary that has the

application’s name as a key and a time stamp as its value whenever an

application is launched.6

[runningApps setObject:[NSDate date] forKey:appName];

In place of appName, we’ll need to retrieve the name of the application

from the userInfo dictionary for our notification. Similarly, we’ll use the

removeObjectForKey: method whenever an application is terminated to

remove the entry with the key equal to the name of the application that

is terminated.

[runningApps removeObjectForKey: appName];

Let’s add logging to display the value of the runningApps variable at the

end of the respondToChange: method. When I run the application and

start up iCal, I see this in my Console window:

HelloApplication = "2009-10-03 10:45:36 -0400";

iCal = "2009-10-03 10:45:39 -0400";

For completeness, here is CurrentApp.m:

Download Dictionaries/HelloApplication16/CurrentApp.m

#import "CurrentApp.h"

@implementation CurrentApp

@synthesize delegate, name;

-(void) respondToChange:(NSNotification *) notification {

SEL methodName = NSSelectorFromString(

[delegateMethods objectForKey:[notification name]]);

if ([self.delegate respondsToSelector:methodName]) {

self.name = [notification.userInfo objectForKey:@"NSApplicationName"];

[self.delegate performSelector:methodName withObject:self];

}

NSLog(@"%@", runningApps);

}

-(void) applicationDidLaunch: (NSNotification *) notification {

[runningApps setObject:[NSDate date]

forKey:[notification.userInfo

objectForKey:@"NSApplicationName"]];

[self respondToChange:notification];

}

6. There’s no real reason for doing this other than to show that we can add and remove

entries to/from our dictionary.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication16/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=220

EXERCISE: ADDING AN ICON 221

-(void) applicationDidTerminate: (NSNotification *) notification {

[runningApps removeObjectForKey:[notification.userInfo

objectForKey:@"NSApplicationName"]];

[self respondToChange:notification];

}

-(void)setUpNotification:(NSString *)notification withSelector:(SEL)methodName {

[[[NSWorkspace sharedWorkspace] notificationCenter]

addObserver:self

selector:methodName

name:notification

object:nil];

}

-(void) registerNotifications {

[self setUpNotification:NSWorkspaceDidLaunchApplicationNotification

withSelector:@selector(applicationDidLaunch:)];

[self setUpNotification:NSWorkspaceDidTerminateApplicationNotification

withSelector:@selector(applicationDidTerminate:)];

}

-(void) initializeMethodDictionary {

delegateMethods = [[NSDictionary alloc] initWithObjectsAndKeys:

@"applicationDidLaunch:",

NSWorkspaceDidLaunchApplicationNotification,

@"applicationDidTerminate:",

NSWorkspaceDidTerminateApplicationNotification,

nil];

}

-(id) init {

if (self = [super init]) {

[self registerNotifications];

[self initializeMethodDictionary];

runningApps = [[NSMutableDictionary alloc] initWithCapacity:5];

}

return self;

}

@end

Before moving on, remove all of the lines that I highlighted in the previ-

ous code listings of the header and implementation files for CurrentApp.

They don’t do any harm, but they clutter up the example a bit, and now

that you know how to create and work with a mutable dictionary, we

don’t need to keep them around.

13.8 Exercise: Adding an Icon

Now that we’ve tidied up our code, let’s use the userInfo dictionary to

add another feature to HelloApplication. Let’s display the icon of the

application being launched or terminated.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=221
Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

EXERCISE: ADDING AN ICON 222

So, for example, when we quit iCal, our display should look something

like this:

We can accomplish this change by adding an outlet to the ActivityCon-

troller header file, by adding a corresponding GUI element in Interface

Builder, and by reshaping our code. As is often the case with Cocoa

programming, it can take a while to figure out how to accomplish this

third step. Let’s take care of the easier steps first.

In Xcode, add an outlet named imageView to the header file ActivityCon-

troller.h. The outlet should be a pointer to an NSImageView.

In Interface Builder, find an NSImageView described as an image well

in the Library, and drag it into your window. Adjust the window, text

field, and image well so that they look like the picture you saw at the

beginning of this section.

Adjust the size settings so that the user can adjust the size of the win-

dow only in the horizontal direction. When the window grows, the image

well should stay where it is, and the text field should grow so that it

remains the same distance from the left and right sides.

Before leaving Interface Builder, connect the imageView outlet you cre-

ated in your header file to the image well. Save your work.

We’ll take advantage of a new class that was added in Snow Leopard.

NSRunningApplication lets you send messages and get information about

a currently running user application. Look back at the last entry we

saw when we displayed the userInfo dictionary in the Console window:

NSWorkspaceApplicationKey = "<NSRunningApplication:

0x200019ae0 (com.apple.iCal - 7130)>";

The NSRunningApplication has the following properties:

activationPolicy

active

bundleIdentifier

bundleURL

executableArchitecture

executableURL

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=222

SOLUTION: ADDING AN ICON 223

finishedLaunching

hidden

icon

launchDate

localizedName

processIdentifier

terminated

All the information that is contained in the rest of the userInfo dictionary

and more is contained in the instance of the NSRunningApplication with

the key NSWorkspaceApplicationKey.

Because you are developing in Snow Leopard, you can rearchitect your

application to use NSRunningApplication wherever possible. Instead of

retrieving and storing the application name from the userInfo dictionary,

we can retrieve and store the running application. And instead of pass-

ing an instance of CurrentApp to our delegate methods, we can pass the

running application and use it to display the name and the icon.7

Take a few minutes to try to get this to work before moving on to read

a solution.

13.9 Solution: Adding an Icon

Your header file should look like this:

Download Dictionaries/HelloApplication17/ActivityController.h

#import <Cocoa/Cocoa.h>

#import "ActivityMonitorDelegate.h"

@interface ActivityController : NSObject <ActivityMonitorDelegate> {

NSTextField *activityDisplay;

NSImageView *imageView;

}

@property IBOutlet NSTextField *activityDisplay;

@property IBOutlet NSImageView *imageView;

@end

In Interface Builder, you should have had no problem adding your

image well and using the blue guidelines to arrange the image well and

text field inside the window. You should have used the Size inspector to

set the minimum and maximum size of the window. If the height is the

same for the minimum and maximum sizes, your end user can adjust

7. There was no need for this overhead when we just needed the name of the application.

Now it makes sense to use the NSRunningApplication instance we retrieve from the userInfo

dictionary.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication17/ActivityController.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=223

SOLUTION: ADDING AN ICON 224

the size of the window horizontally only. You also should have used the

Size inspector on the image well and text field so that they look right as

the window is resized.

As for the code, let’s start at the end. If we pass the NSRunningApplication

as the parameter of the ActivityController’s methods applicationDidLaunch:

and applicationDidTerminate:, then we can retrieve the application name

and icon from it like this:8

Download Dictionaries/HelloApplication17/ActivityController.m

#import "ActivityController.h"

@implementation ActivityController

@synthesize activityDisplay,imageView;

-(void) applicationDidLaunch: (NSRunningApplication *) app {

[self.activityDisplay setStringValue:

[NSString stringWithFormat:@"Launched: %@", app.localizedName]];

[self.imageView setImage:app.icon];

}

-(void) applicationDidTerminate: (NSRunningApplication *) app {

[self.activityDisplay setStringValue:

[NSString stringWithFormat:@"Terminated: %@", app.localizedName]];

[self.imageView setImage:app.icon];

}

@end

We can eliminate the redundancy by introducing a utility method dis-

playAction:forApplication::

Download Dictionaries/HelloApplication18/ActivityController.m

#import "ActivityController.h"

@implementation ActivityController

@synthesize activityDisplay,imageView;

-(void) displayAction:(NSString *) action

forApplication:(NSRunningApplication *) app {

[self.activityDisplay setStringValue:

[NSString stringWithFormat:@"%@: %@",action, app.localizedName]];

[self.imageView setImage:app.icon];

}

8. It feels a bit strange to refer to the terminating application as a running applica-

tion, but it is the NSRunningApplication instance in the userInfo dictionary included in the

notification we receive.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication17/ActivityController.m
http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication18/ActivityController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=224

SOLUTION: ADDING AN ICON 225

-(void) applicationDidLaunch: (NSRunningApplication *) app {

[self displayAction:@"Launched" forApplication:app];

}

-(void) applicationDidTerminate: (NSRunningApplication *) app {

[self displayAction:@"Terminated" forApplication:app];

}

@end

The signature of our delegate methods has changed, so we have to

update the protocol to match:

Download Dictionaries/HelloApplication18/ActivityMonitorDelegate.h

@protocol ActivityMonitorDelegate

-(void)applicationDidLaunch: (NSRunningApplication *) app;

-(void)applicationDidTerminate: (NSRunningApplication *) app;

@end

Another advantage of using the NSRunningApplication object is that we

can remove the import and forward declarations of the CurrentApp class.

In CurrentApp.h, we replace the name property with a property named

app of type NSRunningApplication:

Download Dictionaries/HelloApplication18/CurrentApp.h

#import <Cocoa/Cocoa.h>

#import "ActivityMonitorDelegate.h"

@interface CurrentApp : NSObject {

NSObject <ActivityMonitorDelegate> *delegate;

NSRunningApplication *app;

NSDictionary *delegateMethods;

}

@property IBOutlet NSObject <ActivityMonitorDelegate> *delegate;

@property NSRunningApplication *app;

@end

Lastly, we synthesize the app property, set its value from the userInfo

dictionary, and pass it in as our parameter when we call the delegate

methods:

Download Dictionaries/HelloApplication18/CurrentApp.m

@synthesize delegate, app;

-(void) respondToChange:(NSNotification *) notification {

SEL methodName = NSSelectorFromString(

[delegateMethods objectForKey:[notification name]]);

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication18/ActivityMonitorDelegate.h
http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication18/CurrentApp.h
http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication18/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=225

SOLUTION: ADDING AN ICON 226

if ([self.delegate respondsToSelector:methodName]) {

self.app = [notification.userInfo

objectForKey:@"NSWorkspaceApplicationKey"];

[self.delegate performSelector:methodName withObject:self.app];

}

}

You should notice a certain similarity between pulling objects out of

dictionaries using their keys and accessing an object’s properties. We’ll

return to this theme later.

You can now use a dictionary to pull information out of the notification

you receive every time an application launches or terminates. You used

this information to send text and images to standard GUI widgets. In

the next chapter, you’ll see how to create a custom view to display this

information with more flexibility.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=226

Chapter 14

Multiple Nibs
So far in our desktop app, everything is in a single nib. In this chapter,

we’re going to break the nib up into first two and then three pieces.

Although we didn’t worry much about it, we had two nibs files when we

created our iPhone web browser. One contained our window and the

view controller, and the other contained the view that the view controller

controlled.

The purpose of this chapter is to show you how to work with multiple

nib files. Just as you split methods or classes when they get to the point

where they do too much, you’ll learn to break nibs into smaller, easy-

to-describe collections of objects. Just like objects and methods, when

you split them into smaller pieces, you will often need to communicate

among the pieces. That’s the job of the File’s Owner. By the end of this

chapter, you’ll understand how File’s Owner works as well.

14.1 Methods, Objects, and Nibs

A nib is one of the organization levels for your project. A nib is a collec-

tion of objects and their connections to each other.

Zooming in, each object is a cohesive collection of functionality. An

object might include variables, properties, functions, and methods. Of

course, this means that objects are state plus behavior, but I like to

think of objects in terms of what they can do. This means that to me

an object is characterized by its methods.

Methods are the smallest organizational level that I want to think of

right now. We create a method when we want to accomplish a task

METHODS, OBJECTS, AND NIBS 228

or implement an action or perform a calculation. Methods that belong

together are collected in a class. Objects are instances of these classes.

We often collect objects that need to communicate with each other in a

nib file.

In other words, a nib is a cohesive collection of objects, their initial

state, and their connections to each other in the same way that an

object is a collection of variables, their initial state, and the messages

the object understands. Over the next few chapters, I will help you see

that one nib is seldom enough for your application any more than a

single object is.

Before we start splitting this nib into smaller pieces, let’s consider the

advantages and disadvantages that you’ve seen when refactoring meth-

ods or classes. Shorter methods can be more easily described, and what

they do is more easily understood. For example, when we create a new

instance of CurrentApp, we currently do this:

Download Dictionaries/HelloApplication18/CurrentApp.m

-(id) init {

if (self = [super init]) {

[self registerNotifications];

[self initializeMethodDictionary];

}

return self;

}

Our customization is to register the notifications for this object and

to initialize the method dictionary. This method reads like prose. The

registerNotifications method looks like this:

Download Dictionaries/HelloApplication18/CurrentApp.m

-(void) registerNotifications {

[self setUpNotification:NSWorkspaceDidLaunchApplicationNotification

withSelector:@selector(applicationDidLaunch:)];

[self setUpNotification:NSWorkspaceDidTerminateApplicationNotification

withSelector:@selector(applicationDidTerminate:)];

}

Again, once you’ve wrapped your head around Objective-C syntax, this

reads clearly. It says that we are setting up the “did launch” applica-

tion notification with the callback method applicationDidLaunch: and the

“did terminate” application notification with the callback method appli-

cationDidTerminate:. How we actually do that is captured in the setUpNo-

tification:withSelector: method.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication18/CurrentApp.m
http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication18/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=228

SPLITTING NIBS 229

Download Dictionaries/HelloApplication18/CurrentApp.m

-(void)setUpNotification:(NSString *)notification withSelector:(SEL)methodName {

[[[NSWorkspace sharedWorkspace] notificationCenter]

addObserver:self

selector:methodName

name:notification

object:nil];

}

This method is just a wrapper around a call to the shared workspace’s

notification center to register our notification.

Breaking down the process into these smaller pieces makes each piece

easier to understand. We understand immediately what is being done

in the init method even though we don’t have all the details of how. We

could have written one long init method that replaced each piece with

the code that it calls. There would be no need to make up new names

for our own methods and pass information around. Everything would

have been in one location.

The same tension applies when we design classes and objects. We’ve

isolated the model behavior in CurrentApp and the controller behav-

ior in ActivityController. Each piece is now easier to understand, but we

spent the past three chapters exploring different ways to communicate

between them. We could have combined them into one harder to under-

stand object that might have been easier to implement.

In this case, I chose to separate them because I get flexibility I wouldn’t

otherwise have. I’m going to be able to use this same model for an

entirely different controller and view without rewriting a line of code

in CurrentApp.m. Later when I need to make further adjustments to the

code, I will know whether the change needs to be to the model or the

controller. In other words, in this case the simplicity of the objects is

more important than the difficulty of communicating between them.

14.2 Splitting Nibs

We have a single nib file named MainMenu.xib that contains a lot of

objects.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dictionaries/HelloApplication18/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=229

SPLITTING NIBS 230

MainMenu

Main Menu

Window

View

Text Field

Image Well

Activity Controller

Current App

NSApplication

App Delegate

The ActivityController is a bridge between two worlds. It needs to commu-

nicate with the components of the view to display the icon in the image

well and a message in the text field. We’ll put these components into

one nib. The ActivityController object also needs to communicate with

the model. We’re going to split the nib into these two pieces with the

same instance of the ActivityController living in each:

MainMenu

Main Menu

Window

Activity Controller

Current App

NSApplication

ActivityView

View

Text Field

Image Well

Activity Controller

NSApplicationApp Delegate

The ActivityView is a cohesive collection of objects. It’s the components of

the view along with the view controller. The MainMenu.xib can be further

split to move the NSWindow into its own nib. We’ll need to introduce a

window controller to manage our window the same way we use a view

controller to manage our view.

MainMenu MainWindow

Main Menu

NSApplication

ActivityView

View

Text Field

Image Well

Activity Controller

NSApplication

App Delegate

Window Controller

Window

NSApplication

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=230

PREPARING TO SPLIT OUT THE VIEW 231

The object I’ve positioned at the top of each nib is the File’s Owner.

You’ll soon see that the File’s Owner is the object that will connect the

new nib file to the rest of the application. So, we’ve broken our single

nib into three smaller pieces that are connected via their File’s Owners.

Let’s start splitting off our first nib.

14.3 Preparing to Split Out the View

Let’s start by splitting out the view. The whole key to this operation is

the view controller. We’re going to move the text field and the image

well that the view controller controls into a new nib that contains a

view. We’ll add this view to the window, but we’re not going to move the

window, the model, or the app delegate. Here are the ActivityController’s

current connections:

Notice that our ActivityController is connected to four objects that will

soon be contained in two different nibs. The trick is to make sure that

the same instance of ActivityController will be able to communicate with

both nibs. We’ll create the ActivityController in the MainMenu nib and use

it as our File’s Owner in our new nib. One of my goals in this exercise

is to help you understand the role of the File’s Owner.

We’ve been using the ActivityController as a view controller, but so far it

hasn’t extended the NSViewController class. Let’s fix that by changing the

superclass in the ActivityController header file:

Download MultipleNibs/HelloApplication19/ActivityController.h

@interface ActivityController : NSViewController <ActivityMonitorDelegate> {

Now if you check out the ActivityController’s outlets in the Connections

inspector, you’ll see a new view outlet. We’ll use that in the next section

when we split this nib in two.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/MultipleNibs/HelloApplication19/ActivityController.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=231

CREATING THE VIEW NIB 232

14.4 Creating the View Nib

Next, create the new nib file. This will hold our text field and image well.

Select the Resources folder in Groups & Files, and create a new file. This

time choose Mac OS X > User Interface > View XIB.

Name the nib file ActivityView.xib, and click the Finish button.

Now we’re going to do some surgery. We’re going to move two elements

from the MainMenu nib to the ActivityView nib. Look inside the Main-

Menu.xib’s Document window, and find your text field and image well.

Drag these two items from MainMenu.xib into ActivityView.xib, and posi-

tion them so that they are children of the custom view.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=232

INTEGRATING A NIB FILE 233

Delete them from the MainMenu.xib. Back in ActivityView.xib, double-click

Custom View, reposition the image well and text field, and resize the

custom view.

We have a few more steps to connect everything back up. First, let’s

take some time to better understand the nib and the File’s Owner.

14.5 Integrating a Nib File

Remember that a nib is a frozen graph of objects. For the nib files that

you will create and bring to life, there will need to be an object that

sends the message to load the nib file, and there needs to be an object

that is responsible for connecting the objects in the nib file to objects in

the already running application. There is no formal name for this first

role. Any object can send the message to load the nib file. The object

that is responsible for connecting the nib to the running application is

called the File’s Owner.

Every nib needs an object called the File’s Owner. This object must

exist before the nib is loaded. In fact, as you’ll see in the examples

in this chapter, the File’s Owner can also be the object that loads the

nib. With the MainMenu nib the File’s Owner is the application object.

It is instantiated before the nib is loaded. At some point, our new Activ-

ityView nib will be loaded. We’re going to set its File’s Owner to be the

ActivityController object created in the MainMenu nib.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=233

INTEGRATING A NIB FILE 234

To understand the role of the File’s Owner, imagine there’s a party that

you and a group of your friends want to attend. You have no idea where

the party is, and you don’t know anyone there. A voice on the phone

tells you to just to hang out and wait until someone comes to get you.

You’ll be taken to the party and be introduced to your Connection.

“How will I know this Connection?” you ask.

“You’ll recognize the type,” you’re told.

And so you and your friends hang out much like a graph of objects

frozen in a nib file. Hours pass. While you hang out in your nib, the

application is like the party going on without you. At the party there

are objects interacting and sending messages back and forth.

There’s a knock at the door. You and your friends stretch and start

chatting among yourselves. The door bursts open.

“C’mon,” says a gruff voice, “all of you get in the car.” Ahhh, this is the

object whose job it is to load the nib.

You arrive at the party and get out of the car. You and your friends

look around feeling lost. You look back at the driver, and he points to

a man dressed in black. It’s the guy. You’ve never met him before, but

the voice on the phone was right. You do recognize the type. It’s your

connection—your File’s Owner. He shows you and your group around

and helps make introductions.

Alternate Ending

You arrive at the party and get out of the car. You and your friends look

around feeling lost. You look back at the driver. He smiles back at you

in a quirky way, and you realize he’s the guy. The voice on the phone

was right. Now that you’re taking a good look you do recognize the type.

It’s your connection—your File’s Owner. He shows you and your group

around and helps make introductions.

Why are there two endings? In the first ending, the File’s Owner is

different from the object that loads the nib, and in the second ending,

they are the same object. In both cases, the nib knows what type to

expect, but it is up to the object that loads the nib to point out the

object of that type who is actually the File’s Owner.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=234

THE FILE’S OWNER 235

14.6 The File’s Owner

One advantage of having small focused nib files like ActivityView.xib is

that we can choose a File’s Owner that better fits. Here the nib file is

currently the view that we’ll be displaying in the main window, so our

File’s Owner will be in charge of managing the view and its contents.

The natural choice for the File’s Owner is the ActivityController object we

created in MainMenu.xib.

To set the File’s Owner, select File’s Owner in the ActivityView.xib’s Doc-

ument window. Use the Identity inspector to change the class name of

the File’s Owner to ActivityController, and save your work.

Let’s connect up the ActivityController. There are five possible connec-

tions. The two reference outlets are connected in MainMenu.xib.

We need to connect the three outlets in ActivityView.xib. Connect the view

outlet to the Custom View, the imageView outlet to the NSImageView, and

the activityDisplay outlet to the NSTextView.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=235

EXERCISE: LOADING THE VIEW 236

Your ActivityController object has a foot in both nibs so you can make

some of the connections in the first nib and other connections in the

second nib. The ActivityController object is the link between these two

worlds.

I want to stress an important point here. The File’s Owner ActivityCon-

troller is a proxy to the ActivityController instance you created in the Main-

Menu nib. It is the same object.

If instead you had dragged an ActivityController into the ActivityView nib,

you would have been creating a new instance of the ActivityController.

These would have been two separate objects, so the connections in one

nib and the connections in the other nib would not have helped com-

municate at all.

14.7 Exercise: Loading the View

Click Build & Run, and the code should compile, build, and run, and

an empty window should appear.

We need to fix this. Which object can communicate with the window

and the view controller? Use that object to set the window’s content

view to be the view controller’s view. We could do this in IB, but let’s do

it in code.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=236

SOLUTION: LOADING THE VIEW 237

You’ll know you’ve gotten it right when you click Build & Run and the

text field and image well are visible again and filled in.

14.8 Solution: Loading the View

Your application delegate is the object with properties for the window

and the view controller. All you need to do is import the ActivityController

header file and set the content view to be the view controller’s view like

this:

Download MultipleNibs/HelloApplication19/HelloApplicationAppDelegate.m

#import "HelloApplicationAppDelegate.h"

#import "ActivityController.h"

@implementation HelloApplicationAppDelegate

@synthesize window, ac, currentApp;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

self.window.contentView = ac.view;

}

@end

Click Build & Run, and our application should run just as it did at the

end of the previous chapter.1

14.9 Creating the Window Nib

We’re going to split the MainMenu nib into two pieces again. We’ll cre-

ate a new nib that contains the window. Let’s create a window con-

troller that we can use as the File’s Owner. In Xcode, select the Classes

folder in Groups & Files, create a new file of type Mac OS X > Cocoa

Class > Objective-C Class, and use the drop-down list to select NSWindow-

Controller. Name your class MyWindowController.

1. There were a lot of steps used to create and use the new nib. Remember, you can look

at the downloadable code to compare this version with the previous one.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/MultipleNibs/HelloApplication19/HelloApplicationAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=237

CREATING THE WINDOW NIB 238

Now select the Resources folder, and create a new file using the Mac OS

X > User Interface > Window XIB template. Name the nib MainWindow.xib.

Use the Identity inspector to change the type of the File’s Owner to

MyWindowController.

Use the Attributes inspector to change the window’s title to Hello Appli-

cation. Connect your File’s Owner’s window outlet to your window, and

save your work. We’ll come back to this nib in a little bit, but first let’s

back up and clean out the MainMenu nib.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=238

LOADING THE WINDOW NIB 239

14.10 Loading the Window Nib

Open MainMenu.xib. Delete the CurrentApp object, the ActivityController

object, and the NSWindow object along with the ContentView inside of it.

There’s not much left—just the app delegate, the menu, and a couple

of stock items.

The app delegate no longer has a connection to the model, the window,

or the view controller. We’ll figure out where to reconnect all of these

objects in a bit. Right now we can clear out the header file for our app

delegate:

Download MultipleNibs/HelloApplication20/HelloApplicationAppDelegate.h

#import <Cocoa/Cocoa.h>

@interface HelloApplicationAppDelegate : NSObject <NSApplicationDelegate> {

}

@end

In the implementation file, we’ll instantiate the window controller and

load its nib file:

Download MultipleNibs/HelloApplication20/HelloApplicationAppDelegate.m

#import "HelloApplicationAppDelegate.h"

#import "MyWindowController.h"

@implementation HelloApplicationAppDelegate

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

[[MyWindowController alloc] initWithWindowNibName:@"MainWindow"];

}

@end

The initWithWindowNibName: takes the name of the nib as an NSString.

This means there can’t be any compile-time checking that you’ve typed

the name correctly. You type in the name of the nib but not the suffix

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/MultipleNibs/HelloApplication20/HelloApplicationAppDelegate.h
http://media.pragprog.com/titles/dscpq/code/MultipleNibs/HelloApplication20/HelloApplicationAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=239

PRESENTING THE WINDOW 240

(.nib or .xib). If you click Build & Run, your app will compile, build, and

launch, but the application’s window won’t appear. Let’s fix that next.

14.11 Presenting the Window

Override the initWithWindowNibName: method in MyWindowController.m.

Click Build & Run, and you will now see your application window once

the app launches. We still have some work to do to connect the view and

the model so that we see the applications as they launch and terminate.

Download MultipleNibs/HelloApplication20/MyWindowController.m

#import "MyWindowController.h"

@implementation MyWindowController

-(id) initWithWindowNibName:(NSString *)windowNibName {

if (self = [super initWithWindowNibName:windowNibName]) {

[self showWindow:self];

}

return self;

}

@end

14.12 Exercise: Connecting the View and the Model

You already know one way to connect the view and the model. You can

add an ActivityController and a CurrentApp object to MainWindow.xib, create

corresponding outlets in the window controller header file, and set the

window’s content view in the window controller implementation file.

We’re going to try a different approach. There really isn’t any need to

add the view controller and the model to our nib file, so we’re going

to do it all in code. This should feel a lot like what we just did when

creating the window controller and specifying the nib in code.

Add properties for the view controller and the model to MyWindowCon-

troller.h. In the implementation file, create your ActivityController object,

and initialize it using initWithNibName:bundle:. The nib name is Activi-

tyView, and you should pass in nil for the bundle. Create an instance

of CurrentApp as well, and set the ActivityController to be its delegate. Set

the window’s content view to be the ActivityController’s view. If you want,

see whether you can figure out how to resize the window to exactly fit

around your view.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/MultipleNibs/HelloApplication20/MyWindowController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=240

SOLUTION: CONNECTING THE VIEW AND THE MODEL 241

Click Build & Run. Don’t panic. It doesn’t look as if anything is happen-

ing. The window should launch, and you should see the image well and

the text field, but they will be empty. HelloApplication finished launch-

ing before your model registered to listen for notifications. Start up iCal,

and you’ll see the icon and message appear as expected. Try to fix this

problem so that the HelloApplication’s icon and launch method appear

when we start up.

14.13 Solution: Connecting the View and the Model

We added the properties to the header file:

Download MultipleNibs/HelloApplication21/MyWindowController.h

#import <Cocoa/Cocoa.h>

@class CurrentApp;

@class ActivityController;

@interface MyWindowController : NSWindowController {

CurrentApp *currentApp;

ActivityController *ac;

}

@property CurrentApp *currentApp;

@property ActivityController *ac;

@end

Let’s take a more careful look at the implementation file:

Download MultipleNibs/HelloApplication21/MyWindowController.m

Line 1 #import "MyWindowController.h"

- #import "ActivityController.h"

- #import "CurrentApp.h"

-

5 @implementation MyWindowController

-

- @synthesize ac, currentApp;

-

- -(void) setUpView {

10 self.ac = [[ActivityController alloc]

- initWithNibName:@"ActivityView" bundle:nil];

- self.currentApp = [[CurrentApp alloc] init];

- self.currentApp.delegate = self.ac;

- [self.window setContentSize:[self.ac.view bounds].size];

15 self.window.contentView = self.ac.view;

- [self.ac applicationDidLaunch:[NSRunningApplication currentApplication]];

- }

-

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/MultipleNibs/HelloApplication21/MyWindowController.h
http://media.pragprog.com/titles/dscpq/code/MultipleNibs/HelloApplication21/MyWindowController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=241

SOLUTION: CONNECTING THE VIEW AND THE MODEL 242

- -(id) initWithWindowNibName:(NSString *)windowNibName {

20 if (self = [super initWithWindowNibName:windowNibName]) {

- [self setUpView];

- [self showWindow:self];

- }

- return self;

25 }

- @end

• We instantiate the ActivityController and load the nib it will control

in lines 10 and 11.

• We instantiate the CurrentApp object on the next line and then set

the ActivityController to be its delegate.

• On line 14, we resize the window so that its content size exactly

matches the size of the view.

• Once its properly sized, we then set the content view to be replaced

by the view controller’s view.

• Finally on line 16, we initialize the view controller to use the icon

and app name for our HelloApplication app.

We now have three separate nibs that are cohesive and easy to under-

stand. The first, MainMenu.xib, consists of the app, the app delegate,

and the (unused) menu. The second nib is loaded, and its File’s Owner

is created by the app delegate. The second nib, MainWindow.xib, con-

tains the window and has the window controller as its File’s Owner.

The window controller loads the third nib and creates its File’s Owner—

the ActivityController along with the model. This third nib, ActivityView.xib,

contains the view and has the view controller as its File’s Owner.

There were a lot of steps in this chapter. The techniques are important.

Keep your eye on your nib files the same way you do on your classes.

When they get too big and lose focus, then consider splitting them.

There are two main reasons to split a nib file. First, you want to keep

them cohesive and single-purpose. Second, as you’ll see in Chapter 17,

Saving Data to Disk, on page 270, you can manage your memory better

by loading the nib when you need it and releasing the memory when

you aren’t using it.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=242

Chapter 15

Creating Custom Views
Until now, we’ve used Interface Builder to build our entire view. In

this chapter, we’re taking the first step toward a more complicated UI.

You’re going to have to supplement the information entered in Interface

Builder with code. You are going to subclass NSView to create your own

custom views.

We’ll start by drawing the launched or terminated application’s icon

into an NSimageView. Then we will create a custom view and learn how

to draw shapes and text on it. Finally, we’ll move your icon display onto

the custom view so that you will see how to draw images in a custom

view.

15.1 Creating a Custom View

Create a new view-based nib file to use for our drawing, and call it

IconView.xib. We’ll need a view controller for this nib, so create a new

NSObject named IconViewController. Change the header file so that it

extends NSViewController and implements the ActivityMonitorDelegate pro-

tocol.

Download CustomView/HelloApplication22/IconViewController.h

#import <Cocoa/Cocoa.h>

#import "ActivityMonitorDelegate.h"

@interface IconViewController :NSViewController <ActivityMonitorDelegate>{

}

@end

http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication22/IconViewController.h

CREATING A CUSTOM VIEW 244

The ActivityMonitorDelegate protocol has two required methods, so we

have to stub them out in IconViewController.m:

Download CustomView/HelloApplication22/IconViewController.m

#import "IconViewController.h"

@implementation IconViewController

-(void) applicationDidLaunch: (NSRunningApplication *) app {}

-(void) applicationDidTerminate: (NSRunningApplication *) app {}

@end

Now, here’s the part that’s different.

We’re going to create a custom class for the view. Create a new class of

type NSView, and name it IconView.1 We’ll spend much of this chapter

working with the IconView class, but first let’s set up the infrastructure

around it.

In IconView.xib, use the Identity inspector to change the File’s Owner’s

class to IconViewController and the view’s class to IconView. Use the Con-

nections inspector to connect the IconViewController’s view outlet to the

IconView. Also use the Size inspector to set the IconView’s width to be

216 and height to be 240. Save your work, and quit IB.

We also need to change MyWindowController to create an IconViewCon-

troller and load the IconView nib. In the MyWindowController header file,

we can just change all of the instances of ActivityController to IconView-

Controller.

1. Select the Objective-C class template, and use the drop-down list to find the NSView

option.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication22/IconViewController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=244

DRAWING SHAPES INTO A CUSTOM VIEW 245

Download CustomView/HelloApplication22/MyWindowController.h

#import <Cocoa/Cocoa.h>

@class CurrentApp;

@class IconViewController;

@interface MyWindowController : NSWindowController {

CurrentApp *currentApp;

IconViewController *ac;

}

@property CurrentApp *currentApp;

@property IconViewController *ac;

@end

The only two changes to the implementation are to add the import of

IconViewController.h and to change the line where we create the view

controller and load the nib to this:

Download CustomView/HelloApplication22/MyWindowController.m

self.ac = [[IconViewController alloc]

initWithNibName:@"IconView" bundle:nil];

Click Build & Run, and you should see an empty window proudly dis-

playing our new view. In a minute, we’ll fill this window with something.

15.2 Drawing Shapes into a Custom View

Before we draw shapes or text into a custom view, you need to under-

stand how an NSView draws itself. It’s different from what you’ve seen

so far.

In the previous chapter, when you drew an icon onto an image view,

you sent the message setImage: to an instance of NSImageView. Also,

when you wanted to display text in a text field, you sent the message

setStringValue: to an instance of NSTextField. This is probably a model you

are used to from other platforms. You call the various configuring and

drawing methods on the object you are drawing.

Drawing into an NSView is completely different. You set all of the param-

eters and instructions for the drawing inside the NSView’s drawRect:

method. You don’t call drawRect: directly. It will be called when your

view first needs to be drawn, and soon I’ll show you how you signal

that it needs to be called again to redraw a view.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication22/MyWindowController.h
http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication22/MyWindowController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=245

DRAWING SHAPES INTO A CUSTOM VIEW 246

For now, here’s how we would create a blue rectangle inside the view:

Download CustomView/HelloApplication23/IconView.m

#import "IconView.h"

@implementation IconView

- (void)drawRect:(NSRect)dirtyRect {

NSRect innerRect = NSMakeRect(18, 42, 180, 180);

[[NSColor blueColor] set];

[NSBezierPath fillRect:innerRect];

}

@end

At first this looks weird. You are sending the set message to the NSColor

object. It may seem at first that you should be telling the NSView to set

its color to blue. With views, you need to keep in mind that they draw

themselves. When they need to be redrawn, the focus is locked on the

view being drawn, its drawRect: method is called, and then the focus is

unlocked.

Here’s how you have to think about the drawing that goes on within

the drawRect: method. When you send set to [NSColor blueColor], you are

saying, “Blue crayon you are selected. Put yourself in my hand.” Then

in the next line when you fill in the rectangle, the blue crayon is in your

hand, so that’s what you use.

Suppose you now want to draw a black boundary around your blue

rectangle. If we use the same dimensions for the rectangle and choose

a stroke width of 12, our framed rectangle will look like this:

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication23/IconView.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=246

DRAWING SHAPES INTO A CUSTOM VIEW 247

Notice there’s more room below the rectangle than there is above it.

That’s because the coordinate system is anchored in the lower-left

corner of our view. The x-axis increases to the right, and the y-axis

increases from bottom to top. So, we’ve constructed a rectangle that

starts at the point (18, 42) with width and height 180. The stroke,

unless we specify otherwise, will straddle the line, so really the bottom-

left corner of the black frame is at the point (12, 36).

A lot of our work with graphics objects will feel more like C than Objec-

tive-C. For example, this NSRect is a struct that represents a rectangle.

It consists of two other structs: an NSPoint that is used to specify the

position of the rectangle and an NSSize that is used to specify the width

and height of the rectangle.

Also note that NSMakeRect() is a standard C function and not an Objec-

tive-C method. You’ll find these constructor functions for most of the

structs that you will use.

Once you’ve created your rectangle, you’ll use it for the blue fill and

for the black stroke. After you’ve finished filling in your blue rectangle,

you then say [[NSColor blackColor] set] and draw something different with

your black crayon. Instead of the fillRect:, this time you’ll use strokeRect:

to draw a black border around the blue rectangle.

Download CustomView/HelloApplication24/IconView.m

- (void)drawRect:(NSRect)dirtyRect {

NSRect innerRect = NSMakeRect(18, 42, 180, 180);

[[NSColor blueColor] set];

[NSBezierPath fillRect:innerRect];

[[NSColor blackColor] set];

[NSBezierPath setDefaultLineWidth:12];

[NSBezierPath strokeRect:innerRect];

}

Check out the documentation for NSBezierPath, and you can see that you

can use it to draw all sorts of shapes. We’ll stick with rectangles when

we create a custom view for HelloApplication.

So far, we’re drawing the rectangle only when the view is first instan-

tiated. Next let’s redraw the view whenever an application launches or

terminates.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication24/IconView.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=247

EXERCISE: CHANGING THE STROKE COLOR 248

15.3 Exercise: Changing the Stroke Color

I want you to draw a red frame when an application quits and a green

frame when one launches. Don’t bother filling in the rectangle.

Add a property named alertColor of type NSColor to your IconView. Change

the drawRect: code to set the pen color to the alertColor and stroke the

rectangle.

Implement the applicationDidLaunch: in the IconViewController to set the

IconView’s alertColor to green. The IconView instance is the IconViewCon-

troller’s view. Unfortunately, you need to cast the type of the variable

view to be an IconView in order to set the alertColor property.

There is one more step. You need to mark the IconView as dirty so that

it will be redrawn. You signal that the view needs to be redrawn by

sending it the following message:

[self.view setNeedsDisplay:YES]

Implement the applicationDidTerminate: method, and set the alertColor to

red. Click Build & Run. When the application finishes launching, you

should see a green frame. When you quit another application, the frame

should turn to red.

15.4 Solution: Changing the Stroke Color

When you add the alertColor property, you need to specify the memory

attribute as copy because NSColor conforms to the NSCopying protocol.

I’ve also added an NSRect named frameRect as an instance variable.

Download CustomView/HelloApplication25/IconView.h

#import <Cocoa/Cocoa.h>

@interface IconView : NSView {

NSColor *alertColor;

NSRect frameRect;

}

@property(copy) NSColor *alertColor;

@end

In the view’s implementation file, we send the set method to the alert-

Color and stroke the boundary of the rectangle. I’ve created the rectan-

gle and set the line width to 12 in awakeFromNib to avoid doing so every

time drawRect: is called.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication25/IconView.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=248

SOLUTION: CHANGING THE STROKE COLOR 249

Download CustomView/HelloApplication25/IconView.m

#import "IconView.h"

@implementation IconView

@synthesize alertColor;

- (void)drawRect:(NSRect)dirtyRect {

[self.alertColor set];

[NSBezierPath strokeRect:frameRect];

}

-(void) awakeFromNib {

frameRect = NSMakeRect(18, 42, 180, 180);

[NSBezierPath setDefaultLineWidth:12];

}

@end

In the IconViewController, we set the view’s frame color and tell the view

it needs to redraw itself.

Download CustomView/HelloApplication25/IconViewController.m

#import "IconViewController.h"

#import "IconView.h"

@implementation IconViewController

-(void) applicationDidLaunch: (NSRunningApplication *) app {

((IconView *)self.view).alertColor = [NSColor greenColor];

[self.view setNeedsDisplay:YES];

}

-(void) applicationDidTerminate: (NSRunningApplication *) app {

((IconView *)self.view).alertColor = [NSColor redColor];

[self.view setNeedsDisplay:YES];

}

@end

Of course, this sort of drawing can become arbitrarily complex. You

can build very complicated paths up from a small array of primitives

and adjust many drawing parameters as you did the line width and

color. When you’re ready for that, you should curl up with a good book

on Quartz. Two good ones are Programming with Quartz, 2D and PDF

Graphics in Mac OS X [GL06] and Quartz 2D graphics for Mac OS X

developers [Tho06].

Part of what makes MVC difficult to understand is that the controller

and the model or the controller and the view are often mixed. You’ll

even see some aspects of the controller mixed into what we think of as

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication25/IconView.m
http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication25/IconViewController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=249

DRAWING IMAGES 250

view components such as buttons. Here you can see a clean split in

responsibilities between the IconViewController and the IconView.

15.5 Drawing Images

We’re going to draw the application icon in a subview of our custom view

so that it appears inside our frame. This turns out to be surprisingly

straightforward. We’ll create an image view, size it, and set it to be a

subview of the custom view.

Download CustomView/HelloApplication26/IconView.m

-(void) awakeFromNib {

frameRect = NSMakeRect(18, 42, 180, 180);

[NSBezierPath setDefaultLineWidth:12];

imageRect = NSMakeRect(36, 66, 144, 144);

self.imageView = [[NSImageView alloc] initWithFrame:imageRect];

[self addSubview:self.imageView];

}

You can see that we need to declare a property named imageView and

an instance variable named imageRect.

Download CustomView/HelloApplication26/IconView.h

#import <Cocoa/Cocoa.h>

@interface IconView : NSView {

NSColor *alertColor;

NSRect frameRect;

NSRect imageRect;

NSImageView *imageView;

}

@property(copy) NSColor *alertColor;

@property NSImageView *imageView;

@end

As before, I’ve factored out the repeated code in our two delegate meth-

ods and added this highlighted line to set the contents of our imageView

property’s image to be the active application’s icon.

Download CustomView/HelloApplication26/IconViewController.m

#import "IconViewController.h"

#import "IconView.h"

@implementation IconViewController

-(void) displayColor:(NSColor *) color for:(NSRunningApplication *) app {

((IconView *)self.view).alertColor = color;

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication26/IconView.m
http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication26/IconView.h
http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication26/IconViewController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=250

DRAWING IMAGES 251

((IconView *)self.view).imageView.image = app.icon;

[self.view setNeedsDisplay:YES];

}

-(void) applicationDidLaunch: (NSRunningApplication *) app {

[self displayColor:[NSColor greenColor] for:app];

}

-(void) applicationDidTerminate: (NSRunningApplication *) app {

[self displayColor:[NSColor redColor] for:app];

}

@end

Unfortunately, the actual image is too small. When it comes time for

drawRect: to be called, the image will be redrawn at its default size. I’d

like it to fill most of the frame, so I’ve added a line to resize the image

to the drawRect: method.

Download CustomView/HelloApplication26/IconView.m

- (void)drawRect:(NSRect)dirtyRect {

[self.alertColor set];

[NSBezierPath strokeRect:frameRect];

[self.imageView.image setSize:imageRect.size];

}

Click Build & Run. As you launch and quit applications, you should

see something like this:

Step back a minute, and think about what you’ve done to draw an

image. You’ve instantiated a container for that image and set its location

and dimensions. You’ve then filled the container with the image. The

process is that straightforward.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication26/IconView.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=251

DRAWING TEXT 252

15.6 Drawing Text

You should use a text field or a text view when you are displaying a

lot of text. We aren’t. We are displaying a simple and short message,

so we can draw text into our custom view. This section shows you the

techniques you’ll use when you need to draw text into a custom view.

To draw a string into the custom view, we’ll send the message drawin-

Rect:withAttributes: to that string inside the drawRect: method. This meth-

od takes two parameters. The first is the location and dimensions of the

rectangle into which the string will be drawn. The second is a dictionary

containing any special attributes you want to set.

Add an instance variable for the rectangle and for the string that will

hold the name of the application to IconView.h. Create a property for the

appName variable:

Download CustomView/HelloApplication27/IconView.h

#import <Cocoa/Cocoa.h>

@interface IconView : NSView {

NSColor *alertColor;

NSRect frameRect;

NSImageView *imageView;

NSRect imageRect;

NSString *appName;

NSRect textRect;

}

@property(copy) NSColor *alertColor;

@property NSImageView *imageView;

@property(copy) NSString *appName;

@end

In IconView.m, add this line to create this rectangle to the end of the

awakeFromNib method:

Download CustomView/HelloApplication27/IconView.m

textRect = NSMakeRect(36, 10, 144, 20);

That way, you create the rectangle once, and you write different text in

it every time the drawRect: method is called. In this version, we’ll use

the default look, so we’ll pass in nil in place of the dictionary. Add this

line to the end of the drawRect: method:

Download CustomView/HelloApplication27/IconView.m

[self.appName drawInRect:textRect withAttributes:nil];

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication27/IconView.h
http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication27/IconView.m
http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication27/IconView.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=252

DRAWING TEXT 253

You should see this “default” look:

You can change the look of this string by entering attributes in a muta-

ble dictionary. For example, we can fill a dictionary with the following

attributes to make the string blue, bold, and centered.2

Download CustomView/HelloApplication28/IconView.m

NSMutableParagraphStyle *par = [[NSMutableParagraphStyle alloc] init];

[par setAlignment:NSCenterTextAlignment];

textAttributes = [[NSMutableDictionary alloc] initWithObjectsAndKeys:

[NSColor blueColor], NSForegroundColorAttributeName,

par, NSParagraphStyleAttributeName,

[NSFont boldSystemFontOfSize:12], NSFontAttributeName,

nil];

It took us remarkably little code to implement this effect with our cus-

tom view and its controller. Here’s the final implementation of the view

controller:

Download CustomView/HelloApplication28/IconViewController.m

#import "IconViewController.h"

#import "IconView.h"

@implementation IconViewController

-(void) displayColor:(NSColor *) color for:(NSRunningApplication *) app {

((IconView *)self.view).alertColor = color;

((IconView *)self.view).imageView.image = app.icon;

((IconView *)self.view).appName = app.localizedName;

[self.view setNeedsDisplay:YES];

}

2. For a list of the standard attributes for displaying strings, see

http://developer.apple.com/documentation/Cocoa/Reference/ApplicationKit/Classes/NSAttributedString_AppKitAdditions/Reference/Ref

You can also just search on NSAttributedString(AppKitAdditions) in the developer documenta-

tion.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication28/IconView.m
http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication28/IconViewController.m
http://developer.apple.com/documentation/Cocoa/Reference/ApplicationKit/Classes/NSAttributedString_AppKitAdditions/Reference/Reference.html#//apple_ref/doc/uid/20000167-BAJJCCFC
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=253

DRAWING TEXT 254

-(void) applicationDidLaunch: (NSRunningApplication *) app {

[self displayColor:[NSColor greenColor] for:app];

}

-(void) applicationDidTerminate: (NSRunningApplication *) app {

[self displayColor:[NSColor redColor] for:app];

}

@end

The result should look like this:

The header file for our IconView has grown. We’ve introduced a lot of

instance variables, but only the three that need to be set by the view

controller have been exposed as properties.

Download CustomView/HelloApplication28/IconView.h

#import <Cocoa/Cocoa.h>

@interface IconView : NSView {

NSColor *alertColor;

NSRect frameRect;

NSImageView *imageView;

NSRect imageRect;

NSString *appName;

NSRect textRect;

NSMutableDictionary *textAttributes;

}

@property(copy) NSColor *alertColor;

@property NSImageView *imageView;

@property(copy) NSString *appName;

@end

I’ve refactored IconView.m to separate out the initialization of the three

different pieces. We’ve also managed to keep the drawRect: method small

and straightforward.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication28/IconView.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=254

DRAWING TEXT 255

Download CustomView/HelloApplication28/IconView.m

#import "IconView.h"

@implementation IconView

@synthesize alertColor, imageView, appName;

- (void)drawRect:(NSRect)dirtyRect {

[self.alertColor set];

[NSBezierPath strokeRect:frameRect];

[self.imageView.image setSize:imageRect.size];

[self.appName drawInRect:textRect withAttributes:textAttributes];

}

-(void) setUpFrameRect {

frameRect = NSMakeRect(18, 42, 180, 180);

[NSBezierPath setDefaultLineWidth:12];

}

-(void) setUpImageView {

imageRect = NSMakeRect(36, 66, 144, 144);

self.imageView = [[NSImageView alloc] initWithFrame:imageRect];

[self addSubview:self.imageView];

}

-(void) setUpTextView {

textRect = NSMakeRect(36, 10, 144, 20);

NSMutableParagraphStyle *par = [[NSMutableParagraphStyle alloc] init];

[par setAlignment:NSCenterTextAlignment];

textAttributes = [[NSMutableDictionary alloc] initWithObjectsAndKeys:

[NSColor blueColor], NSForegroundColorAttributeName,

par, NSParagraphStyleAttributeName,

[NSFont boldSystemFontOfSize:12], NSFontAttributeName,

nil];

}

-(void) awakeFromNib {

[self setUpFrameRect];

[self setUpImageView];

[self setUpTextView];

}

@end

So, now you have created a custom view where you draw shapes, text,

and images. You’ve seen how to create and configure visual objects in

code. In this chapter, we focused on the view. In the next chapter, we’ll

create a table to hold the list of all running applications.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CustomView/HelloApplication28/IconView.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=255

Chapter 16

Displaying Data in a Table
We’re going to work with successively cooler and more powerful ways to

interact with data between now and the end of the book. In this chapter,

you’ll learn a fairly basic way to display data in a table view.

We’ll use an array as the data source for our table view. Each entry in

the array will consist of an NSRunningApplication instance that will be

used to populate a row in our displayed table. The object properties will

correspond to the table columns. This correspondence between column

identifiers and properties will be your first step on our journey through

Key Value Coding, Key Value Observing, and the rest of Bindings on

our way to Core Data.

By the end of this chapter, your table view will respond to updates to

the underlying data, and you will be able to update your data from the

table view. To get going, we’ll create a table view and tie it to a simulated

data source.

16.1 Tables and Data Sources

Let’s start by setting up your table view and its corresponding data

source. In this first example, you’ll just fill each cell in the table with

its row and column numbers. We can reuse the ActivityView nib and the

ActivityController for this example.

TABLES AND DATA SOURCES 257

First, clean out the ActivityController.m file like this:

Download Tables/HelloApplication29/ActivityController.m

#import "ActivityController.h"

@implementation ActivityController

-(void) applicationDidLaunch: (NSRunningApplication *) app {}

-(void) applicationDidTerminate: (NSRunningApplication *) app {}

@end

Remove the properties and the instance variables from the header file

as well:

Download Tables/HelloApplication29/ActivityController.h

#import <Cocoa/Cocoa.h>

#import "ActivityMonitorDelegate.h"

@interface ActivityController : NSViewController <ActivityMonitorDelegate> {

}

@end

We have to swap the view controller and nib loaded by MyWindowCon-

troller, so let’s change the header file to make this swapping back and

forth a little easier. We’re changing the type of the variable ac so that it

is neither ActivityController nor IconViewController. Instead, we’re declar-

ing it to be of type NSViewController and specifying that it implements the

ActivityMonitorDelegate protocol.

Download Tables/HelloApplication29/MyWindowController.h

#import <Cocoa/Cocoa.h>

#import "ActivityMonitorDelegate.h"

@class CurrentApp;

@interface MyWindowController : NSWindowController {

CurrentApp *currentApp;

NSViewController <ActivityMonitorDelegate> *ac;

}

@property CurrentApp *currentApp;

@property NSViewController <ActivityMonitorDelegate> *ac;

@end

In the implementation file, change your instantiation of ac to this, and

add the appropriate import to the top of the file:

Download Tables/HelloApplication29/MyWindowController.m

self.ac = [[ActivityController alloc]

initWithNibName:@"ActivityView" bundle:nil];

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication29/ActivityController.m
http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication29/ActivityController.h
http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication29/MyWindowController.h
http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication29/MyWindowController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=257

TABLES AND DATA SOURCES 258

Double-click ActivityView.xib. When Interface Builder opens the nib file,

delete the text field and image well from the view. Resize the view to

be big enough to hold a two-column table with half a dozen rows or

so. Drag a table view from the Library, drop it on the view, and posi-

tion it using the guidelines. This component is actually an NSTable-

View contained in an NSScrollView. The table comes configured with two

columns—you can adjust this number up or down using the Attributes

inspector for the table view. Double-click the header at the top of each

column, and label the left column Column 1 and the right column Col-

umn 2.

Select the table view, and connect both the dataSource and delegate

outlets to the ActivityController.1

Unfortunately, clicking the table view is a pain. You think you’re click-

ing it but find you have the scroll view selected instead.2 So, you try

double-clicking and find that you have a column selected. Not what

you wanted. Instead, navigate the hierarchy in the document window,

or hold down the Shift and Control keys and click the table. You should

see something like this:

Now you can quickly select the table view and make your connections.

Save your work. You have created part of the scaffolding for the table

view and its data source. There are two gaping holes we need to fill.

Let’s explore them in a quick exercise.

1. The ActivityController is the File’s Owner.
2. You almost never want the scroll view.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=258

EXERCISE: IMPLEMENTING A BASIC DATA SOURCE 259

16.2 Exercise: Implementing a Basic Data Source

Click Build & Run, and you should get this error:

Illegal NSTableView data source (<ActivityController: 0x200053b60>).

Must implement numberOfRowsInTableView: and

tableView:objectValueForTableColumn:row:

This is as helpful as an error message could possibly be. It tells us

which methods to implement in ActivityController so that it can act as

the data source for our table view. I’m going to let you try it first as an

exercise.

The rows in a table represent different records in your data source, and

the columns are various attributes for each record. So, for example, we

could display a roster of people in your local CocoaHeads group. The

first column might contain their first name, and the second column

might contain their last name. You might even have more information

in your data source (email addresses, phone numbers, ...) than you

want to display in your table.

You set up the columns in Interface Builder when you created your

table view, but usually you won’t know the number of records in the

data source until runtime. In fact, if you create an application where

you can add and delete records, then this number will change at run-

time. So, your data source must be able to tell the table how many

rows are in the table view. The table view can then fill itself by looping

through the number of visible rows and columns and asking the data

source what belongs in each cell by calling the tableView:objectValueFor-

TableColumn:row: method for each cell.

The data source records are often stored in an array, but actually they

can be stored any way you want as long as the data source can respond

to the two methods numberOfRowsInTableView: and tableView:objectValue-

ForTableColumn:row:. What this amounts to is that the records must be

able to be indexed by integers.

Implement these methods in the most simplistic way possible. Return

a fixed integer from numberOfRowsInTableView:. Choose a large enough

number like 100 so that the scroll view is engaged as well. Return the

row number (as a string) from tableView:objectValueForTableColumn:row:.

Both columns of the row will show the row number.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=259

SOLUTION: IMPLEMENTING A BASIC DATA SOURCE 260

Use the documentation to get the method signatures right. Search the

docs on the name of the method. Once you locate the method, copy the

method signature from the documentation and paste it into your code.

Whatever you do, don’t type all of that in yourself!

Uh-oh. We have another problem. You should have an easy enough time

returning the row number, but how do you find the column number?

Search through the NSTableColumn docs, and you’ll see methods like

identifier, dataCellForRow:, and headerCell. It doesn’t look as if the column

knows its index number. You’ll soon see why. For now, just fill each cell

with the row number.

16.3 Solution: Implementing a Basic Data Source

You shouldn’t have made any changes to the ActivityController header

file. If you stop to think a moment, that may actually be surprising.

You didn’t have to declare that ActivityController is implementing the

NSTableViewDataSource or NSTableViewDelegate protocol. You are free to

add them if you want—in fact, that might better communicate the pur-

pose of the ActivityController to others reading your source code. You

aren’t required to because only the table view will be calling the meth-

ods declared in the protocol, so no warnings will appear.

As for the implementation file, you should have added these methods:

Download Tables/HelloApplication30/ActivityController.m

- (NSInteger)numberOfRowsInTableView:(NSTableView *)aTableView {

return 100;

}

- (id) tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex {

return [NSString stringWithFormat:@"Row = %d", rowIndex];

}

Click Build & Run. With the application running, double-click the first

column to select it. Drag that column to the right until the two columns

switch places like the picture on the following page.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication30/ActivityController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=260

EXERCISE: INTRODUCING A DATA SOURCE 261

So, we can’t and shouldn’t identify columns by their position because

this position could change. We ordinarily would not have used a num-

ber in the header for each column either, but I wanted it to be visually

clear that the two had switched places.

16.4 Exercise: Introducing a Data Source

Right now we don’t have any real data backing our table. Let’s create

an array of the applications that are running when our application first

launches and display that in the table. For now you’ll display the same

information in both columns.

Declare a mutable array called runningApps to be a property of Activity-

Controller. Override initWithNibName:Bundle: to set the value of this array

to runningApplications for the shared instance of the NSWorkspace.3

Your table view is going to display the contents of the runningApps array.

How many rows are there in the table? The answer to that question is

the value you will return from numberOfRowsInTableView.

All that remains is for you to fill each cell with the application name

for each record. The runningApps array is filled with objects of type

NSRunningApplication. You know how to retrieve the application name.

You’ll need to get the object from the runningApps array that has the

same index as the rowIndex.

3. This is marked as a class method in the docs, but at the time of this writing is

implemented as an instance method.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=261

SOLUTION: INTRODUCING A DATA SOURCE 262

Your application should look something like this:

16.5 Solution: Introducing a Data Source

Add the runningApps property to your header file. It looks odd, but we

have to specify the memory attribute as retain. Usually we get that for

free by not specifying any attribute. This would give us the default

attribute of assign, which under garbage collection is equivalent to retain.

The problem here is that NSMutableArray extends NSArray, which uses

copy, so we need to explicitly specify retain so that the compiler is con-

fident we know what we’re doing:

Download Tables/HelloApplication31/ActivityController.h

#import <Cocoa/Cocoa.h>

#import "ActivityMonitorDelegate.h"

@interface ActivityController : NSViewController <ActivityMonitorDelegate,

NSTableViewDelegate, NSTableViewDataSource> {

NSMutableArray *runningApps;

}

@property(retain) NSMutableArray *runningApps;

@end

Next we hop over to the implementation file. How many rows should

our table have? It should have as many rows as there are running

applications. When your table is backed by an array, then the number

of rows in the table view at any time should be equal to the current

count for the array.

Download Tables/HelloApplication31/ActivityController.m

- (NSInteger)numberOfRowsInTableView:(NSTableView *)aTableView {

return [runningApps count];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication31/ActivityController.h
http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication31/ActivityController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=262

FILLING CELLS BASED ON TABLE COLUMN TITLES 263

What should get returned for the cells in a particular row? The local-

izedName of the RunningApplication object at that same index should be

returned.

Download Tables/HelloApplication31/ActivityController.m

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex {

return [[runningApps objectAtIndex:rowIndex] localizedName];

}

The hard part of this exercise is initializing runningApps. We can’t just

cast the runningApplications array to a mutable array. Instead, we create

a mutable array and then add the contents of runningApplications to it.

Download Tables/HelloApplication31/ActivityController.m

- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)nibBundle{

if (self = [super initWithNibName:nibName bundle:nibBundle]) {

self.runningApps = [NSMutableArray arrayWithCapacity:20];

[self.runningApps addObjectsFromArray:[[NSWorkspace sharedWorkspace]

runningApplications]];

}

return self;

}

Next, let’s take this to the next stage and display something different in

each column.

16.6 Filling Cells Based on Table Column Titles

It’s easy for the body of the tableView:objectValueForTableColumn:row:

method to get ugly. How, for example, would you display the appli-

cation’s icon in the first column and its name in the second?

To start, we have to modify the nib file so that you can display images

in the first column. Open ActivityView.xib in Interface Builder. Look in

the Library for NSImageCell. Drag it on top of the first column. The word

TextCell should be replaced with the generic application icon.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication31/ActivityController.m
http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication31/ActivityController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=263
Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

FILLING CELLS BASED ON TABLE COLUMN TITLES 264

Change the title of the first column to Icon and the second to Name:

You might be tempted to use something like this if/else construction:

Download Tables/HelloApplication32/ActivityController.m

//don't even think of doing it this way

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex {

if([[[aTableColumn headerCell] title] isEqualToString:@"Icon"]){

return [[self.runningApps objectAtIndex:rowIndex] icon];

} else {

return [[self.runningApps objectAtIndex:rowIndex] localizedName];

}

}

The good news is that the code does exactly what we want it to do.

We see the application icons in the left column and their names in the

right.

The bad news is that this is tremendously ugly code. We don’t want to

have to use an if statement every time we fill a table cell. We used a

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication32/ActivityController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=264

TABLE COLUMN IDENTIFIERS AS KEYS 265

dictionary to eliminate an if in another part of our code. This time we’ll

use another technique.

16.7 Table Column Identifiers as Keys

Instead of using the column header titles in our if statement, we can

use another property of table columns called the identifier. The title

is text that is visible at the top of the column in the header cell. That

text is meant to communicate with the application user. The identifier is

invisible to the end user. The data source uses it to identify the column.

We can use the identifier as a key in a dictionary or as a name of a

property or method.

So, select the table’s first column in Interface Builder, and use the

Attributes inspector to set the Identifier to icon. Similarly, set the Identifier

in the second column to localizedName. I haven’t chosen those names

at random; these are the names of the properties in the NSRunning-

Application class that I want to appear in each of the columns.

Now we can call the method with the same name as the identifier. It is

just the getter for the property with that name.

Download Tables/HelloApplication33/ActivityController.m

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex {

return [[self.runningApps objectAtIndex:rowIndex]

performSelector:NSSelectorFromString([aTableColumn identifier])];

}

Here’s roughly what has to happen to fill the table with icons and

names. First the table view asks its data source how many rows are

in this table. The data source replies [runningApps count]. Then for each

cell in the table, the table view asks its data source, “What goes here?”

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication33/ActivityController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=265

PREVIEWS OF COMING ATTRACTIONS 266

The data source now answers with the information for the application

whose index in the array matches the row number.4 And in each cell

the data source responds with the value of the property that matches

the cell’s column’s identifier. Pretty nifty.

Look how this simplifies the code—there are no choices to make. Better

yet, we don’t have to change this code if we introduce new columns.

16.8 Previews of Coming Attractions

It turns out that one advantage of properties is that they follow a cer-

tain naming convention that allows us to treat objects as if they were

dictionaries. In other words, we can pass in the name of the property

whose value we want the same way we pass in keys to a dictionary.

You’ll learn a lot more about this in Chapter 19, Key Value Coding, on

page 298.

This is such a great place to apply the technique that I just can’t wait

until we get there. You don’t need to understand KVC to appreciate

this application. Instead of converting the identifier to a SEL and then

performing that selector, we use the valueForKey: method and pass in

the identifier as the key.

Download Tables/HelloApplication34/ActivityController.m

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex {

return [[self.runningApps objectAtIndex:rowIndex]

valueForKey:[aTableColumn identifier]];

}

This is yet another thing about programming with Cocoa that makes

me smile.

16.9 Exercise: Adding and Removing Rows

Our mini-Dock now shows a snapshot of the icons and names of the

applications that are running when our application launches. Next, let’s

update the list by adding launching apps and removing terminating

apps.

4. Fortunately, the count for each of them begins with 0.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication34/ActivityController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=266

SOLUTION: ADDING AND REMOVING ROWS 267

We could just regenerate the list each time an application launches or

terminates from NSWorkspace’s runningApplications array. My goal here,

though, is to show you how to add to and remove from the underlying

data source of a table view and then update the view.

You already have delegate methods that respond when an application

is launched or terminates. Implement one to add the launching appli-

cation to the bottom of the table view by adding an entry to the end of

runningApps and updating the table view. Similarly, implement the other

to remove the terminating application from the table view by removing

the appropriate entry from runningApps and updating the table view.

16.10 Solution: Adding and Removing Rows

We are going to need to contact the table view from our ActivityController.

Add an outlet to the header file:

Download Tables/HelloApplication35/ActivityController.h

#import <Cocoa/Cocoa.h>

#import "ActivityMonitorDelegate.h"

@interface ActivityController : NSViewController <ActivityMonitorDelegate,

NSTableViewDelegate, NSTableViewDataSource> {

NSMutableArray *runningApps;

NSTableView *table;

}

@property(retain) NSMutableArray *runningApps;

@property IBOutlet NSTableView *table;

@end

In Interface Builder, connect this outlet to your table view.

Back in Xcode, you should have added these two methods to your

implementation file for ActivityController. Then add and remove the

appropriate entry to the runningApps array, and tell the table view to

reload.5

Download Tables/HelloApplication35/ActivityController.m

-(void) applicationDidLaunch: (NSRunningApplication *) app {

[self.runningApps addObject:app];

[self.table reloadData];

}

5. Also, you should remember that every time we add a property in a header file that

you need to synthesize it in the corresponding implementation file.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication35/ActivityController.h
http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication35/ActivityController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=267

MANUALLY REMOVING ROWS 268

-(void) applicationDidTerminate: (NSRunningApplication *) app {

[self.runningApps removeObject:app];

[self.table reloadData];

}

16.11 Manually Removing Rows

So far, we have initiated changes in the data source that are reflected

in the table. In this section, we’re also going to take advantage of the

fact that we set the ActivityController to also be the delegate for the table

view.

Let’s add a Remove button to our application. This will allow the user to

remove applications from the list. The button will become visible only

when the user selects an application in the table view. Then if the user

clicks the button, the selected application will disappear from the list,

and we’ll hide the button again.

Start by adding an outlet and an action to your ActivityController header

file. The outlet will connect to the new button, and the action will be

the method that gets called when the button is clicked.

Download Tables/HelloApplication36/ActivityController.h

#import <Cocoa/Cocoa.h>

#import "ActivityMonitorDelegate.h"

@interface ActivityController : NSViewController <ActivityMonitorDelegate,

NSTableViewDelegate, NSTableViewDataSource> {

NSMutableArray *runningApps;

NSTableView *table;

NSButton *deleteButton;

}

@property(retain) NSMutableArray *runningApps;

@property IBOutlet NSTableView *table;

@property IBOutlet NSButton *deleteButton;

-(IBAction)removeRow:(id)sender;

@end

In Interface Builder, add a little square button below the table view.

Instead of giving it a title, we’ll display a minus sign on it. To do this,

open the Attributes inspector, and set the button’s image to NSRemove-

Template. Also select the Hidden checkbox.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication36/ActivityController.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=268

MANUALLY REMOVING ROWS 269

Connect the ActivityController’s deleteButton outlet to the button, and wire

up the removeRow: action as well. Save.

You now have two methods to implement in ActivityController. The first

is a delegate method that is called when the user selects a row. All we

want to do is make the button visible when a row is selected.

Download Tables/HelloApplication36/ActivityController.m

-(void)tableViewSelectionDidChange:(NSNotification *)notification {

[self.deleteButton setHidden:NO];

}

When the user clicks the Delete button, we remove the selected row

from the runningApps array and reload the table view. We also make

sure no row is selected in the table view anymore and hide the button.

Download Tables/HelloApplication36/ActivityController.m

-(IBAction)removeRow:(id)sender{

[self.runningApps removeObjectAtIndex:[self.table selectedRow]];

[self.table deselectAll:nil];

[self.table reloadData];

[self.deleteButton setHidden:YES];

}

Again, I love that the code reads pretty much like the description of

what we’re trying to accomplish.

Click Build & Run, and you will be able to select rows and remove them

from the list. Unfortunately, if you quit HelloApplication and start it up

again, the items you removed are back again. In the next chapter, we’ll

add persistence and preferences to this example.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication36/ActivityController.m
http://media.pragprog.com/titles/dscpq/code/Tables/HelloApplication36/ActivityController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=269

Chapter 17

Saving Data to Disk
At the end of the previous chapter, we added the ability for your users

to remove applications from the table view. If you’re playing a game

at work or surfing the Net, you might not want the game or your web

browser to be in your visible list of running applications.

But, as we’ve coded things now, the next time you run HelloApplication,

the banished items will pop up on the list again. In this chapter, you’ll

persist the list of removed items in two different ways. You’ll also learn

how to work with preferences to allow the user to choose whether to

use the saved list of removed items.

As always, the example is just a vehicle. We’ll look at creating, saving,

and reading property lists. We’ll learn to archive, save, and unarchive

object graphs. Finally, we’ll learn how to create and read two types of

defaults.

First, we’ll work with saving the list of banished apps in our running

application.

17.1 Saving in Your Running Application

Before we worry about remembering the removed items from previous

times we ran HelloApplication, we need to remember the removed items

while our application is running. Start up HelloApplication, and I’ll

show you what I mean.

Remove one of the applications from your list—I’ll use iCal as an exam-

ple. iCal is still running, but it’s not on your list. So, quit iCal. Now

start iCal. See? There it is again at the end of your list of running appli-

cations. I don’t want you to have to remove iCal from the list every time

you restart it.

SAVING IN YOUR RUNNING APPLICATION 271

To solve this problem, we’ll create a helper class for keeping track of

which apps we’ve removed. Create a new class named BanishedApps

using the NSObject template. We’ll keep a list of the names of the ban-

ished applications in an NSMutableArray. We’ll also need methods for

adding apps to this array and for checking whether an app is already a

member.

Download Persistence/HelloApplication37/BanishedApps.h

#import <Cocoa/Cocoa.h>

@interface BanishedApps : NSObject {

NSMutableArray *apps;

}

@property(retain) NSMutableArray *apps;

-(void)add:(NSRunningApplication *) app;

-(BOOL)contains:(NSRunningApplication *) app;

@end

There’s not much to our implementation. We’ll initialize the mutable

array in the init method. The add: and contains: methods are light wrap-

pers that allow us to pass in objects of type NSRunningApplication but

store the information as a string using the application’s localizedName.

Download Persistence/HelloApplication37/BanishedApps.m

#import "BanishedApps.h"

@implementation BanishedApps

@synthesize apps;

-(BOOL)contains:(NSRunningApplication *) app {

return [self.apps containsObject:app.localizedName];

}

-(void)add:(NSRunningApplication *) app {

if ([self contains:app]) return;

[self.apps addObject:app.localizedName];

}

-(id)init {

if (self = [super init]) {

self.apps = [NSMutableArray arrayWithCapacity:5];

}

return self;

}

@end

The first line of the add: method might look a little odd.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication37/BanishedApps.h
http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication37/BanishedApps.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=271

SAVING IN YOUR RUNNING APPLICATION 272

You might be more used to writing this method like this:

-(void) add: (NSRunningApplication *) app {

if (![self contains:app]) {

[self.apps addObject:app.localizedName];

}

}

That version reads something like this: “If this app is not contained in

our list of banished apps, then add it to the list.” The approach I used

instead was an early exit. If the app is already contained in our list of

banished apps, then we’re done here.

We have to make a few modifications to ActivityController.m. Add this line

to initWithNibName:bundle: to initialize the BanishedApps object.1

Download Persistence/HelloApplication37/ActivityController.m

self.banishedApps = [[BanishedApps alloc] init];

When an application launches, you need to add this check before ad-

ding it to runningApps:

Download Persistence/HelloApplication37/ActivityController.m

-(void) applicationDidLaunch: (NSRunningApplication *) app {

if ([self.banishedApps contains:app]) return;

[self.runningApps addObject:app];

[self.table reloadData];

}

When the user removes an application from the table, we need to add

this line to add it to the banished applications:

Download Persistence/HelloApplication37/ActivityController.m

-(void)removeRow:(id)sender{

[self.banishedApps add:[self.runningApps

objectAtIndex:[self.table selectedRow]]];

[self.runningApps removeObjectAtIndex:[self.table selectedRow]];

[self.table deselectAll:nil];

[self.table reloadData];

[self.deleteButton setHidden:YES];

}

1. By now you know that this line implies a lot of other code changes. You’ll need to have

declared the banishedApps instance variable and the corresponding property. You will have

needed to synthesize the property. Finally, you would have used a forward declaration

for the BanishedApps class in the ActivityController header file and the corresponding import

statement at the top of the implementation file.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication37/ActivityController.m
http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication37/ActivityController.m
http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication37/ActivityController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=272

WHERE TO PUT APPLICATION SUPPORT 273

Click Build & Run. Remove an application. Quit that application, and

restart it; this time it’s not added to the table view. Cool.

We haven’t made a lot of changes, but now we have everything working

while HelloApplication is running. Next we will add persistence so that

we don’t have to remove the same applications the next time we run

HelloApplication.

17.2 Where to Put Application Support

Let’s save the names of the removed applications to disk every time

one is added and retrieve the contents of the file when we instantiate

BanishedApps. In this section, we’ll work with a property list that we

create from the NSMutableArray. This technique is great when you are

working with a single collection that contains a small amount of data

consisting of strings and numbers.

You store your application support files in a folder named for your appli-

cation or company inside ~/Library/Application Support. The ~ is short-

hand for your home directory. We’ll use the function NSSearchPathFor-

DirectoriesInDomains() to get the path to your application support direc-

tory like this:

NSSearchPathForDirectoriesInDomains(NSApplicationSupportDirectory,

NSUserDomainMask, YES)

The first parameter is a constant indicating we want the application

support directory. The second parameter is filled by a constant that

indicates we want to use the user’s Library directory as opposed to the

system’s. The third parameter is a boolean we’ve set to YES so that ~ is

expanded to the full path to the user directory. This call will result in

an array containing the path we want as its only member. We’ll pull this

value out of the array as a string and append the string /HelloApplication

to get our full path to where we’ll be storing our application data.

We’ll do our work in BanishedApps.m. It’s pretty ugly-looking code, but

it is essentially boilerplate that you’ll use to locate your application

support files.

Download Persistence/HelloApplication38/BanishedApps.m

-(void) setSupportFile {

NSFileManager *fileManager = [NSFileManager defaultManager];

NSString *appSupport =

[NSSearchPathForDirectoriesInDomains(

NSApplicationSupportDirectory,

NSUserDomainMask, YES)

objectAtIndex:0];

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication38/BanishedApps.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=273

SAVING TO A PLIST 274

NSString *dir =

[NSString stringWithFormat:@"%@/HelloApplication", appSupport];

[fileManager createDirectoryAtPath:dir

withIntermediateDirectories:YES

attributes:nil

error: nil];

self.dataFile =

[dir stringByAppendingPathComponent:@"removedApps.plist"];

}

Add the property NSString *dataFile to the BanishedApps header file. By

now you may have noticed that you always need to specify the copy

attribute for NSString properties. If you forget, you will be prompted to

do so by a compiler warning.

You also need to add the call [self setSupportFile]; to the init method.

Click Build & Run. Navigate into ~/Library/Application Support/, and you

should see a newly created directory named HelloApplication.

17.3 Saving to a Plist

Objects of type NSArray know how to write themselves to a plist file. In

fact, any collection that consists of objects of type NSDictionary, NSArray,

NSString, NSDate, NSData, or NSNumber can easily write itself to disk as a

plist. You can make other objects fit by converting them to NSData and

stuffing them inside an array or dictionary.

We want to save the contents of the apps array whenever we add an

application to it. Add the highlighted line to your add: method.

Download Persistence/HelloApplication38/BanishedApps.m

-(void)add:(NSRunningApplication *) app {

if ([self contains:app]) return;

[self.apps addObject:app.localizedName];

[self.apps writeToFile:self.dataFile atomically:YES];

}

This is pretty amazing. All you have to do is tell the array to save itself

to a file and provide the path to that file. Arrays, dictionaries, strings,

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication38/BanishedApps.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=274

READING A PLIST 275

numbers, dates, and data know how to save themselves to disk and

how to reconstitute themselves later.

Click Build & Run. Remove some of your running applications. I’ve

removed the loginwindow, AppleSpell.service, iChatAgent, and iTunes

Helper. After you’ve removed some apps, you will have created a plist.

Open it, and you should see something like this:

17.4 Reading a Plist

Let’s move in the other direction. Now we want to be able to read our

stored information and populate BanishedApps’ apps array with it. In the

init method, we’ll check to make sure the plist file exists. If it does, we’ll

initialize apps with the stored values.

Download Persistence/HelloApplication38/BanishedApps.m

-(id)init {

if (self = [super init]) {

[self setSupportFile];

if([[NSFileManager defaultManager] fileExistsAtPath:self.dataFile]){

self.apps = [NSMutableArray arrayWithContentsOfFile:self.dataFile];

} else {

self.apps = [NSMutableArray arrayWithCapacity:5];

}

}

return self;

}

We still have a problem. Applications that have been removed will be

displayed even though they shouldn’t be if they are running when

we first launch HelloApplication. To prevent this, we have to modify

initWithNibName:bundle: in ActivityController.m. We’ll use fast enumeration

to check each application in the workspace’s runningApplications array.

We’ll only add the ones that are not on the banished list to our run-

ningApps array.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication38/BanishedApps.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=275

SAVING AN ARCHIVE TO DISK 276

Download Persistence/HelloApplication38/ActivityController.m

- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)nibBundle{

if (self = [super initWithNibName:nibName bundle:nibBundle]) {

self.banishedApps = [[BanishedApps alloc] init];

self.runningApps = [NSMutableArray arrayWithCapacity:20];

for (NSRunningApplication *app in

[[NSWorkspace sharedWorkspace] runningApplications]) {

if (![self.banishedApps contains:app]) {

[self.runningApps addObject:app];

}

}

}

return self;

}

Click Build & Run. Applications you remove should not appear in your

table view even if you quit and relaunch either HelloApplication or the

applications you remove.

17.5 Saving an Archive to Disk

You’ll normally use plists to persist relatively small amounts of appli-

cation data (often configuration related). But what if you want to store

large amounts of data or if you want to persist an object tree? For the

most part, you’ll want to use the techniques I’ll describe in Chapter 22,

Core Data, on page 350. There are, however, in-between times when

you need to write your data as an archive.

There are essentially two levels to saving an object graph to disk. At

the top level, you need to create an archive of all the objects that need

to be saved and later retrieved. These actions are handled by methods

in instances of the NSKeyedArchiver and NSKeyedUnarchiver classes. You

pass in the object at the root of the tree, and each object will be asked

to encode or decode itself.

At this object level, each object is responsible for knowing what part

of its state needs to be persisted using the encodeWithCoder: method.

Loading the data from disk is the inverse operation and uses each

object’s initWithCoder: method.

I’m not going to have you build a new application to illustrate this

concept. For the most part, you should either be able to use the plist

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication38/ActivityController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=276

SAVING AN ARCHIVE TO DISK 277

approach, or you should look to use Core Data. But imagine that the

apps is an NSMutableSet instead of an NSMutableArray.2

Suppose you want to persist the current state of your BanishedApps

object to disk. There are only two variables that we could think of per-

sisting: apps and dataFile. It makes no sense to persist dataFile because

it is the path to the directory where I would be persisting it—we’d never

have any use for the saved value. So when it is time to save our Ban-

ishedApps object, we just need to encode the contents of apps. Imple-

ment the encodeWithCoder: method.

-(void) encodeWithCoder: (NSCoder *) coder {

[coder encodeObject:self.apps forKey:@"bannedApps"];

}

You don’t call encodeWithCoder:. It is called by the keyed archiver when

it is saving the object tree. Our BanishedApps object is part of the tree

that has an ActivityController object above it. So, we might create the

archive in the window controller with a call like this:

[NSKeyedArchiver archiveRootObject:ac toFile:self.dataFile];

Here ac is the instance of the ActivityController that will be at the root of

our tree, and dataFile points to the file where we are writing the data.

We reverse this process with a call like this:

self.ac = [NSKeyedUnarchiver unarchiveObjectWithFile:self.dataFile];

During the unarchiving process, each object must know how to unen-

code itself. We do this in a variant on the init method named initWith-

Coder:. For example, somewhere inside the initWithCoder: method for

BanishedApps will have this line:

self.apps = [coder decodeObjectForKey:@"bannedApps"];

Those are the four steps to creating archives when your objects are

comprised of types that don’t know how to write themselves to files.

Now let’s get back to our running example and allow the user to set

preferences for your application.

2. It is easy enough to convert an NSSet to an NSArray and back again that in practice we

would do the conversion and persist as a plist. The purpose here is to show you how to

use an NSCoder.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=277

READING AND USING PREFERENCES 278

17.6 Reading and Using Preferences

We’ll create a very basic preference panel that allows the user to choose

whether to use the stored list of removed applications or to instead

start from scratch when we launch HelloApplication. In this section, we

assume the preference exists and has been set.

Currently we ask whether the data file exists before we try to restore

apps from disk. Modify this check to make sure that the user wants us

to restore from disk and that the data file exists.

Download Persistence/HelloApplication39/BanishedApps.m

-(id)init {

if (self = [super init]) {

[self setSupportFile];

if([self shouldLoadSavedRemovedApps] &&

[[NSFileManager defaultManager] fileExistsAtPath:self.dataFile]){

self.apps = [NSMutableArray arrayWithContentsOfFile:self.dataFile];

} else {

self.apps = [NSMutableArray arrayWithCapacity:5];

}

}

return self;

}

The method shouldLoadSavedRemovedApps returns a value based on

what is stored in the preferences.

Download Persistence/HelloApplication39/BanishedApps.m

-(BOOL) shouldLoadSavedRemovedApps {

return[[NSUserDefaults standardUserDefaults]

boolForKey:@"LoadSavedRemovedApps"];

}

This is a familiar pattern by now. You ask for the standard user defaults

the same way you’ve asked for the default workspace or the file man-

ager. Once you have the instance you need, you ask it for the value that

corresponds to the key LoadSavedRemovedApps and return that value as

a BOOL.

17.7 Setting the Factory Defaults

Let’s set a default value for shouldLoadSavedRemovedApps.

There are five levels of defaults that you can set in a Cocoa application.

We’ll just worry about two of them: the factory defaults and the user

defaults. We’ll ignore defaults that are passed in on the command line,

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication39/BanishedApps.m
http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication39/BanishedApps.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=278

SETTING THE FACTORY DEFAULTS 279

those that are set for the entire system, and the ones that depend on

localization. We’ll load the factory defaults right away and then check to

see whether the user has used a preference panel to change any values.

In this section, we’ll look at the defaults set in the registration domain.

You can think of these as the factory settings—these are the values

before the user makes any adjustments. Let’s set the value of should-

LoadSavedRemovedApps to NO.

The best place to set the registration domain defaults is in an initialize

method. The reason is that the initialize method is a class method that

is called before any other method is called on HelloApplicationAppDele-

gate or a subclass. Anything in the initialize method will be done before

anything else using our app delegate—even before the applicationDidFin-

ishLaunching: method executes.

Let’s create the initialize method in our application delegate:

Download Persistence/HelloApplication39/HelloApplicationAppDelegate.m

+(void)initialize {

NSDictionary *defaults =

[NSDictionary dictionaryWithObject:[NSNumber numberWithBool:NO]

forKey:@"LoadSavedRemovedApps"];

[[NSUserDefaults standardUserDefaults] registerDefaults:defaults];

}

Click Build & Run. Each time you run the app, you’ll be starting with

an empty array of removed applications. Change the NO to a YES, and

you will now launch with the saved list of removed applications.

Actually, you don’t need to be so explicit when you place the BOOL in

the dictionary. You could pass in the value YES or NO as a string and

still create a BOOL from this value when you read from the preferences.

Download Persistence/HelloApplication40/HelloApplicationAppDelegate.m

+(void)initialize {

NSDictionary *defaults =

[NSDictionary dictionaryWithObject:@"NO"

forKey:@"LoadSavedRemovedApps"];

[[NSUserDefaults standardUserDefaults] registerDefaults:defaults];

}

A common example of storing a more complicated object in the prefer-

ences file is saving a color. We don’t have a need for this in our appli-

cation, but let’s take a quick look at how you would do it. You need to

store the color object as data. Use the technique we learned for creating

an archive earlier in this chapter.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication39/HelloApplicationAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication40/HelloApplicationAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=279

PREPARING TO SET USER DEFAULTS 280

Don’t actually make these changes to our project—I just want to show

you how it’s done.

To store a color in the preferences, I create a new color object named

myColor and set its value to red. Now use an NSArchiver to encode the

color into a data object. The rest is as before. Put the data in a dictio-

nary, and register your defaults.

+ (void)initialize{

NSColor *myColor = [NSColor redColor];

NSData *colorData=[NSArchiver archivedDataWithRootObject:myColor];

NSDictionary *defaults = [NSDictionary dictionaryWithObject:colorData

forKey:@"BackgroundColor"];

[[NSUserDefaults standardUserDefaults] registerDefaults:defaults];

}

To reverse the process, we’ll pull a data object out of the standard

defaults and then use an NSUnarchiver to convert the data to a color

object.

NSData *colorData = [[NSUserDefaults standardUserDefaults]

dataForKey:@"BackgroundColor"];

NSColor *myBackgroundColor =

(NSColor *)[NSUnarchiver unarchiveObjectWithData:colorData];

You can use this technique to save or retrieve any nonstandard type

with a preferences file. Notice that we are able to read from the standard

user defaults from anywhere in our application. The objects that write

to the defaults and the objects that read from them don’t need to know

anything about each other.

17.8 Preparing to Set User Defaults

Let’s configure your app to put the defaults in the right place. User

preference files for your application should go in ~/Library/Preferences in

a file named com.your company name.your application name.plist. In our

case, we will call the file com.pragprog.HelloApplication.plist.

You can set this by editing the HelloApplication-Info.plist file for your appli-

cation. You’ll find it under Resources in the Groups & Files section of

your project window. Edit the Bundle identifier to have the value com.

pragprog.HelloApplication, and save.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=280

THE PREFERENCE WINDOW NIB 281

17.9 The Preference Window Nib

Next, let’s create a nib file we’ll use as our Preferences window. Add a

new file to the Resources folder. When prompted, select the Mac OS X >

User Interface > Window XIB template. Save it as Preferences.xib.

Double-click Preferences.xib to open it in Interface Builder. Unselect the

Visible At Launch checkbox for the window, and change the window

title to Preferences. Drag in a checkbox, and add descriptive text like

this:

One of the nice things about creating all of these small focused nibs

is that our path forward is much clearer. When we created nibs that

contained a view, we knew we needed to create a view controller and

set it to be the File’s Owner. Similarly, when a nib contains little more

than a window, we will tend to create a window controller and set it to

be the File’s Owner.

Create a new class named PreferencesController using the NSWindowCon-

troller template. Add an outlet to the header file to connect to the check-

box and an action that is called when the user selects or unselects the

checkbox.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=281

THE PREFERENCE WINDOW NIB 282

Download Persistence/HelloApplication40/PreferencesController.h

#import <Cocoa/Cocoa.h>

@interface PreferencesController : NSWindowController {

NSButton *loadSavedRemovedAppsCheckbox;

}

@property IBOutlet NSButton *loadSavedRemovedAppsCheckbox;

-(IBAction) toggleLoadSavedRemovedApps: (id)sender;

@end

The PreferencesController doesn’t need to do very much. When the pref-

erence window appears, we want to set the checkbox to the state that

is stored in the user preferences:

Download Persistence/HelloApplication40/PreferencesController.m

-(void) awakeFromNib {

[self.loadSavedRemovedAppsCheckbox

setState:[[NSUserDefaults standardUserDefaults]

boolForKey:@"LoadSavedRemovedApps"]];

}

And when the user selects or unselects the checkbox, we need to store

the new value in the user preferences:

Download Persistence/HelloApplication40/PreferencesController.m

-(IBAction) toggleLoadSavedRemovedApps: (id) sender {

[[NSUserDefaults standardUserDefaults]

setBool:[self.loadSavedRemovedAppsCheckbox state]

forKey:@"LoadSavedRemovedApps"];

}

Let’s connect the PreferencesController to the nib it manages. Double-

click Preferences.xib. Set the File’s Owner class to be PreferencesCon-

troller. Connect its window outlet to the Window. Connect its loadSave-

dRemovedAppsCheckbox outlet and toggleLoadSavedRemovedApps action

to the Checkbox. Select the Window, and connect its delegate to the File’s

Owner.

Save your work. We’ve created the preference window and its controller.

We’ve implemented the controller and wired up everything in our new

nib. Meanwhile, we also have set the ActivityController to use these pref-

erences. All that remains is to pop open the Preferences window when

the user selects HelloApplication > Preferences.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication40/PreferencesController.h
http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication40/PreferencesController.m
http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication40/PreferencesController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=282

ENABLING THE PREFERENCES WINDOW 283

17.10 Enabling the Preferences Window

Our last step is to integrate the preferences window into our running

application. A simple solution is to add an action named openPrefer-

ences: to the HelloApplicationAppDelegate class that is called when the

user selects the Preferences menu item. We’ll also add a property to

hang onto our preference controller.

Download Persistence/HelloApplication40/HelloApplicationAppDelegate.h

#import <Cocoa/Cocoa.h>

@interface HelloApplicationAppDelegate:NSObject<NSApplicationDelegate> {

}

-(IBAction) openPreferences:(id) sender;

@end

The openPreferences: method will initialize the preference controller,

load the preferences nib file, and then ask the preferencesController to

showWindow:.

Download Persistence/HelloApplication40/HelloApplicationAppDelegate.m

-(IBAction) openPreferences: (id)sender {

PreferencesController *prefController = [[PreferencesController alloc]

initWithWindowNibName:@"Preferences"];

[prefController showWindow:self];

}

Double-click MainMenu.xib. Find the Preferences... menu item.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication40/HelloApplicationAppDelegate.h
http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication40/HelloApplicationAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=283

ENABLING THE PREFERENCES WINDOW 284

Use the Connections inspector to connect the HelloApplicationDelegate’s

openPreference: action to the Preferences... menu item.

So, we now initialize the PreferencesController and load the Preferences nib

file when the user selects Preferences.... We also need to clean up these

resources when the user dismisses the preference window. There’s no

need for the window to exist when it isn’t visible, so we’ll destroy it and

create a new one if the user decides to modify the preferences later.

The PreferencesController is the delegate for its window, so we can imple-

ment this delegate method:

Download Persistence/HelloApplication40/PreferencesController.m

-(void)windowWillClose: (NSNotification *) notification {

[self autorelease];

}

This is yet another advantage of using many small focused nibs. We

can load resources when we need them and clean them up afterward.

At this point, if you click Build & Run, you can bring up the Preferences

window either using the menu item or using the D , keyboard shortcut.

Everything is positioned for you to set and retrieve settings. Play around

with changing the preferences and quitting and restarting.

You can even open your preference file (the plist not the window) and

look at the value you’ve set.

In this chapter, you’ve learned techniques for saving small amounts of

data. You’ve seen how to create plists from basic types like NSArrays and

how to archive more complex data. You’ve also seen how to work with

user preferences. When we need to store either a greater amount or a

more complex arrangement of data, we’ll turn to Core Data. In the next

chapter, we’ll swap different views, and then we’ll begin the journey to

understanding Core Data.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Persistence/HelloApplication40/PreferencesController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=284

Chapter 18

Changing Views
Back in Chapter 16, Displaying Data in a Table, on page 256, we made

it easy to swap which view controller and view were used by the win-

dow controller. The good news is that you can switch back and forth

by changing the name of the view controller class and the nib name

and recompiling. The bad news is that your user can’t make that same

change at runtime.

In this chapter, we’ll create a new preference that the user can set to

specify which view should be visible when the application launches.

We’ll then use that preference to display the view that the user chose at

launch time. We’ll then extend the example to allow the user to switch

back and forth as often as they’d like while the application is running.

We wrapped up the first act of our story by re-creating our simple web

browser for the iPhone. There wasn’t a lot of new material, but the point

was to take another quick pass through what you’ve learned so far in a

new context.

As the curtain falls on our second act, let’s look back on some of the

techniques you’ve learned while working with this example. Although

you’ll learn new things here and there, the main goal is for you to see

the advantages of working with multiple nibs and small well-defined

classes and methods.

18.1 Working with Radio Buttons

Let’s add a group of radio buttons to the preference panel. Double-click

Preferences.xib, and search in the Library for Radio.

WORKING WITH RADIO BUTTONS 286

You should find this widget:

Drag it onto the preference window. Resize your widget and window,

and add text to the right of the two radio buttons so it looks something

like this:

Take a look at the hierarchy of GUI elements in the Preferences.xib Doc-

ument window:

We could connect to and interact with each NSButtonCell object in the

radio button group individually. Instead, we’re going to work with the

group as a whole by using the NSMatrix object.

To set which radio button is selected from the PreferencesController ob-

ject, add a property named viewGroup of type NSMatrix to the Prefer-

encesController class. You also need to add an action to PreferencesCon-

troller that is called whenever a radio button is selected. Name your

action chooseView:, and save PreferencesController.h. In IB, use the Con-

nections inspector to wire this outlet and action to the NSMatrix.

If we’re going to connect the controller to the NSMatrix and not the indi-

vidual buttons, we need a way to tell the two buttons apart so that

we can figure out which one is selected. When we worked with tables,

we used the column’s identifier. NSButtonCells don’t have identifiers, but

they do have tags.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=286

ADDING PREFERENCES FOR VIEW AT LAUNCH 287

In Interface Builder, select the button you’ve labeled Display Icon view

at startup. Look at the bottom of the Attributes inspector, and you

should see the attribute Tag with the value 1. Similarly, the Tag attribute

for the other button cell has the value 0.1

18.2 Adding Preferences for View at Launch

We need to do four things to get the preferences working:

1. Choose a name for the preference and a format for it.

2. Create a default value that will be used before the user sets their

own preferences.

3. Read from the preference when our PreferencesController awakes

from nib.

4. Write to the preference when the user selects a radio button.

We could store our preference as a boolean like we did for the checkbox.

This would work fine for now because either we are using the Icon view

or we’re not. We’ve done that already. Let’s do something different.

Let’s store the tag of the currently selected button as the value of the

preference. The tag is an int. We need to convert it to and from an

NSNumber when writing to or reading from preferences. We create an

NSNumber from an int with the class method numberWithInt:. Going the

other way, we extract the int from the NSNumber with the method int-

Value.

Now that we have a format for our preference, we can name it to com-

municate what it is. Let’s call it TagForView. We can register the default

value in HelloApplicationAppDelegate.m just below where we registered

the default value for LoadSavedRemovedApps.

Download ChangingViews/HelloApplication41/HelloApplicationAppDelegate.m

+(void)initialize {

NSDictionary *defaults =

[NSDictionary dictionaryWithObjectsAndKeys:

@"NO", @"LoadSavedRemovedApps",

[NSNumber numberWithInt:1], @"TagForView",

nil];

[[NSUserDefaults standardUserDefaults] registerDefaults:defaults];

}

1. If the values of these tags are different, please change them to 1 and 0.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication41/HelloApplicationAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=287

EXERCISE: LAUNCHING WITH THE RIGHT VIEW 288

In the previous chapter, we selected or unselected the checkbox based

on the value stored in the preferences. Do the same thing for the radio

buttons. Pull the NSNumber from preferences, and convert it to an int.

Tell the NSMatrix object to select the cell with that tag.

Download ChangingViews/HelloApplication41/PreferencesController.m

-(void) awakeFromNib {

[self.loadSavedRemovedAppsCheckbox

setState:[[NSUserDefaults standardUserDefaults]

boolForKey:@"LoadSavedRemovedApps"]];

[self.viewGroup selectCellWithTag:

[[[NSUserDefaults standardUserDefaults]

objectForKey:@"TagForView"] intValue]];

}

The chooseView: action is called whenever a user selects a radio button.

We take the tag of the cell the user selected, convert it to an NSNumber,

and update the value of the TagForView preference.

Download ChangingViews/HelloApplication41/PreferencesController.m

-(IBAction) chooseView: (id) sender {

[[NSUserDefaults standardUserDefaults]

setObject:[NSNumber numberWithInt:[[sender selectedCell] tag]]

forKey:@"TagForView"];

}

Click Build & Run. You can now toggle which view should load at

launch time. Close the preference window, and reopen it. Quit the

application, and restart. It doesn’t matter. Your preference is saved each

time it is set. Next let’s use this setting to load the correct view.

18.3 Exercise: Launching with the Right View

Modify MyWindowController.m to read the value stored in the TagForView

preference. You should launch with the Icon view loaded if the value is

1 and with the table view loaded if the value is 0.

18.4 Solution: Launching with the Right View

We’ve been specifying the view controller and the nib name in the first

two lines of setUpView. Let’s split those lines out into methods loadIcon-

View and loadTableView so that we can call these methods to load the

view we want.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication41/PreferencesController.m
http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication41/PreferencesController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=288

SOLUTION: LAUNCHING WITH THE RIGHT VIEW 289

Download ChangingViews/HelloApplication42/MyWindowController.m

-(void) setUpView {

self.currentApp = [[CurrentApp alloc] init];

self.currentApp.delegate = self.ac;

[self.window setContentSize:[self.ac.view bounds].size];

self.window.contentView = self.ac.view;

[self.ac applicationDidLaunch:

[NSRunningApplication currentApplication]];

}

-(void) loadIconView {

self.ac = [[IconViewController alloc]

initWithNibName:@"IconView" bundle:nil];

[self setUpView];

}

-(void) loadTableView {

self.ac = [[ActivityController alloc]

initWithNibName:@"ActivityView" bundle:nil];

[self setUpView];

}

Create a new method named shouldLoadIconView to read the value stored

in the preference:

Download ChangingViews/HelloApplication42/MyWindowController.m

-(BOOL) shouldLoadIconView{

return (1 == [[[NSUserDefaults standardUserDefaults]

objectForKey:@"TagForView"] intValue]);

}

The shouldLoadIconView method is short, and you might be tempted to

do without it. I introduced it because it makes the logic in initWithWin-

dowNibName: easier to read than if we inlined retrieving the preference

value.

Download ChangingViews/HelloApplication42/MyWindowController.m

-(id) initWithWindowNibName:(NSString *)windowNibName {

if (self = [super initWithWindowNibName:windowNibName]) {

if ([self shouldLoadIconView])[self loadIconView];

else [self loadTableView];

[self showWindow:self];

}

return self;

}

@end

Click Build & Run, and your app will launch with the preferred view dis-

played. For the rest of this chapter, we’ll work toward allowing switching

between views any time.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication42/MyWindowController.m
http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication42/MyWindowController.m
http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication42/MyWindowController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=289

ELIMINATING MAGIC NUMBERS 290

18.5 Eliminating Magic Numbers

I’m going to take a brief side trip for those of you disturbed by the use

of a magic number in our solution. Make a copy of our project because

we’re going to return to this stage of the code in the next section. You

can safely skip this section and pick up the story in the next section.

The problem is the use of the number 1 here:

Download ChangingViews/HelloApplication42/MyWindowController.m

-(BOOL) shouldLoadIconView{

return (1 == [[[NSUserDefaults standardUserDefaults]

objectForKey:@"TagForView"] intValue]);

}

The 1 is a magic number that is tied to the tag of our radio buttons used

to select which view to load. You can place #define ICON_VIEW_ID 1 just

below @implementation and use ICON_VIEW_ID in place of 1. That certainly

makes the intent of the code clearer to other developers. You can also

declare and define a public constant in the application delegate.

Let’s create and use a property list named Views:

Download ChangingViews/HelloApplication42alt/Views

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<array>

<dict>

<key>class</key>

<string>ActivityController</string>

<key>nib</key>

<string>ActivityView</string>

</dict>

<dict>

<key>class</key>

<string>IconViewController</string>

<key>nib</key>

<string>IconView</string>

</dict>

</array>

</plist>

This is short enough to enter by hand. It is an array of dictionaries.

The dictionary at index 0 represents the table view, and the dictionary

at index 1 represents the Icon view. If we add more views, then we

would just add entries to this array. Each dictionary has a string with

key “class” whose corresponding value is the class name of the view

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication42/MyWindowController.m
http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication42alt/Views
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=290

ELIMINATING MAGIC NUMBERS 291

controller. The value with key “nib” is a string with the name of the nib

for our view.

If you’d rather not write this file by hand, you can write it in code. Add

this to your app delegate’s applicationDidFinishLaunching: method, click

Build & Run, and then remove this code. This will create a file named

Views in your build directory.

NSDictionary *tableView = [NSDictionary dictionaryWithObjectsAndKeys:

@"ActivityView", @"nib", @"ActivityController", @"class", nil];

NSDictionary *iconView = [NSDictionary dictionaryWithObjectsAndKeys:

@"IconView", @"nib", @"IconViewController", @"class", nil];

NSArray *viewArray =

[NSArray arrayWithObjects:tableView, iconView, nil];

[viewArray writeToFile:@"Views" atomically:YES];

Whichever way you created the Views file, you now need to add it to

your project. Control-click Folder under Groups & Files, and choose

Add > Existing Files.... Navigate to your Views file, and click the Add but-

ton. When this list drops down, check the “Copy items into destination

group’s folder (if needed)” checkbox, and set Reference Type to Relative

to Project using the drop-down menu. This will enable us to access the

file by its name without providing a long path. Click the Add button to

finish.

Up until now your code is unchanged. We’ve moved both the magic

number and the decision making into this new configuration file we’ve

created. Now let’s use it in MyWindowController.m. We can replace both

the loadIconView and loadTableView methods with this method:

Download ChangingViews/HelloApplication42alt/MyWindowController.m

-(void)loadView {

NSArray *viewArray = [NSArray arrayWithContentsOfFile:

[[NSBundle mainBundle] pathForResource:@"Views"

ofType:nil]];

NSDictionary *view = [viewArray objectAtIndex:

[[[NSUserDefaults standardUserDefaults]

objectForKey:@"TagForView"] intValue]];

self.ac =

[[NSClassFromString([view objectForKey:@"class"]) alloc]

initWithNibName:[view objectForKey:@"nib"] bundle:nil];

[self setUpView];

}

We start by creating our array of dictionaries from the Views file. Then

we use the value of the TagForView preference to select which dictionary

we want. Then we create a new view controller using the class name

and nib name stored in the dictionary.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication42alt/MyWindowController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=291

CUSTOMIZING THE MENU BAR 292

We can delete the shouldLoadIconView method and remove the if state-

ment from the initWithWindowNibName: method:

Download ChangingViews/HelloApplication42alt/MyWindowController.m

-(id) initWithWindowNibName:(NSString *)windowNibName {

if (self = [super initWithWindowNibName:windowNibName]) {

[self loadView];

[self showWindow:self];

}

return self;

}

@end

Click Build & Run, and the application works the same as our solution.

We’ve eliminated the magic number and the decision making. I’m not

sure whether the code is easier to understand. I’m going to continue

with the version of the code we had before this section.2

18.6 Customizing the Menu Bar

When you run our app, you see a menu bar that is mostly filled with

items that are irrelevant to the user. There’s nothing in the File, Edit, or

Format menus that anyone would ever need. Let’s get rid of them.

Double-click the MainMenu.xib file. In the Document window, select and

delete one at a time the NSMenuItems labeled File, Edit, Format, Window,

and Help.3 Your main menu should look like this is the Document win-

dow:

Change the two bottom items. Select the one labeled Show Toolbar, and

open the Attributes inspector. Change the title to Show Table View, and

leave its keyboard equivalent as EDT (Option-Command-T). Similarly,

2. You can continue with this version of the code for the remainder of the chapter. I

haven’t detailed the changes that are required, but my background as a mathematician

compels me to say at this point, “It is left as an exercise for the reader.”
3. We could have kept the Window menu for the Minimize command, but I want to focus

on the View menu.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication42alt/MyWindowController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=292

MOVING THE MAIN WINDOW 293

select the Customize Toolbar... menu item, and change its title to Show

Icon View. Set its keyboard equivalent to ED I (Option-Command-I).

Save, and then click Build & Run. Our new menu bar looks pretty good:

The items and their keyboard shortcuts are there. They’re grayed out

because they currently can’t be selected by the user. They don’t do

anything yet.

18.7 Moving the Main Window

When a user selects one of the two menu items, the obvious object

to respond is the window controller. The window controller is set up

to swap one view for another. Unfortunately, the menu items and the

window controller are in separate nibs, so we can’t just create an action

in the window controller and wire it to a menu item.

Open MainMenu.xib in Interface Builder. Drag an instance of MyWindow-

Controller from the Classes tab of the Library into the Document win-

dow. Now we have to adjust how we load our window controller and

MainWindow nib.

The applicationDidFinishLaunching: method in HelloApplicationAppDelegate

contains this single line:

[[MyWindowController alloc] initWithWindowNibName:@"MainWindow"];

We need to remove it. By dragging MyWindowController into the Main-

Menu, we are instantiating it there. We shouldn’t create a separate

instance of it in the app delegate, or we will be looking at one instance

and sending messages to another instance. Get rid of this line so that

the applicationDidFinishLaunching: method is empty.

If you click Build & Run at this point, the application will launch, but

you won’t see a window. Take a look at MyWindowController.m. It has the

method initWithWindowNibName:, but there’s nothing left to tell it what

its nib name is.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=293

EXERCISE: SWITCHING VIEWS (MOSTLY) 294

Add this implementation of init just below the initWithWindowNibName:

method:

Download ChangingViews/HelloApplication43/MyWindowController.m

-(id) init {

return [self initWithWindowNibName:@"MainWindow"];

}

@end

This simple call provides all the help we need. It says that when it’s time

to create a new instance of MyWindowController, then the nib containing

the window it controls is MainWindow.

Click Build & Run, and the window should again be visible at launch.

18.8 Exercise: Switching Views (Mostly)

Change the loadIconView and loadTableView methods in MyWindowCon-

troller.m to actions, and connect them to your menu items. Our applica-

tion should mostly work. I say “mostly” because every time you switch

back to the Icon view, the first application that will be displayed is Hel-

loApplication. We’ll have to fix that next.

18.9 Solution: Switching Views (Mostly)

Add declarations for the two actions to MyWindowController.h:

Download ChangingViews/HelloApplication44/MyWindowController.h

#import <Cocoa/Cocoa.h>

#import "ActivityMonitorDelegate.h"

@class CurrentApp;

@interface MyWindowController : NSWindowController {

CurrentApp *currentApp;

NSViewController <ActivityMonitorDelegate> *ac;

}

@property CurrentApp *currentApp;

@property NSViewController <ActivityMonitorDelegate> *ac;

-(IBAction) loadIconView:(id) sender;

-(IBAction) loadTableView: (id) sender;

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication43/MyWindowController.m
http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication44/MyWindowController.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=294

SOLUTION: SWITCHING VIEWS (MOSTLY) 295

Make the corresponding changes to the method signatures in the imple-

mentation file:

Download ChangingViews/HelloApplication44/MyWindowController.m

-(IBAction) loadIconView:(id) sender {

self.ac = [[IconViewController alloc]

initWithNibName:@"IconView" bundle:nil];

[self setUpView];

}

-(IBAction) loadTableView: (id) sender {

self.ac = [[ActivityController alloc]

initWithNibName:@"ActivityView" bundle:nil];

[self setUpView];

}

You’ll also need to add self as a parameter when you call these methods

from inside initWithWindowNibName::

Download ChangingViews/HelloApplication44/MyWindowController.m

if ([self shouldLoadIconView])[self loadIconView:self];

else [self loadTableView:self];

Save your work, and open MainMenu.xib in Interface Builder. Use the

Connections inspector to connect these actions to their corresponding

menu items. Save.

Click Build & Run, and you should be able to toggle back and forth

between the two views using the menu items or the keyboard equiv-

alents. Every time we toggle back to the Icon view, it displays the

launch notification for HelloApplication. The problem is in the setUpView

method.

Download ChangingViews/HelloApplication44/MyWindowController.m

-(void) setUpView {

self.currentApp = [[CurrentApp alloc] init];

self.currentApp.delegate = self.ac;

[self.window setContentSize:[self.ac.view bounds].size];

self.window.contentView = self.ac.view;

[self.ac applicationDidLaunch:

[NSRunningApplication currentApplication]];

}

The setUpView method was meant to be called only once when the

application first launches. Now it is called every time we switch views.

There’s no reason to create a fresh instance of CurrentApp every time

we switch views. We also only want to hard-code the fact that we are

launching the current application the first time through.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication44/MyWindowController.m
http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication44/MyWindowController.m
http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication44/MyWindowController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=295

LAZY INITIALIZATION 296

We’ll solve the first problem with lazy initialization and the second prob-

lem by figuring out whether the current app is running.

18.10 Lazy Initialization

We don’t want to create a CurrentApp instance every time we switch

views. We want to instantiate CurrentApp only the first time we need it.

Even though our getter and setter for the currentApp property are gen-

erated for us, we are free to override them. We’ll override the getter

method currentApp like this:

Download ChangingViews/HelloApplication45/MyWindowController.m

-(CurrentApp *) currentApp {

if (!currentApp) {

self.currentApp = [[CurrentApp alloc] init];

}

return currentApp;

}

If the currentApp instance variable is not nil, then we just return it. If it

doesn’t exist yet, then we create an instance of CurrentApp and assign

it to our property using the setter.

Update the init method in CurrentApp.m to set its app property to be the

current application:

Download ChangingViews/HelloApplication45/CurrentApp.m

-(id) init {

if (self = [super init]) {

[self registerNotifications];

[self initializeMethodDictionary];

self.app = [NSRunningApplication currentApplication];

}

return self;

}

Now we have a single instance of CurrentApp throughout the lifetime of

our application, and it always knows what the launching or terminating

application is.

There are many ways to figure out whether our current application

is launching or terminating. For example, we could add a property to

CurrentApp to hold this information. We could save the notification in

the view controller and key off of its type. I’ve taken a simpler approach.

Since we know what the app is that just launched or terminated, we can

check to see whether it is in the array of running applications.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication45/MyWindowController.m
http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication45/CurrentApp.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=296

LAZY INITIALIZATION 297

Download ChangingViews/HelloApplication45/MyWindowController.m

-(void)launchOrTerminate {

if ([[[NSWorkspace sharedWorkspace] runningApplications]

containsObject:self.currentApp.app]) {

[self.ac applicationDidLaunch:self.currentApp.app];

} else [self.ac applicationDidTerminate:self.currentApp.app];

}

Finally—and I do mean finally—we need to revise the setUpView method.

Remove the lines at the top and bottom that created a new CurrentApp

object every time through and called the applicationDidLaunch: with the

current running application as its parameter. Also, insert this high-

lighted line that calls out launchOrTerminate:

Download ChangingViews/HelloApplication45/MyWindowController.m

-(void) setUpView {

self.currentApp.delegate = self.ac;

[self.window setContentSize:[self.ac.view bounds].size];

[self launchOrTerminate];

self.window.contentView = self.ac.view;

}

Click Build & Run. You can now switch between the views as often as

you want, and the latest activity will be displayed in the Icon view, and

the list of all running applications that you haven’t banished will be

displayed in the table view.

There’s so much more we could do. If this were a shipping application,

I’d probably remove the preference to set your view on startup and

replace it by remembering the view the user displayed the last time

they quit the application. I might add animation to the Icon view as

applications launch and terminate. There’s no end to the little touches

we could add, but it’s time to say goodbye to this example.

We’ve used it to cover a lot. We responded to notifications and created

some of our own. We created and used our own protocol and delegate.

We worked with dictionaries and tables. We saved data and worked

with preferences. We split our nib into small pieces, created a custom

view, and swapped nibs in and out for our preference window and for

switching views.

The example has served us well, but it’s time to move on to our next

running example that will carry us through various aspects of Bindings

and Core Data.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication45/MyWindowController.m
http://media.pragprog.com/titles/dscpq/code/ChangingViews/HelloApplication45/MyWindowController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=297

Chapter 19

Key Value Coding
It’s so easy to miss the point of Key Value Coding. Most people focus on

the mechanism and not on what it allows you to do. Let’s get some of

the how out of the way so that we can think a bit more about the why

and when.

Suppose you have a class named PragBook, and it has a property title.

Then if jrport is an instance of PragBook, you would get its title like this:

NSString *bookTitle = [jrport title];

You might also use this dot syntax to access the property.

NSString *bookTitle = jrport.title;

With Key Value Coding, which we’ll call KVC from now on, you would

write something more like this:

NSString *bookTitle = [jrport valueForKey:@"title"];

That looks horrible. There are so many ways in which that is clearly

worse than the direct approach. First, it’s more typing. Second, we’re

passing the name of the variable in as a string, so there is no compile-

time checking. Third, why would anyone come up with such a stupid

way of accessing variables?

KVC is the first step in our path to understanding Key Value Observing,

Bindings, and Core Data. In this chapter, you’ll get a feel for what it is,

how you’ll use it, and why you’ll want to use it.

TREATING OBJECTS LIKE DICTIONARIES 299

19.1 Treating Objects Like Dictionaries

Once we calm down, we remember that we’ve seen notation like val-

ueForKey: before. This looks a lot like the objectForKey: method we used

when we worked with dictionaries.

We started out by pulling out specific entries from the dictionary using

hard-coded keys. When we got to Chapter 16, Displaying Data in a

Table, everything changed. We were filling tables by keying off the col-

umn identifier. This meant that we filled the table with the contents of

these dictionaries without writing a lot of conditional code. With KVC,

we can pull the same tricks with objects and their variables.1

We’re going to build an application that lets you type author or title into

one text field, and the author’s name or the book’s title will appear in

the other text field. The GUI will look like this:

Create a new Cocoa application named Bookshelf, and add an Objective-

C class to it named PragBook with this header:

Download KVC/Bookshelf1/PragBook.h

#import <Cocoa/Cocoa.h>

@interface PragBook : NSObject {

NSString *title;

NSString *author;

}

@property (copy) NSString *title, *author;

@end

While you’re at it, synthesize the accessors title, setTitle:, author, and

setAuthor: in the implementation file.

1. You saw the valueForKey: method briefly in Section 16.8, Previews of Coming Attrac-

tions, on page 266.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf1/PragBook.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=299

TREATING OBJECTS LIKE DICTIONARIES 300

Download KVC/Bookshelf1/PragBook.m

#import "PragBook.h"

@implementation PragBook

@synthesize title, author;

@end

These give us the class PragBook with two instance variables, title and

author, and their corresponding accessor methods. We should be able

to key on those variable names somehow. We should be able to ask the

value of title in the same way we returned an object from a dictionary.

That’s what KVC gives us. It allows us to use valueForKey: to return the

value that corresponds to a variable’s name passed in as a string.2 It’s

kind of ingenious how it works. Say your code calls this:

[jrport valueForKey:@"title"];

The runtime searches the PragBook class for an instance method named

getTitle, title, or isTitle in that order. The first one it finds is invoked. If none

of these exists, the next step is to search for methods that correspond

to collections—we’ll skip that step for now since title is not a collection.

So, if none of the simple accessor methods exists, the next step is to try

to directly find the value of the ivar.3 If the object’s method accessIn-

stanceVariablesDirectly returns YES, then the runtime searches for an

instance variable named _title, _isTitle, title, and isTitle, in that order, and

returns the value of the variable.

You should know two more things. First, I’ve skimped on some of the

details. If the variable is not a pointer to an object, then there’s some

conversion to either an NSNumber if that’s appropriate or an NSValue if

it’s not. Second, if no method or variable is found, then the method

valueForUndefinedKey: is invoked.

Notice that by using properties we’ve written almost no code and still

satisfied the conditions needed to provide the support for KVC. Now

let’s use this class in a simple application.

2. We’ve already done something similar for methods. We’ve specified the name of meth-

ods we want invoked under certain circumstances by passing in their names as strings.
3. You’ll hear “i-var” pronounced to rhyme with “my car” for instance variable.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf1/PragBook.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=300

GETTING VARIABLES USING KVC 301

19.2 Getting Variables Using KVC

Add another Objective-C class named BookshelfController that extends

NSViewController. For now, BookshelfController will contain a single Prag-

Book instance. We’ll need an action that is called when the user has

finished entering author or title. We’ll also need an outlet so we can

write the title or author’s name in the second text field. You’ll see all

this in the header file for BookshelfController.

Download KVC/Bookshelf1/BookshelfController.h

#import <Cocoa/Cocoa.h>

@class PragBook;

@interface BookshelfController : NSViewController {

NSTextField *valueField;

PragBook *book;

}

@property IBOutlet NSTextField *valueField;

@property PragBook *book;

-(IBAction) getValue:(id) sender;

@end

The implementation will create a single book instance and respond to

the user typing author or title in the top text field by filling the bottom

text field with the author’s name or the title of the book.

Download KVC/Bookshelf1/BookshelfController.m

#import "BookshelfController.h"

#import "PragBook.h"

@implementation BookshelfController

@synthesize book, valueField;

-(IBAction) getValue:(id) sender {

[self.valueField setStringValue:

[self.book valueForKey:[sender stringValue]]];

}

-(PragBook *) book {

if (!book) {

self.book = [[PragBook alloc] init];

self.book.title = @"Manage Your Project Portfolio";

self.book.author = @"Johanna Rothman";

}

return book;

}

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf1/BookshelfController.h
http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf1/BookshelfController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=301

GETTING VARIABLES USING KVC 302

I’m going to take a minute to finish describing the plumbing you need

to add to make this app work, and then I’ll come back and make a huge

deal out of the getValue: action.

Create a new view-based nib file, and name it Bookshelf. To create your

GUI, arrange a label and two text fields like the picture you just saw.

Use the Attributes inspector to make the second field not selectable and

to have the action on the first text field sent on Enter only.

Use the Identity inspector to set your File’s Owner’s type to be Bookshelf-

Controller. Next use the Connections inspector to connect the valueField

outlet to the bottom text field and the getValue: action to the top text

field. Connect the view outlet to the Custom View. Save.

Create an instance of our view controller, and load the Bookshelf nib

in your app delegate’s applicationDidFinishLaunching: method. Resize the

window, and set its content view to be our view controller’s view.

Download KVC/Bookshelf1/BookshelfAppDelegate.m

#import "BookshelfAppDelegate.h"

#import "BookshelfController.h"

@implementation BookshelfAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

BookshelfController * bc = [[BookshelfController alloc]

initWithNibName:@"Bookshelf" bundle:nil];

[self.window setContentSize:[bc.view bounds].size];

self.window.contentView = bc.view;

}

@end

Click Build & Run. Type title into the top text field, and when you hit F,

you’ll see “Manage Your Project Portfolio” in the bottom text field. Type

author instead, and you’ll see “Johanna Rothman” instead. We’ve used

KVC to get the value of a variable. I love the simplicity and flexibility

contained in this one call in the getValue: method.

Download KVC/Bookshelf1/BookshelfController.m

[self.valueField setStringValue:

[self.book valueForKey:[sender stringValue]]];

Let’s work our way from the inside out. The getValue: method is called

when the user presses Enter after typing author or title. The first text

field passes a pointer to itself along as the sender argument, and we use

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf1/BookshelfAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf1/BookshelfController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=302

UNDEFINED KEYS 303

that to get the string that the user typed in. Next, we use that string

as the key and look for the value of a property with that name in book.

Finally, we pass this value on to the second text field to be displayed as

a string.

Suppose you add a property to PragBook for the subtitle or another for

a praise quote like “I laughed, I cried, it moved me.” You don’t have

to make any change to the nib file, and you don’t have to make any

change to the getValue: method. You only need to change the PragBook

class.

19.3 Undefined Keys

There’s a fundamental problem with our application. Though we’ve

prompted the user to type author or title into that first text field, they

can type anything they want. Try it. Type asdf into the first text field.

The user won’t get any feedback in the window. They don’t know that

they’ve done anything wrong. On the other hand, we, as developers, can

see this in the debugger console:

Exception detected while handling key input.

[<PragBook 0x1001068f0> valueForUndefinedKey:]:

this class is not key value coding-compliant for the key asdf.

To fix this, our PragBook has to implement the method valueForUndefined-

Key:. In this case, we’ll return an error message as a string. If need be,

you can return different objects based on which keys the user typed in.

In this case, we’re returning the same string for all errors.

Download KVC/Bookshelf2/PragBook.m

#import "PragBook.h"

@implementation PragBook

@synthesize title, author;

-(id) valueForUndefinedKey:(NSString *)key {

return [NSString stringWithFormat:@"No property with key %@.", key];

}

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf2/PragBook.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=303

EXERCISE: SETTING VARIABLES USING KVC 304

With this simple change, we display the error in the second text field.

Although it’s nice to have this facility for dealing with unwanted input,

you’re better off designing an interface that doesn’t allow the user to

enter undefined keys. You could do this with a prepopulated drop-down

list, or you could use an interface with fixed fields—one for each prop-

erty you want to display.

19.4 Exercise: Setting Variables Using KVC

There is the setter method setValue:forKey: paired with the getter method

valueForKey:. Add an action to BookshelfController named setValue:.

In this method, you set whichever property’s name appears in the top

text field to be the value that is entered in the bottom text field. In

other words, the user is entering a key-value pair where the key (either

author or title) is the contents of the top text field, and the value you are

assigning that key is entered in the bottom text field.

19.5 Solution: Setting Variables Using KVC

Granted, this is a silly example, but it illustrates getting and setting

properties using KVC. You’ll need to add an outlet and an action to the

BookshelfController header file:

Download KVC/Bookshelf3/BookshelfController.h

#import <Cocoa/Cocoa.h>

@class PragBook;

@interface BookshelfController : NSViewController {

NSTextField *keyField;

NSTextField *valueField;

PragBook *book;

}

@property IBOutlet NSTextField *valueField, *keyField;

@property PragBook *book;

-(IBAction) getValue:(id) sender;

-(IBAction) setValue:(id) sender;

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf3/BookshelfController.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=304

KVC AND DICTIONARIES 305

Connect your new outlet and action in the nib file. Set your bottom text

field to be selectable and editable and to send its value on Enter.

Synthesize the keyField property in the implementation file, and imple-

ment the setValue: action like this:

Download KVC/Bookshelf3/BookshelfController.m

-(IBAction) setValue:(id) sender {

[self.book setValue:[sender stringValue]

forKey:[self.keyField stringValue]];

}

Now you can get and set the value of any defined property as if you were

using keys and values in a dictionary. Let’s take that a step further.

19.6 KVC and Dictionaries

So, we’ve seen that Key Value Coding lets us treat properties and their

values as if they were entries in a dictionary. Let’s take that a step

further—it turns out to be trivial to use a dictionary to fill an object’s

properties or to create a dictionary from a class so long as the keys

match the names of the properties.

Let’s transform our running Bookshelf example to instantiate our Prag-

Book and fill it with values pulled from a dictionary. This time, instead of

initializing the properties in book, we create a dictionary named bookInfo

with the keys title and author. We now set the values of book’s properties

all at once from the bookInfo dictionary like this:

Download KVC/Bookshelf4/BookshelfController.m

-(PragBook *) book {

if (!book) {

self.book = [[PragBook alloc] init];

NSDictionary *bookInfo =

[NSDictionary dictionaryWithObjectsAndKeys:

@"Manage Your Project Portfolio", @"title",

@"Johanna Rothman", @"author", nil];

[self.book setValuesForKeysWithDictionary: bookInfo];

}

return book;

}

That’s it.

Going the other way is only slightly more involved. We need to pass

in an array that is filled with the new dictionary’s keys. These are the

same as the object properties we want to capture in this dictionary. In

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf3/BookshelfController.m
http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf4/BookshelfController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=305

KEYPATHS FOR NAVIGATING A CLASS HIERARCHY 306

our case, we’ll capture both of them. Add this line to setValue: to create

our dictionary and log it whenever the user changes the value of the

title or author:

Download KVC/Bookshelf5/BookshelfController.m

-(IBAction) setValue:(id) sender {

[self.book setValue:[sender stringValue]

forKey:[self.keyField stringValue]];

NSLog(@"%@", [self.book dictionaryWithValuesForKeys:

[NSArray arrayWithObjects:@"author", @"title", nil]]);

}

Here I’ve changed the value of the author variable from Johanna Roth-

man to JR:

Bookshelf[6388:a0f] {

author = JR;

title = "Manage Your Project Portfolio";

}

Again, this example seems a little silly in this simple form, but you

could easily think of cases where this facility would be useful. Imag-

ine, for example, that you want to save your book information to disk

whenever the value is changed. You already know how to read and write

dictionaries to disk, and now you know how to convert a KVC-compliant

class to and from a dictionary. This allows you to store and retrieve any

KVC-compliant class.

19.7 Keypaths for Navigating a Class Hierarchy

For now our bookshelf has a single book. Now let’s add a single chapter

to the book. The Chapter object will have variables for storing the title

and the number of pages. My goal is to show you how to traverse a

hierarchy with KVC by using keypaths in place of keys.

Create a new Objective-C class named Chapter. Here’s the header file:

Download KVC/Bookshelf6/Chapter.h

#import <Cocoa/Cocoa.h>

@interface Chapter : NSObject {

NSString *chapterTitle;

NSNumber *pageCount;

}

@property(copy) NSString *chapterTitle;

@property(copy) NSNumber *pageCount;

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf5/BookshelfController.m
http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf6/Chapter.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=306

KEYPATHS FOR NAVIGATING A CLASS HIERARCHY 307

Again, we’ll do nothing more than synthesize the properties in the

implementation file:

Download KVC/Bookshelf6/Chapter.m

#import "Chapter.h"

@implementation Chapter

@synthesize chapterTitle, pageCount;

@end

Now pop up a level and add an instance of Chapter to PragBook:

Download KVC/Bookshelf6/PragBook.h

#import <Cocoa/Cocoa.h>

@class Chapter;

@interface PragBook : NSObject {

NSString *title;

NSString *author;

Chapter *chapter;

}

@property (copy) NSString *title, *author;

@property Chapter *chapter;

@end

Synthesize the accessors for chapter. Create and initialize chapter in

PragBook’s init method:

Download KVC/Bookshelf6/PragBook.m

#import "PragBook.h"

#import "Chapter.h"

@implementation PragBook

@synthesize title, author, chapter;

-(id)init {

if (self=[super init]) {

self.chapter = [[Chapter alloc] init];

}

return self;

}

-(id) valueForUndefinedKey:(NSString *)key {

return [NSString stringWithFormat:@"No property with key %@.", key];

}

@end

Now our BookshelfController object has a single PragBook instance, which

in turn now has a single instance of Chapter that has properties named

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf6/Chapter.m
http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf6/PragBook.h
http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf6/PragBook.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=307

KEYPATHS FOR NAVIGATING A CLASS HIERARCHY 308

chapterTitle and pageCount. Let’s use KVC to set the values of the chap-

ter’s title and page count in the book method in BookshelfController.m. I’ve

used setValue:forKeyPath: twice in the highlighted lines.

Download KVC/Bookshelf6/BookshelfController.m

-(PragBook *) book {

if (!book) {

self.book = [[PragBook alloc] init];

NSDictionary *bookInfo =

[NSDictionary dictionaryWithObjectsAndKeys:

@"Manage Your Project Portfolio", @"title",

@"Johanna Rothman", @"author", nil];

[self.book setValuesForKeysWithDictionary: bookInfo];

[self.book setValue:@"Preface"

forKeyPath:@"chapter.chapterTitle"];

[self setValue:[NSNumber numberWithInt:4]

forKeyPath:@"book.chapter.pageCount"];

}

return book;

}

I’ve used two different paths just for illustration. When I start at book, I

use the keypath chapter.chapterTitle. When I start at self (in other words

at the BookshelfController level), the keypath is book.chapter.pageCount.

Notice that we use the method setValue:forKeyPath: where we used to use

the method setValue:forKey:. You can actually view the keys as a very

short keypath and use setValue:forKeyPath: in our setValue: action.

Download KVC/Bookshelf6/BookshelfController.m

-(IBAction) setValue:(id) sender {

[self.book setValue:[sender stringValue]

forKeyPath:[self.keyField stringValue]];

}

Similarly, the getter valueForKeyPath: is used where we used to use val-

ueForKey:. This will let us enter keys or keypaths where before we could

only enter keys.

Download KVC/Bookshelf6/BookshelfController.m

-(IBAction) getValue:(id) sender {

[self.valueField setStringValue:

[self.book valueForKeyPath:[sender stringValue]]];

}

So now, in addition to entering the author and title keys in the top

text field, we can safely use the keypaths “chapter.chapterTitle” and

“chapter.pageCount” to get and set those values as well.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf6/BookshelfController.m
http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf6/BookshelfController.m
http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf6/BookshelfController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=308

EXERCISE: FILLING TABLES USING KVC 309

Keypaths are a lot less mysterious now that we have properties and dot

notation. Key Value Coding works even when we don’t have properties

so long as your class is Key Value Coding–compliant for that key. The

Apple docs explain that in the case of an attribute named “key,” that

means you either need a getter named key or isKey or have an ivar named

key or _key. If you need a setter, its name should be setKey:, which is

a method that does not perform validation. We haven’t validated our

input, but if you need to, the validation belongs in the validateKey:error:

method.

19.8 Exercise: Filling Tables Using KVC

KVC allows us to fill a table as easily as we filled one from a dictionary

earlier.

Populate the table from an array of chapters that you add to the Prag-

Book class in place of the chapter property we have there now. The Book-

shelfController will be the table view’s data source and delegate. Which

methods do you need to implement? How should you implement them?

19.9 Solution: Filling Tables Using KVC

Let’s start with the Bookshelf nib file. Drag a table view into your Docu-

ment window. You can delete your custom view along with its label and

text fields. Use the Attributes inspector to set the first column’s identi-

fier to chapterTitle and the second column’s identifier to pageCount. Be

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=309

SOLUTION: FILLING TABLES USING KVC 310

sure to set the table view’s delegate and data source to the BookshelfCon-

troller, and connect the BookshelfController’s view outlet to the bordered

scroll view. Save.

If you click Build & Run, your application should launch, and the win-

dow should appear with your table view inside, but you will see this

error in the Console:

Illegal NSTableView data source (<BookshelfController: 0x200092c60>).

Must implement numberOfRowsInTableView: and

tableView:objectValueForTableColumn:row:

Assume that PragBook has a property named chapters that is an NSArray

filled with Chapter objects. Then we implement numberOfRowsInTable-

View: by returning the number of elements in the chapters array. There

is no benefit in using KVC for this:

Download KVC/Bookshelf7/BookshelfController.m

-(NSInteger) numberOfRowsInTableView:(NSTableView *) aTableView {

return [self.book.chapters count];

}

Use KVC to fill each cell of the table view:

Download KVC/Bookshelf7/BookshelfController.m

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex {

return [[self.book.chapters objectAtIndex:rowIndex]

valueForKey:[aTableColumn identifier]];

}

To round out this application, add these convenience methods to Chap-

ter for creating new objects:

Download KVC/Bookshelf7/Chapter.m

-(id) initWithTitle:(NSString *) title pageCount: (int) count {

if (self=[super init]) {

self.chapterTitle = title;

self.pageCount = [NSNumber numberWithInt:count];

}

return self;

}

+(id) chapterWithTitle:(NSString *) title pageCount: (int)count {

return [[Chapter alloc] initWithTitle:title

pageCount:count];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf7/BookshelfController.m
http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf7/BookshelfController.m
http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf7/Chapter.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=310

ARRAYS AND KVC 311

Add an array named chapters to PragBook. You can remove the chapter

variable of type Chapter. Fill the chapters array with a bunch of chapters

in the init method of PragBook.4

Download KVC/Bookshelf7/PragBook.m

-(id)init {

if (self=[super init]) {

self.chapters = [[NSArray alloc] initWithObjects:

[Chapter chapterWithTitle:@"Preface"

pageCount:3],

[Chapter chapterWithTitle:@"Meet Your Project Portfolio"

pageCount:12],

[Chapter chapterWithTitle:@"Create Your First Draft"

pageCount:10],

[Chapter chapterWithTitle:@"Evaluate Your Projects"

pageCount:14],

[Chapter chapterWithTitle:@"Rank the Portfolio"

pageCount:20], nil];

}

return self;

}

This should be enough information for you to get this project up and

working. You’ll need to add the appropriate declarations to the header

files and fill out some of the methods. You also should remove the out-

lets and actions from BookshelfController. 5 If you get stuck, remember

you can consult KVC/Bookshelf7 in the code download.

19.10 Arrays and KVC

In the previous section, we picked off specific elements in our array of

chapters like this:

[[self.book.chapters objectAtIndex:rowIndex]

valueForKey:[aTableColumn identifier]];

This first part of the code picks off a particular chapter, and the second

selects one of its properties. We can do more. For example, we can

create an array that consists of all the chapter titles at once using this

call:

[self.book.chapters valueForKey:@"chapterTitle"]

4. Remove the code for setting up a single chapter title and page count from the book

method.
5. Watch for the easily made mistake of using book.chapter instead of book.chapters. You

should have removed the variable named chapter and so can search to make sure you’re

using the plural version chapters only.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf7/PragBook.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=311

ARRAYS AND KVC 312

There’s more to this than first might appear. We have an array named

chapters whose entries are all objects of type Chapter. Each chapter has

two properties: chapterTitle and pageCount. Imagine the steps you would

have to go through to create this array in the past. You would have to

create the new array and copy the elements over from the old array. It’s

not a huge deal, but KVC makes it cleaner and easier.

But that’s not all.

You can operate on these new collections and perform all sorts of cal-

culations. The pageCount property, for example, is a number, so you

can calculate the sum or the average of all the page counts in chapters.

Here’s how you would calculate the sum:

[self.book valueForKeyPath:@"chapters.@sum.pageCount"]

Isn’t that cool? You just insert @sum before pageCount in the keypath.

In general, you insert the operator between the keypath to the array

and the keypath to the property.

There are two types of operators. The first type operates on a collec-

tion of numbers and returns the average, maximum, minimum, or

sum (respectively, @avg, @max, @min, and @sum). The second type oper-

ates on collections and returns their @count, @distinctUnionOfArrays, @dis-

tinctUnionOfObjects, @distinctUnionOfSets, @unionOfArrays, @unionOfObjects,

and @unionOfSets.

We can take some of these for a ride in our application. Declare an

instance method named createReport in the BookshelfController’s header

file, and implement it like this:

Download KVC/Bookshelf8/BookshelfController.m

-(void)createReport {

NSLog(@"There are %@ chapters.",

[self valueForKeyPath:@"book.chapters.@count.chapterTitle"]);

NSLog(@"The titles are: %@",

[self.book.chapters valueForKey:@"chapterTitle"]);

NSLog(@"This book has %@ pages so far.",

[self.book valueForKeyPath:@"chapters.@sum.pageCount"]);

NSLog(@"The longest chapter is %@ pages long.",

[self valueForKeyPath:@"book.chapters.@max.pageCount"]);

NSLog(@"The average chapter length is %@.",

[self.book.chapters valueForKeyPath:@"@avg.pageCount"]);

}

You might notice that again I’ve used different anchors for the keypaths

to show you where to insert the operator. Call this method from the end

of the applicationDidFinishLaunching: method in your app delegate.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf8/BookshelfController.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=312

ARRAYS AND KVC 313

Download KVC/Bookshelf8/BookshelfAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

BookshelfController * bc = [[BookshelfController alloc]

initWithNibName:@"Bookshelf" bundle:nil];

[self.window setContentSize:[bc.view bounds].size];

self.window.contentView = bc.view;

[bc createReport];

}

Click Build & Run, and you should see something like this in your

Console:

There are 5 chapters.

The titles are: (

"Preface",

"Meet Your Project Portfolio",

"Create Your First Draft",

"Evaluate Your Projects",

"Rank the Portfolio"

)

This book has 59 pages so far.

The longest chapter is 20 pages long.

The average chapter length is 11.8.

So, have I convinced you? Can you see that KVC is about much more

than replacing [foo bar] with [foo valueForKey:@"bar"]? You can read more

about KVC in Apple’s Key-Value Coding Programming Guide [App08g].

KVC brings you a lot of flexibility, but that’s only the half of it. The real

power of KVC is in the other technologies that it enables. In the next

chapter, we’ll look at the other foundational piece of this puzzle: Key

Value Observing.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVC/Bookshelf8/BookshelfAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=313

Chapter 20

Key Value Observing
When I was a kid, we’d hope for snow days. These were days when it

snowed so much that school was canceled and we could spend the day

playing outside in the snow. Back then when it snowed, we’d listen to

the radio or watch television for the list of school closings. We had to

pick our school out of the list—the radio personality or TV weather man

didn’t know about us or which school we were listening for.

Now, with my daughter, things are different. We can still listen for

school closings on radio and television, but we can also register with

a local television channel’s website. Each year I go to the site and enter

my email address and the specific school I’m interested in.

I’m registering as an observer. My email is on a list that is notified when

the value of Cocoa Valley Schools changes from open to any other value.

In this chapter, we’ll look at Key Value Observing (KVO), which is your

Cocoa application’s version of the Observer pattern.

20.1 Codeless Connections

Let’s start this chapter with a basic application.

On the left you have a stepper, and on the right you have a text field.

As you click the top part of the stepper, the number in the text field

increases by one at a time, and if you click the bottom part of the

stepper, the number in the text field decreases.

CODELESS CONNECTIONS 315

How would you code this? Actually, let’s start with no code at all.

Create a new Cocoa project named Counter. We’ll use a single nib for

this example, so double-click MainMenu.xib. Drag an NSStepper and a text

field into the window, and resize them so they look like our picture. An

NSStepper contains the value you will want to display in the text field.

All you need to do is set the limits and make the connection.

For the limits to the stepper, let’s just use the default values. You can

click the stepper and use the Attributes inspector to see that the step-

per values start at 0 and go between 0 and 100 in steps of size 1. Select

the Behavior checkbox so that the value will wrap.

Now let’s make the connection. Select the stepper. Control-click the cir-

cle to the right of selector in Sent Actions in the Connections inspector.

Drag the connection to the text field and release, and you should see

these options:

Choose takeIntegerValueFrom:. As a final step, click the text field, and

use the Attributes inspector to set its title to 0. This way, when the user

runs your application, the initial value will appear. Save your work, and

return to Xcode. Click Build & Run. You have a working counter with

no code.

So far, there is no observing going on. Right now when the user clicks

the stepper, the stepper sends a message to the text field. This is the

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=315

A TARGET -ACTION COUNTER 316

traditional target-action approach. In the next section, we’ll make this

even more explicit with code so you can see the direction of the message

being sent. Then we’ll turn the model on its head and introduce an

observer.

20.2 A Target-Action Counter

Before we set up an observer, I’m going to have you expand this exam-

ple by inserting two objects between the stepper and the text field to

illustrate that we are currently using target action. The stepper will

send a message to an UpOrDown object, which will send a message to

a Display object, which will send a message to the text field. The flow is

something like this:

This might feel like a step in the wrong direction, but I think it will

help you better see what KVO gives you when we get there in the next

section.

Create a new Objective-C class, and name it Display. This class will need

an outlet that you’ll connect to the text field, and it will need a method

that can be called by the UpOrDown object to pass in the new value for

the text field.

Notice that there is no property for the displayField, so we indicate that it

is an IBOutlet when we declare the variable. If there was a corresponding

property, we technically could leave the IBOutlet label with the declara-

tion of the instance variable, but it is better form to move it to the

property declaration as we’ve done before.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=316

A TARGET -ACTION COUNTER 317

Download KVO/Counter2/Display.h

#import <Cocoa/Cocoa.h>

@interface Display : NSObject {

IBOutlet NSTextField *displayField;

}

-(void)updateDisplay: (NSNumber *) newValue;

@end

The implementation of Display contains nothing more than the method

that updates the text field:

Download KVO/Counter2/Display.m

#import "Display.h"

@implementation Display

-(void)updateDisplay: (NSNumber *) value{

[displayField setIntegerValue:[value integerValue]];

}

@end

Also, create a new Objective-C class named UpOrDown to receive the

action from the stepper and pass it along to the Display object. UpOrDown

will need an outlet to connect to the Display and an action method:

Download KVO/Counter2/UpOrDown.h

#import <Cocoa/Cocoa.h>

@class Display;

@interface UpOrDown : NSObject {

IBOutlet Display *display;

}

-(IBAction) step:(id) sender;

@end

Implement the action to call the Display’s updateDisplay: method:

Download KVO/Counter2/UpOrDown.m

#import "UpOrDown.h"

#import "Display.h"

@implementation UpOrDown

-(IBAction) step: (id) sender {

[display updateDisplay:

[NSNumber numberWithInteger:[sender integerValue]]];

}

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVO/Counter2/Display.h
http://media.pragprog.com/titles/dscpq/code/KVO/Counter2/Display.m
http://media.pragprog.com/titles/dscpq/code/KVO/Counter2/UpOrDown.h
http://media.pragprog.com/titles/dscpq/code/KVO/Counter2/UpOrDown.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=317
Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

INTRODUCING AN OBSERVER 318

Save your work, and head over to Interface Builder to wire everything

up.

Add an object of type Display and an object of type UpOrDown to your

Document window. In the Connections inspector, first break the direct

connection between the stepper and the text field. Click UpOrDown, and

connect the display outlet to the Display object. Connect the step: received

action to the stepper. Click the Display. Connect the displayField outlet to

the text field. Save, and click Build & Run.

From a user’s standpoint, there is no difference between this version

and the codeless version.

Notice that the Display object doesn’t have to know anything about the

UpOrDown object, but the UpOrDown object needs to know about the

Display object. Coming up next, we’ll turn this on its head when we

make the Display object an observer.

20.3 Introducing an Observer

With the traditional target-action approach, the UpOrDown object had a

handle to the Display object and sent the message updateDisplay: to that

object. With KVO, the observer knows who it is watching. The observed

object just sends out a message when the state has changed—all regis-

tered observers will get the notification.

In our example, the Display object will need to send a message to the

UpOrDown object to register as an observer. This means that our Display

object will need a handle to the UpOrDown object. At this point, you have

a relationship that looks like this:

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=318

INTRODUCING AN OBSERVER 319

In other words, you haven’t changed the relationship between UpOr-

Down and the stepper or between Display and the text field. But now

Display needs to know about UpOrDown, whereas before it was the other

way around.

Our diagram points out a problem that we have now that we didn’t

before. Nothing holds on to the Display object. We’re running our appli-

cations with garbage collection on. The Display object will register itself

as an observer and then be garbage collected unless we hold on to it.

Add a property to the app delegate:

Download KVO/Counter3/CounterAppDelegate.h

#import <Cocoa/Cocoa.h>

@class Display;

@interface CounterAppDelegate : NSObject <NSApplicationDelegate> {

NSWindow *window;

Display *display;

}

@property (assign) IBOutlet NSWindow *window;

@property IBOutlet Display *display;

@end

Synthesize the property in the implementation file, and connect this

outlet in Interface Builder to the Display object.

Next we connect the Display object to the UpOrDown object and prepare

the objects for adding an observer. First, add an IBOutlet to the Display

header:

Download KVO/Counter3/Display.h

#import <Cocoa/Cocoa.h>

@class UpOrDown;

@interface Display : NSObject {

IBOutlet NSTextField *displayField;

IBOutlet UpOrDown *counter;

}

@end

I’ve removed the declaration for the updateDisplay: method. We’ll still

implement this method, but it no longer is part of the Display’s public

interface.

Next, let’s move over to the object it’s observing. The UpOrDown header

file can be altered a bit. We’ll remove all references to Display and add

an ivar of type NSNumber named count.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVO/Counter3/CounterAppDelegate.h
http://media.pragprog.com/titles/dscpq/code/KVO/Counter3/Display.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=319

REGISTERING AN OBSERVER 320

Download KVO/Counter3/UpOrDown.h

#import <Cocoa/Cocoa.h>

@interface UpOrDown : NSObject {

NSNumber *count;

}

-(IBAction) step:(id) sender;

@end

Let’s go fix the nib file and then come back and implement these two

classes. In Interface Builder, break the connection between UpOrDown’s

display outlet and Display. Select Display, and connect its counter outlet

to UpOrDown. Save your work.

Now we’re ready to set up our observer. There are three basic steps:

1. The observer needs to register with the object that contains a prop-

erty it wants to observe.

2. The observed object must update its property in such a way that

observers will be notified of the change.

3. The observer must respond to notifications it receives.

Let’s look at each of these in turn.

20.4 Registering an Observer

Registering as an observer is easy. You just send this message to the

object you want to observe:

addObserver:forKeyPath:options:context:

Pass in a pointer to the observer as the first parameter. In this case,

we’ll pass in self, but you can use any object. The keypath is the path

to the property we’re interested in. This is the same form that you saw

when learning about KVC. Four options are available to you, and you

can combine them using |.

The four NSKeyValueObservingOptions are NSKeyValueObservingOptionNew,

NSKeyValueObservingOptionOld, NSKeyValueObservingOptionInitial, and NS-

KeyValueObservingOptionPrior. The first two control whether you get the

new or old value of the attribute you’re watching. The third sends a

notification when you are first setting up the observer. The last indi-

cates you want a message sent before and after each change instead of

just after.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVO/Counter3/UpOrDown.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=320

MAKING CHANGES OBSERVABLE 321

Here’s how we register our Display to listen for changes in the count

property of the UpOrDown object. We’ll register when the Display object

awakes from nib.

Download KVO/Counter3/Display.m

-(void) awakeFromNib {

[counter addObserver:self

forKeyPath:@"count"

options:NSKeyValueObservingOptionNew

context:NULL];

}

All objects inherit addObserver:forKeyPath:options:context: from NSObject

so the Display object can send that message to the UpOrDown object to

register itself as an observer of the count property.

Don’t forget to clean up after yourself. You need to unregister your

observers when the observer is being released. When we managed mem-

ory by reference counting, we released resources in the dealloc method.

Now, with automatic garbage collection turned on, we instead use the

finalize method as dealloc is never called.

Download KVO/Counter3/Display.m

-(void) finalize {

[counter removeObserver:self forKeyPath:@"count"];

[super finalize];

}

That’s all there is to responsibly registering an observer.

20.5 Making Changes Observable

We’ve seen so much magic in Cocoa that it seems as if you should just

be able to set the value of UpOrDown’s ivar count like this and have the

change get picked up by Display.

-(void) step: (id) sender {

//not good enough

count = [NSNumber numberWithInteger:[sender integerValue]];

}

Unfortunately, when you set a variable directly, you need to bracket

the change with a signal that an observed value is about to change and

another signal that the observed value did change.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVO/Counter3/Display.m
http://media.pragprog.com/titles/dscpq/code/KVO/Counter3/Display.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=321

MAKING CHANGES OBSERVABLE 322

The corrected code looks like this:

Download KVO/Counter3/UpOrDown.m

-(IBAction) step: (id) sender {

[self willChangeValueForKey:@"count"];

count = [NSNumber numberWithInteger:[sender integerValue]];

[self didChangeValueForKey:@"count"];

}

This is a pain in the neck. There are two other less painful ways. One

is to use Key Value Coding. When you use setValue:forKey:, the observers

are notified. KVC and KVO are made to work together. Here’s how you

would modify UpOrDown to use KVC:

Download KVO/Counter4/UpOrDown.m

-(IBAction) step: (id) sender {

[self setValue:[NSNumber numberWithInteger:[sender integerValue]]

forKey:@"count"];

}

I don’t know if that went by too quickly for you to notice how slick it

was. count is an instance variable and not a property, and we just used

KVC to change its value. I know I said we could in the previous chapter,

but now you can see an added benefit of doing so. You change the value

of the variable, and you send notifications of that change to observers

that have registered using KVO.

Another solution is to declare and use a property for the variable count.

Add your property to the header file:

Download KVO/Counter5/UpOrDown.h

#import <Cocoa/Cocoa.h>

@interface UpOrDown : NSObject {

NSNumber *count;

}

@property(copy) NSNumber *count;

-(IBAction) step:(id) sender;

@end

Set the property value directly. The observer will be notified of the

change:

Download KVO/Counter5/UpOrDown.m

#import "UpOrDown.h"

@implementation UpOrDown

@synthesize count;

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVO/Counter3/UpOrDown.m
http://media.pragprog.com/titles/dscpq/code/KVO/Counter4/UpOrDown.m
http://media.pragprog.com/titles/dscpq/code/KVO/Counter5/UpOrDown.h
http://media.pragprog.com/titles/dscpq/code/KVO/Counter5/UpOrDown.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=322

OBSERVING THE CHANGES 323

-(IBAction) step: (id) sender {

self.count = [NSNumber numberWithInteger:[sender integerValue]];

}

@end

In this section, you’ve seen three methods of changing the value of a

variable in such a way that observers can be notified. First, you can

directly change the value of the variable, but you have to wrap it in

calls to willChangeValueForKey: and didChangeValueForKey:. Second, you

can use KVC to change the value of the variable using setValue:ForKey:.

Finally, you can create a property and change the value of the property

instead of the underlying instance variable.

20.6 Observing the Changes

Now the observer is registered, and the attribute it is watching is set

up to be observed and to notify the observer of changes. The last step

is for the observer to respond to the changes. I have to warn you, this

is the part that gets a lot of complaints. Here’s what it might look like

in our application:

Download KVO/Counter5/Display.m

Line 1 - (void)observeValueForKeyPath:(NSString *)keyPath

2 ofObject:(id)object

3 change:(NSDictionary *)change

4 context:(void *)context {

5 [self updateDisplay:[object valueForKeyPath:keyPath]];

6 }

The method signature is four lines long while the method body is a

single line. In line 5, I’ve chosen to update the display with the new

value that I pull off the change dictionary.

So, what’s the complaint?

This method gets called for every property this object is observing. You

might be listening for changes in multiple properties in the same object,

or you might be listening for changes in properties that belong to differ-

ent objects. If you are registered to be notified of updates to a property,

then this is the method that gets called, and it’s up to you to figure out

who called you and what to do about it.

This isn’t a big deal, but this differs from the way notifications work.

With notifications, you get to specify which method in which object

would be called for any given notification. This is a different mecha-

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVO/Counter5/Display.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=323

EXERCISE: ADDING A SECOND OBSERVER 324

nism, and people who want to interact with it the same way they worked

with notifications complain loudly.

There are many ways to handle this limitation. One is to check that

the keypath is to the count property. You’ll soon see that this can get

ugly and out of hand if we are listening for changes in more than one

property. The easiest way to get around this limitation is to create small

focused observers that each only listen for changes in a single property.

We’ll come back to that approach later in this chapter.

20.7 Exercise: Adding a Second Observer

One advantage of KVO is that the object containing the attribute being

observed doesn’t need to know anything about the observer. You can

add as many observers as you want.

Let’s do that. Add a second observer for the count property in UpOrDown.

Create a class named Logger that outputs the counter’s new value to

the Console. You shouldn’t have to make any changes to UpOrDown or

to Display.

20.8 Solution: Adding a Second Observer

Add a new Objective-C class named Logger to your project. Logger will

need an outlet to connect to the UpOrDown instance, so your header

should look something like this:

Download KVO/Counter6/Logger.h

#import <Cocoa/Cocoa.h>

@class UpOrDown;

@interface Logger : NSObject {

IBOutlet UpOrDown *counter;

}

@end

Add an outlet for your Logger object in CounterAppDelegate.h. Create an

instance of Logger in Interface Builder, and connect its counter outlet

to UpOrDown. Connect CounterAppDelegate’s logger outlet to your Logger

outlet. Save.

The implementation of Logger is almost identical to Display. The differ-

ences are highlighted here. I’m showing you all of Logger since you’ve

only seen Display in bits and pieces.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVO/Counter6/Logger.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=324

THE UGLY WAY TO OBSERVE MORE THAN ONE ATTRIBUTE 325

Download KVO/Counter6/Logger.m

#import "Logger.h"

@implementation Logger

-(void)logValue: (NSNumber *) value{

NSLog(@"%@", value);

}

-(void) awakeFromNib {

[counter addObserver:self

forKeyPath:@"count"

options:NSKeyValueObservingOptionNew

context:NULL];

}

- (void)observeValueForKeyPath:(NSString *)keyPath

ofObject:(id)object

change:(NSDictionary *)change

context:(void *)context {

[self logValue:[object valueForKeyPath:keyPath]];

}

-(void) finalize {

[counter removeObserver:self forKeyPath:@"count"];

[super finalize];

}

@end

So, it’s easy to add as many observers as you’d like. They don’t affect

the object they’re observing, and they don’t need to know about other

observers.

On the other hand, things get complicated when you have one object

observe more than one attribute in one or more objects.

20.9 The Ugly Way to Observe More Than One Attribute

Let’s double our fun with two steppers and two displays. Each display is

tied to just one of the steppers. We’re going to use UpOrDown to interact

with both steppers. Display will register as an observer for the current

counts for both steppers.

This means the same object will be an observer for two different attri-

butes. We’ll handle this in two ways—but first we need to do a little

prep work.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVO/Counter6/Logger.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=325

THE UGLY WAY TO OBSERVE MORE THAN ONE ATTRIBUTE 326

Our interface looks like this:

Let’s get rid of the Logger files. They don’t do any harm, but they clutter

up this example a bit. You’ll need to delete Logger.h and Logger.m. Don’t

forget to delete the Logger object from Interface Builder’s Document

window and remove the logger property from CounterAppDelegate.

UpOrDown will now need two outlets and two properties:

Download KVO/Counter7/UpOrDown.h

#import <Cocoa/Cocoa.h>

@interface UpOrDown : NSObject {

NSNumber *countOne, *countTwo;

}

@property(copy) NSNumber *countOne, *countTwo;

-(IBAction) stepOne:(id) sender;

-(IBAction) stepTwo:(id) sender;

@end

In UpOrDown.m, you need to synthesize both variables and implement

the actions to set the properties using the current counter value:

Download KVO/Counter7/UpOrDown.m

#import "UpOrDown.h"

@implementation UpOrDown

@synthesize countOne, countTwo;

-(IBAction) stepOne: (id) sender {

self.countOne = [NSNumber numberWithInteger:[sender integerValue]];

}

-(IBAction) stepTwo: (id) sender {

self.countTwo = [NSNumber numberWithInteger:[sender integerValue]];

}

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVO/Counter7/UpOrDown.h
http://media.pragprog.com/titles/dscpq/code/KVO/Counter7/UpOrDown.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=326

THE UGLY WAY TO OBSERVE MORE THAN ONE ATTRIBUTE 327

Add a second outlet for the additional text field in Display.h:

Download KVO/Counter7/Display.h

#import <Cocoa/Cocoa.h>

@class UpOrDown;

@interface Display : NSObject {

IBOutlet NSTextField *displayFieldOne, *displayFieldTwo;

IBOutlet UpOrDown *counter;

}

@end

Wire up your actions and outlets in Interface Builder, and remove the

stale links.

Back in Xcode, finish up with Display.m. For the most part, we are

doing everything twice. We could have gotten clever with KVC, but that

would have obscured the point of this example, which is how one object

observes more than one attribute.

The Display object is listening for changes both to countOne and to

countTwo. If either changes, then the observeValueForKeyPath: method is

called. That means we have to figure out why this method is being

called. One solution, highlighted here, is to examine the keypath, and

if need be, the object that is being observed to see who issued the noti-

fication and why.

Download KVO/Counter7/Display.m

#import "Display.h"

@implementation Display

-(void) updateDisplayOne: (NSNumber *) newValue{

[displayFieldOne setIntegerValue:[newValue integerValue]];

}

-(void) updateDisplayTwo: (NSNumber *) newValue{

[displayFieldTwo setIntegerValue:[newValue integerValue]];

}

-(void) awakeFromNib {

[counter addObserver:self

forKeyPath:@"countOne"

options:NSKeyValueObservingOptionNew

context:NULL];

[counter addObserver:self

forKeyPath:@"countTwo"

options:NSKeyValueObservingOptionNew

context:NULL];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVO/Counter7/Display.h
http://media.pragprog.com/titles/dscpq/code/KVO/Counter7/Display.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=327

SELECTING METHODS USING KVC 328

- (void)observeValueForKeyPath:(NSString *)keyPath

ofObject:(id)object

change:(NSDictionary *)change

context:(void *)context {

if ([keyPath isEqualToString:@"countOne"]){

[self updateDisplayOne:[object valueForKeyPath:keyPath]];

} else if ([keyPath isEqualToString:@"countTwo"]){

[self updateDisplayTwo:[object valueForKeyPath:keyPath]] ;

}

}

-(void) finalize {

[counter removeObserver:self forKeyPath:@"countOne"];

[counter removeObserver:self forKeyPath:@"countTwo"];

[super finalize];

}

@end

I’m not particularly proud of code like this. For the most part, you’ve

seen that we can wiggle out of a lot of conditionals when we code in

Cocoa using Objective-C. This gives us a cleaner path through the code.

In the next two sections I’ll show you two different approaches. First,

we’ll use KVC to call the correct method depending on the key of the

notification we are sent. Second, we’ll introduce dedicated observer

objects. The difference between these two approaches comes down to

making the decision at the time you register as an observer or when

you receive the notification. I prefer using dedicated observers, but I’m

not religious about it.

20.10 Selecting Methods Using KVC

When we receive a notification, it is because of changes either to coun-

tOne or to countTwo. So, one approach we could take is to rename the

methods for updating the two displays:

Download KVO/Counter8/Display.m

-(void) updateDisplayForcountOne: (NSNumber *) newValue{

[displayFieldOne setIntegerValue:[newValue integerValue]];

}

-(void) updateDisplayForcountTwo: (NSNumber *) newValue{

[displayFieldTwo setIntegerValue:[newValue integerValue]];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVO/Counter8/Display.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=328

IMPLEMENTING AN OBSERVER OBJECT 329

Now we can call the right method by appending countOne or countTwo to

the end of updateDisplayFor and passing in the value of the appropriate

counter as a parameter:

Download KVO/Counter8/Display.m

- (void)observeValueForKeyPath:(NSString *)keyPath

ofObject:(id)object

change:(NSDictionary *)change

context:(void *)context {

[self performSelector:NSSelectorFromString(

[NSString stringWithFormat:@"updateDisplayFor%@:",keyPath])

withObject: [object valueForKeyPath:keyPath]];

}

Code like this always feels a bit slick to me. It’s clever, it works, and

it’s a nice example of using KVC, but I don’t think the intent of the

code is clear. Let’s restore the method names to updateDisplayOne: and

updateDisplayTwo: and set up independent observers.

20.11 Implementing an Observer Object

We can easily create an Observer that is a helper object. We’ll set it up

and tell it who to call and what method to invoke when the notification

is sent.

Create an Observer class, and add properties to hold a pointer to the

target object and action. Also, declare a special init method that allows

you to pass this information in.

Download KVO/Counter9/Observer.h

#import <Cocoa/Cocoa.h>

@interface Observer : NSObject {

id targetObject;

SEL targetAction;

}

@property id targetObject;

@property SEL targetAction;

-(id) initWithTarget:(id)object action: (SEL)action;

@end

The observeValueForKeyPath:ofObject:change:context: method invokes the

action that we’ve captured in the targetAction property on an object

we’ve captured in the targetObject property. It passes in the current

value of the counter as a parameter.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVO/Counter8/Display.m
http://media.pragprog.com/titles/dscpq/code/KVO/Counter9/Observer.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=329

IMPLEMENTING AN OBSERVER OBJECT 330

Download KVO/Counter9/Observer.m

#import "Observer.h"

@implementation Observer

@synthesize targetObject, targetAction;

- (void)observeValueForKeyPath:(NSString *)keyPath

ofObject:(id)object

change:(NSDictionary *)change

context:(void *)context {

[self.targetObject performSelector:self.targetAction

withObject:[object valueForKeyPath:keyPath]];

}

-(id) initWithTarget:(id)object action: (SEL)action {

if (self = [super init]) {

self.targetObject = object;

self.targetAction = action;

}

return self;

}

@end

Now our Display class can be simplified. Declare the instance variables

observerOne and observerTwo of type Observer in the Display header file:

Download KVO/Counter9/Display.h

#import <Cocoa/Cocoa.h>

@class UpOrDown;

@class Observer;

@interface Display : NSObject {

IBOutlet NSTextField *displayFieldOne, *displayFieldTwo;

IBOutlet UpOrDown *counter;

Observer *observerOne, *observerTwo;

}

@end

Register the new observers in awakeFromNib. Remove the observeValue-

ForKeyPath:ofObject:change:context: method. It’s now implemented in the

observer. Release the observers in the finalize method.

Download KVO/Counter9/Display.m

#import "Display.h"

#import "Observer.h"

@implementation Display

-(void) updateDisplayOne: (NSNumber *) newValue{

[displayFieldOne setIntegerValue:[newValue integerValue]];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVO/Counter9/Observer.m
http://media.pragprog.com/titles/dscpq/code/KVO/Counter9/Display.h
http://media.pragprog.com/titles/dscpq/code/KVO/Counter9/Display.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=330

UPDATING DEPENDENT VARIABLES 331

-(void) updateDisplayTwo: (NSNumber *) newValue{

[displayFieldTwo setIntegerValue:[newValue integerValue]];

}

-(void) awakeFromNib {

observerOne = [[Observer alloc]

initWithTarget:self

action:@selector(updateDisplayOne:)];

observerTwo = [[Observer alloc]

initWithTarget:self

action:@selector(updateDisplayTwo:)];

[counter addObserver:observerOne

forKeyPath:@"countOne"

options:NSKeyValueObservingOptionNew

context:NULL];

[counter addObserver:observerTwo

forKeyPath:@"countTwo"

options:NSKeyValueObservingOptionNew

context:NULL];

}

-(void) finalize {

[counter removeObserver:observerOne forKeyPath:@"countOne"];

[counter removeObserver:observerTwo forKeyPath:@"countTwo"];

[super finalize];

}

@end

Small, single-purpose classes like Observer can unclutter your code.

Each instance of the Observer knows which object to send which method

when it gets called.

20.12 Updating Dependent Variables

Sometimes within a class you have variables that depend on the val-

ues of other variables. The dependent variables can always be recalcu-

lated from the independent variables. Suppose, for example, we want to

introduce a new variable called totalCount in UpOrDown that represents

the sum of countOne and countTwo. Any time a user clicks either of the

steppers, the value of totalCount will change.

We need to be able to do the following:

• Register that totalCount depends on both countOne and countTwo.

• Add an observer that listens for changes in totalCount. It actually

will listen for changes in any of the attributes that we registered

in the previous step.

• Specify what we want to have happen when we receive a notifica-

tion of a change in totalCount.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=331

UPDATING DEPENDENT VARIABLES 332

There are two forms for registering totalCount’s dependencies. One is to

use this method:

+ (NSSet *)keyPathsForValuesAffectingValueForKey:(NSString *)key

This class method can be used for registering dependencies for any

number of variables. You just return different NSSets for each key. An

alternate form of the method involves concatenating the variable name

to the end of keyPathsForValuesAffecting. So, for the variable totalCount,

we have this method that registers its dependence on countOne and

countTwo:

+(NSSet *)keyPathsForValuesAffectingTotalCount {

return [NSSet setWithObjects:@"countOne",@"countTwo",nil];

}

In the header file for UpOrDown, add a declaration for a pointer to an

NSNumber named totalCount:

Download KVO/Counter10/UpOrDown.h

#import <Cocoa/Cocoa.h>

@interface UpOrDown : NSObject {

NSNumber *countOne, *countTwo, *totalCount;

}

@property(copy) NSNumber *countOne, *countTwo, *totalCount;

-(IBAction) stepOne:(id) sender;

-(IBAction) stepTwo:(id) sender;

@end

Here’s the implementation for UpOrDown:

Download KVO/Counter10/UpOrDown.m

#import "UpOrDown.h"

@implementation UpOrDown

@synthesize countOne, countTwo, totalCount;

-(IBAction) stepOne: (id) sender {

self.countOne = [NSNumber numberWithInteger:[sender integerValue]];

}

-(IBAction) stepTwo: (id) sender {

self.countTwo = [NSNumber numberWithInteger:[sender integerValue]];

}

+(NSSet *)keyPathsForValuesAffectingTotalCount {

return [NSSet setWithObjects:@"countOne", @"countTwo", nil];

}

-(NSNumber *) totalCount {

return [NSNumber numberWithInt:

[self.countOne intValue] + [self.countTwo intValue]];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/KVO/Counter10/UpOrDown.h
http://media.pragprog.com/titles/dscpq/code/KVO/Counter10/UpOrDown.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=332

UPDATING DEPENDENT VARIABLES 333

-(void)awakeFromNib{

[self addObserver:self

forKeyPath:@"totalCount"

options:NSKeyValueObservingOptionNew

context:NULL];

}

-(void)observeValueForKeyPath:(NSString *)keyPath

ofObject:(id)object

change:(NSDictionary *)change

context:(void *)context {

NSLog(@"%@", self.totalCount);

}

@end

In addition to keyPathsForValuesAffectingTotalCount:, we register the ob-

server in the awakeFromNib method. We also have a getter method for

totalCount that returns the sum of countOne and countTwo. This is called

from the observeValueForKeyPath:ofObject:change:context: method when-

ever either value is changed. In response, we just log the total to the

Console.1

This chapter took you through the fundamentals of observing.2 You

register an object and wait until it is called back. This is like a notifi-

cation without a notification center. This is just a relationship between

two objects, and only the observer needs to know about the observed.

You’ve seen how to register multiple observers to one attribute and how

to register a single observer to multiple attributes. Finally, you saw how

to set up a dependent variable so its observers were updated when the

variables it depends on change.

As cool as KVO and KVC are both individually and together, their real

power is in the technologies they enable. We’ll strip out code from the

controller layer with Bindings and from the model layer with Core Data.

You can use KVO and KVC whether you’re developing for Mac OS X or

for iPhone OS. If you are mainly interested in developing for Mac OS

X, you’re going to love where we’re headed next. We’re going to see how

these technologies enable bindings, which let you write less code for

the controller layer. Unfortunately, there currently isn’t any support for

bindings for iPhone OS.

1. See KVO/Counter11 in the code zip file to see that you can remove the totalCount instance

variable and property and still get this same behavior.
2. You can find more information in Apple’s Key-Value Observing Guide [App08f].

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=333

Chapter 21

Cocoa Bindings
So far, we’ve used Interface Builder to create our GUI and to connect

buttons, labels, tables, and more to controllers and models. This elimi-

nates a lot of boilerplate code. You don’t need to inherit from an NSButton

and configure its look and placement in code. You know from our work

with custom views that you can write that code—you just don’t have to

this.

Cocoa Bindings looks at the controller layer and asks how much of

the repetitive code can be removed. It turns out, if you are careful to

work with KVO- and KVC-compliant classes, the answer is “most of

it.” Much of this chapter will find us back in Interface Builder making

connections and typing in keypaths. We’ll have a little bit of code to

write but not much.

We’ll start this chapter by creating a new Cocoa application named

CounterWithBindings. You will add a new Objective-C class named

Counter, declare a property named count of type NSNumber, and syn-

thesize it. That’s all the code you’re going to need to write to create your

model.

As for the view, you’ll drag a stepper and a text field into the window.

We’ll add more as the chapter progresses, but that will be good enough

to begin with.

That leaves us with the controller. In this chapter, you won’t be imple-

menting the controller in code. You’ll use Cocoa Bindings and the fact

that your model is KVC and KVO compliant to create your controller

using Interface Builder. Cocoa Bindings will let the view and model

communicate without us writing a lot of boilerplate glue code. We’ll

start by revisiting our example from the previous chapter.

THE MODEL AND VIEW FOR OUR COUNTER WITH BINDINGS 335

21.1 The Model and View for Our Counter with Bindings

Create a new project named CounterWithBindings. Add a new Objec-

tive-C class named Counter that contains the property count. In other

words, you add two lines of code to the header file template:

Download Bindings/CounterWithBindings1/Counter.h

#import <Cocoa/Cocoa.h>

@interface Counter : NSObject {

NSNumber *count;

}

@property(copy) NSNumber *count;

@end

You also need to add one line of code to the implementation to synthe-

size the property count:

Download Bindings/CounterWithBindings1/Counter.m

#import "Counter.h"

@implementation Counter

@synthesize count;

@end

We have a single class with a single property defined. There will be no

other code in this application for the first part of this chapter.

Now let’s create the view. Drag a stepper and a text field into the main

window. As before, use the Attributes inspector so that the stepper’s

behavior is set to Value Wraps. Resize the window to look like this:

OK. Now we have our model and our view. Let’s create the controller.

21.2 Creating and Connecting the NSObjectController

In Interface Builder, drag a Counter object from the Library, and drop it

on the Document window. This is the instance of your model.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Bindings/CounterWithBindings1/Counter.h
http://media.pragprog.com/titles/dscpq/code/Bindings/CounterWithBindings1/Counter.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=335

CREATING AND CONNECTING THE NSOBJECTCONTROLLER 336

Joe Asks. . .

Wouldn’t Code Be Better?

Depending on your background, it sure can feel like that. A
lot of the logic now moves to files you set up with Interface
Builder. When you have a problem, you can’t use the tech-
niques you’ve been using forever. Initially, it is harder to locate
problems. On the other hand, you’re less likely to create these
problems by making mistakes in what should be boilerplate
code.

Cocoa Bindings can be scary. But soon you’ll get a feel for
where you should look when things go wrong. If you think back
to your early days coding, the same thing was true there. You
had to learn where to look for problems. You probably stared
long and hard before you found that you typed = when you
meant to type ==. So, this isn’t a new frustration so much as a
new frontier for an old one.

Next, drag an NSObjectController from your Library to the Document win-

dow. Remember back to our early examples in this book. The controller

sits between the model and the view. The controller insists on being

an intermediary. You will need to configure your controller by following

these three steps:

1. Connect to the object that the object controller is controlling.

2. Specify which keys the object controller is responsible for.

3. Bind each element to a property that the object controller is con-

trolling.

Connecting the Controller

The object controller needs to know which object it is controlling. Click

the object controller, and look in the Connections inspector for its con-

tent outlet. Connect this content connection to the Counter object. You

can (and soon will) have more than one object of the same type. This

is the step where you are specifying which one the object controller is

responsible for.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=336

CREATING AND CONNECTING THE NSOBJECTCONTROLLER 337

Selecting the Keys

Next you’ll need to make the count key available to objects that bind

to the NSObjectController. Select the object controller, and use the Attri-

butes inspector to set the class name to Counter. Notice that there are

two modes. We are using the class mode here because Counter is a class.

When we build data models with Core Data, we will use the entity mode.

You have to explicitly specify which keys the object controller will make

available for binding. Here there is only one possible choice. Use the

plus sign to add the key count.

Binding a Component

Click the text field to select it, and open its Bindings inspector using

D 4 or just by clicking the inspector’s fourth tab.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=337

BINDING MORE OBJECTS 338

In the Value section, select the “Bind to” checkbox, and use the drop-

down list to select Object Controller. The controller key is selection, and

the model key path is count. Do the same for the stepper.

Both the stepper and the text field are bound to the value of count. Click

Build & Run. Click the stepper, and you can see the values of the text

field are changed. So far, this doesn’t seem like a very big win. But it is.

When you click the stepper, its value is bound to the value of count,

so count is updated automatically. Similarly, the text field is bound

to the value of count. Whenever the value of count changes, the text

field is automatically updated. The connections are made through the

controller. There is a lot of activity going on here. In the next section,

we’ll add more widgets to make this clearer.

21.3 Binding More Objects

Add a circular slider and a horizontal slider to the view. Bind each to

the count by using the object controller.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=338

NUMBER FORMATTERS 339

Configure your sliders to look like this:

As you click the stepper, the value of count is updated, and all of the

bound elements are notified of the change. So, you can see in the figure

that when I entered 70 in the text field, the two sliders moved to the

corresponding value.

Drag the horizontal slider all the way to the right so the value is 100.

Use the stepper to bump the value up by one. The horizontal slider

should have moved all the way to the left. Rotate the circular slider and

let go. You should see something like this:

I’m not really happy with the way the sliders work right now. I just

want integer values for my count, but, as you can see, it’s too easy

for my sliders to result in a value with many digits to the right of the

decimal point.

We could select a slider and use the Attributes inspector to specify

that we want the slider to “Only stop on tick marks.” I’ve set up my

horizontal slider with twenty tick marks, so this would allow me to

choose multiples of five. So, I restrict my values to integers, but I can’t

select any integer that is not a multiple of five.

We’ll use a number formatter to get what we want.

21.4 Number Formatters

Look in your Interface Builder Library for an NSNumberFormatter. Drag it

from the Library, and drop it on your text field. You should see the num-

ber formatter icon below your text field when your text field is selected.

You may have to select another element and then select your text field

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=339

NUMBER FORMATTERS 340

to see the icon appear the first time. You can also find the number

formatter in the Document window.

Select the number formatter, and then take a look at the Attributes

inspector:

You have an amazing range of parameters you can set. We will adjust

only a couple of them. Notice the drop-down at the top of the inspector.

Two styles of number formatting are available to you. We are targeting

the more modern version, so make sure Mac OS X 10.4+ Custom is

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=340

EXERCISE: CONNECTING TWO COUNTERS WITH BINDINGS 341

selected. You can think of an integer as a decimal with nothing after

the decimal point. So, first, set the style to Decimal. Now skip down to

the “Constraints” section and set the value of Maximum Fraction Digits

to 0.

That’s it. Save your work. Click Build & Run, and your sliders will be

able to choose any of the integers from 0 to 100 and nothing else.1

21.5 Exercise: Connecting Two Counters with Bindings

Let’s re-create another example from the previous chapter without

adding any code. The application should have two steppers and two

text fields. The top stepper alters only the top text field, and the bottom

stepper alters only the bottom text field.

Again, you should be able to accomplish this entirely in Interface

Builder without changing or adding a line of code.

Here’s one tip you might find useful. Select your Counter, and look at

the Identity inspector. At the bottom you should see a section labeled

“Interface Builder Identity.”

1. This solution corresponds to what you’ll find in Bindings/CounterWithBindings3 in the code

samples.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=341

SOLUTION: CONNECTING TWO COUNTERS WITH BINDINGS 342

You can see that I’ve changed the name from the blank text field you

see to Counter1. Do that, and take a look at your Document window.

We’ve changed the object’s name to Counter1 without changing its

associated class. This will make it easier for you to distinguish between

the two counters. You can see that I’ve also changed the name of the

NSObjectController. We don’t need to worry so much about the visible ele-

ments because we can click one text field or the other and know which

one we mean. For the nonvisual elements, the ability to give them dis-

tinct names is really helpful.

21.6 Solution: Connecting Two Counters with Bindings

You just need to build a second parallel system to the one you have.

You’ll end up with two steppers, two text fields, two controllers, and

two model objects.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=342

SOLUTION: CONNECTING TWO COUNTERS WITH BINDINGS 343

The Family of NSControllers

NSObjectController extends from the abstract classNSController.
Here is a family portrait of the NSObjectController and its siblings:

Start with a little cleanup. Remove the two sliders from the interface,

and add another stepper and text field. I removed the number format-

ter, but you don’t need to do so. You can speed this step by selecting the

existing stepper and text field, duplicating them using D D, and placing

the new items where you want them.

Use the Identity inspector to change the names of the Counter and

NSObjectController to Counter1 and CounterController1, respectively.

Drag a Counter object from the Library to the Document window, and

change its and its name to Counter2. Drag a new object controller in

from the Library, and change its name to CounterController2.

Now just follow the steps you did before. Select the CounterController2,

and use the Connections inspector to connect the content outlet to

Counter2. Switch to the Attributes inspector, set the class to Counter,

and add the count key.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=343

THE MODEL FOR OUR BOOKSHELF EXAMPLE 344

Your final step is to bind the bottom stepper and text field. Select them

in turn, and use the Bindings inspector to bind to CounterController2. Set

the value of Controller Key to selection and Model Key Path to count.2

21.7 The Model for Our Bookshelf Example

We’re going to revisit our example of a bookshelf that contains books.

The goal is to move from working with bindings and object controllers

to bindings with array controllers.

Create a new Cocoa project called BookshelfWithBindings, and add the

PragBook class with two properties, title and author, that are both strings:

Download Bindings/BookshelfWithBindings/PragBook.h

#import <Cocoa/Cocoa.h>

@interface PragBook : NSObject {

NSString *author, *title;

}

@property (copy) NSString *author, *title;

@end

Synthesize the properties in the implementation:

Download Bindings/BookshelfWithBindings/PragBook.m

#import "PragBook.h"

@implementation PragBook

@synthesize author, title;

@end

Create a Bookshelf class to contain one or more PragBooks. The Bookshelf

class contains an NSMutableArray named bookList as its only property:

Download Bindings/BookshelfWithBindings/Bookshelf.h

#import <Cocoa/Cocoa.h>

@interface Bookshelf : NSObject {

NSMutableArray *bookList;

}

@property(retain) NSMutableArray *bookList;

@end

2. The solution is in the code download in Bindings/CounterWithBindings4.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Bindings/BookshelfWithBindings/PragBook.h
http://media.pragprog.com/titles/dscpq/code/Bindings/BookshelfWithBindings/PragBook.m
http://media.pragprog.com/titles/dscpq/code/Bindings/BookshelfWithBindings/Bookshelf.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=344

CREATING THE VIEW FOR THE BOOKSHELF 345

We need to initialize the bookList before we work with it. Let’s do that in

our awakeFromNib method:

Download Bindings/BookshelfWithBindings/Bookshelf.m

#import "Bookshelf.h"

@implementation Bookshelf

@synthesize bookList;

-(void) awakeFromNib {

self.bookList = [NSMutableArray arrayWithCapacity:1];

}

@end

Bookshelf doesn’t know about PragBook. We’ll use Bindings later to spec-

ify that PragBook is the type of object contained in the bookList.

That’s it. That’s all the code we need to write for this example.3 Once

you see what our finished project can do, I think you’ll be convinced of

the power of Bindings and the NSArrayController.

21.8 Creating the View for the Bookshelf

Add a table view and two square buttons to your window, and adjust

the various headings so you have something like this:

The trickiest part may be setting the + and - signs on the square but-

tons. Your first impulse may be to just type + or - in for the button titles.

This will work, but it won’t look nearly as nice. Apple has provided a

set of images that you can select with the image drop-down list.

3. The word need is not quite correct. We can write less code and will once we get to

Core Data.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Bindings/BookshelfWithBindings/Bookshelf.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=345

BINDING WITH THE NSARRAYCONTROLLER 346

SelectNSAddTemplate for the + and NSRemoveTemplate for the - like this:

This time you don’t need to create identifiers for the table columns.

We’ll do all of that work using Bindings.

21.9 Binding with the NSArrayController

Add an array controller and a Bookshelf object to your Document win-

dow so that we have all of our ingredients available to us in Interface

Builder.

We’ll follow these steps to set up the bindings:

1. Specify the object contained in the array, and specify the keys we

want to bind to.

2. Bind the array controller to the array it contains.

3. Bind the table columns.

We’ll then need to wire up the + and - buttons.

Setting the Array’s Contents

When the user presses the + button, an object will be added to the book-

List array. We need to specify that this object should be an instance of

PragBook. Select the array controller, and open the Attributes inspector.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=346

BINDING WITH THE NSARRAYCONTROLLER 347

Set Class Name to PragBook. Add the keys author and title.

Connect the Controller to Its Array

You connected the object controller to its object using the content out-

let. This time you’ll bind the array controller to the array using the con-

tent array. Select the array controller, and open the Bindings inspector.

Under Controller Content, find Content Array. Select the “Bind to”

checkbox, and choose Bookshelf in the drop-down list. Set the Model

Key Path to bookList.

You’ve configured the array controller. Next we’ll bind elements of the

view to our array controller to finish wiring up our application.

Configure the Table Columns

Now you are going to bind the table columns so that the first column

is filled with the name of the title and the second is filled with the

name of the author. Select the first table column, and open the Bindings

inspector.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=347

BINDING WITH THE NSARRAYCONTROLLER 348

Bind to the array controller. Notice this time Controller Key is arrange-

dObjects and not selection because the column is associated with this

slice of the entire array. Set Model Key Path to title. Repeat the process

for the second column, but this time set Model Key Path to author.

Wiring Up the Buttons

Use the Connections inspector to wire up the buttons. Drag from the

+ button’s sent action to the array controller. You should get a list of

possible actions. Choose add:. Do the same for the - button, but this

time choose remove:.

Before we call it a day, we’ll make sure that the - button is enabled

only when there are items in the array that can be removed. Select the

- button, and open the Bindings inspector.

So far we’ve only used selection and arrangedObjects for Controller Key.

There are a lot of other options that correspond to situations that arise

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=348

THE BIG FINISH 349

when working with arrays. One of them is canRemove:. That’s what we

bind the - button to in the button’s Bindings inspector under Availability

> Enabled.

21.10 The Big Finish

Click Build & Run. Click the + button, and add books to your list. Click

the - button, and remove some.

I know this isn’t magic, but it feels pretty close. With a minimal amount

of code, we’ve created an application that allows us to add entries to a

table and remove them.

This should be enough to get you started with controllers. You can

use the user defaults controller to bind GUI elements to your stored

defaults. The dictionary and tree controllers are similar to the array

controller, but they manage (obviously) dictionaries and trees. For more

information, have a look at Apple’s Cocoa Bindings Programming Topics

[App08a] and Apple’s Cocoa Bindings Reference [App08b].

You can add code to customize your controllers in much the same way

that we customized the view to do things that weren’t easy in Interface

Builder. I’m not suggesting that you don’t code—I’m saying that you

should take advantage of what you get for free and only write code

when you need to write. We’ll push this one step further in our next

chapter on Core Data.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=349

Chapter 22

Core Data
We’ve been pretty successful at separating our model, view, and con-

troller. You’ve seen from our work in custom views that we can write

code to describe our views, but you’ve also seen the power and flexi-

bility we get by creating as much of our views as we can using Inter-

face Builder. You’ve also seen that the controller layer provides the glue

between the model and the view. We’ve written much of the controller

logic in code, but you’ve seen the power of using Cocoa Bindings to wire

up our view and model again in Interface Builder.

But if you look back at the past couple of chapters, there hasn’t been a

lot to our model. We’ve created a couple of classes that contain a couple

of properties. Core Data lets us build models like this using GUI tools.

Entities and attributes will be the Core Data analog for classes and

properties.

Core Data provides you with a tool for designing the elements of your

model and how they interact with each other. It automatically creates

the classes and objects your program will need to work with these model

objects, and it takes care of persistence for you. If you are writing data

to or reading data from disk in your Cocoa app, you should be using

Core Data.

In this chapter, we’ll revisit the book example we’ve worked with and

create an entity relationship diagram with Xcode’s data modeling tool.

We’ll re-create and extend this entire example without writing any code.

Each book will have a title, one or more authors, and a collection of

chapters. We’ll allow the user to add, remove, or alter this information

for any book they select. We’ll also look at how Bindings and Core Data

work together to fill these tables, to save and retrieve the information

from disk, and to support sorting and searching.

ENTITIES AND ATTRIBUTES 351

22.1 Entities and Attributes

Let’s start by re-creating the model for our bookshelf using Core Data.

Flip back a few pages to Section 21.7, The Model for Our Bookshelf

Example, on page 344. There’s not a lot to that model. The PragBook

header file declares two properties, author and title, and the implemen-

tation synthesizes their accessor methods.

Instead of having a class named PragBook, we will use terms more famil-

iar from working with databases. So, now we’ll create an entity named

PragBook in our data model. We’ll also use attributes in our data model

where we used properties.

Create a new project in Xcode using the Mac OS X > Application > Cocoa

Application template, but this time make sure you select the “Use Core

Data for storage” checkbox.

Name it CDBookshelf. Under Groups & Files, you should see a new

group named Models. It contains a single file with the name CDBook-

shelf_DataModel.xcdatamodel. Double-click this file, and once we add our

first entity, you should see something like this:

Across the top you’ll see subviews for adding entities and properties.

I’ve already added an entity, and you should do the same. Click the +

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=351

USING THE CORE DATA WIDGET 352

at the lower left of the Entity area. Type PragBook in the Name field.1

The bottom of the window holds a graphical representation of your data

model. You should see PragBook with no attributes or relationships.

Now let’s add attributes for the book’s title and author’s name. With

PragBook selected in the entity view, click the + button at the bot-

tom of the properties view. A pop-up list appears with the options

Add Attribute, Add Fetched Property, Add Relationship, and Add Fetch

Request.

Choose Add Attribute, or use the menu item Design > Data Model >

Add Attribute or the keyboard shortcut CD A . Name the attribute title,

and configure it so it is not optional and so that it is of type String.

Because this attribute is not optional, you should add a default value

like “Book’s title.” Add another attribute named author, and also set it

to not be optional and to be of type String. Your data model should look

like this:

We’re done with the data model for now. We’ll do the rest of our work in

the nib file.

22.2 Using the Core Data Widget

Make a copy of your project because we’re going to finish the application

in two different ways. First we’ll use the widget that Apple has provided

that will create both the controller and the view at the same time.

Double-click MainMenu.xib to open the nib in IB. Drag a Core Data Entity

from the Library onto your Window object. A wizard will allow you to

select the PragBook entity. To do so, you first select the current Xcode

project, and then you select the data model contained in the project.

Projects can contain more than one data model. In our case, there is

only one. Within the data model there are usually multiple entities.

1. You need to tab out of the Name field for PragBook to appear in the entity view as

well.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=352

USING THE CORE DATA WIDGET 353

Ours contains only the PragBook entity. Select it, and click the Next

button.

The next panel allows you to choose from three views—I chose Mas-

ter/Detail view. I’ve also selected the Add/Remove checkbox so that

I can let the user add and remove book entries at runtime. I’ve also

selected the Search Field option to allow users to narrow the set of

books displayed based on search criteria. I’ve left the Detail Fields

checkbox unselected. You don’t get more information by selecting it

in our case; you just get the same information contained in the table

called out below. Click Next.

The final panel allows you to select the properties that are included in

this interface. I’ve chosen to display both author and title.

Click Build & Run, and you have a working application that allows you

to add and remove books and to search for the entries you want.2

Enter some books, and quit your application. Start it up again, and

you should see that they are still there. Test that you can remove one

or more of your book entries and that you can filter the list by typing

into the search field. You have a fully functional Core Data app without

really knowing much about what’s going on.

2. See CoreData/InstantBookshelf in the code download.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=353

THE MANAGED OBJECT CONTEXT 354

Now, let’s put this instant bookshelf aside; we’ll start again from the

data model and add the controller and view by hand. This will help you

understand the various layers involved in a Core Data application.

22.3 The Managed Object Context

Go back to a fresh copy of the project, and let’s pick it up after you

have created the data model with a single entity named PragBook that

contains the two required string attributes named title and author. Open

your nib file.

Add an array controller to the nib’s Document window. Use the Identity

inspector to set the name of the array controller to BookController. Note

that we are changing the name but not the class. We need to make only

two small changes to set up the array controller.

First, open the Attributes inspector for the BookController. This time set

the mode to Entity, and type in PragBook for the entity name.

Next, open the Bindings inspector for the array controller. Way down at

the bottom under the “Parameters” heading, open the disclosure trian-

gle for the Managed Object Context. I’ll tell you what to set, and then I’ll

explain what you’ve done.

Select the “Bind to” checkbox, and select CDBookshelf_AppDelegate from

the drop-down list. You’ll leave the Controller Key and Value Transformer

entries blank. Set Model Key Path to managedObjectContext.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=354

THE MANAGED OBJECT CONTEXT 355

You should have something that looks like this:

The managed object context is the dividing line between your running

application and the mechanism that saves and retrieves data from disk.

Your running application will interact with the managed object context

using objects (actually managed objects) that are created at runtime

from your data model.

An NSManagedObject or a subclass of NSManagedObject will be created

to represent each entity in your data model. The actual objects are

created as needed.

So, you’ve wired up the controller to the model in two steps. You had to

bind the controller to its managed object context through the applica-

tion delegate. You also had to use the Attributes inspector to indicate

which entity this controller is responsible for.

You have your model and controller set. Now re-create the view exactly

as you did in Section 21.8, Creating the View for the Bookshelf , on

page 345. This is one of the advantages of using MVC. We have com-

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=355

THE PERSISTENCE LAYER 356

pletely changed the model and don’t need to make any changes to the

view.

You don’t even need to modify the connections and bindings between

the view and controller. As before, you bind the table columns to the

controller using the Controller Key setting of arrangedObjects with the

Model Key Path setting of title for the first column and author for the

second. You need to connect the buttons to the controller’s add: and

remove: methods.

22.4 The Persistence Layer

Click Build & Run. Add some books to your application, and quit.

Restart. Hey, wait a minute. What happened to your data? Why are

you greeted by an empty table?

Remember from Chapter 17, Saving Data to Disk, on page 270 that your

application data is stored in your home directory at ~/Library/Application

Support. The directory is named the same as your application, so I look

inside CDBookshelf and find the file storedata. Open storedata in your

favorite text editor, and you should see that your data has been stored

and looks something like this:

<object type="PRAGBOOK" id="z106">

<attribute name="title" type="string">

The Passionate Programmer</attribute>

<attribute name="author" type="string">Chad Fowler</attribute>

</object>

So, the data is saved to disk without any effort on your part. You need

to make one simple change to have it read from disk when your appli-

cation starts back up. In the Book Controller’s Attributes inspector, select

the Prepares Content checkbox.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=356

THE PERSISTENCE LAYER 357

Click Build & Run, and your application will start up with the table

populated with the values you entered before.3 All of this is taken care

of for you on the back end by the persistent store coordinator. Your

managed object context interacts with your running application to cre-

ate the objects you need based on your data model. It also interacts

with the persistent store coordinator to store and retrieve the data.

If you look at the template code that was generated for you, you’ll find

that you’ve created an NSPersistentStoreCoordinator in your application

delegate. Here’s a snippet from the persistentStoreCoordinator method:

Download CoreData/CDBookshelf1/CDBookshelf_AppDelegate.m

NSURL *url = [NSURL fileURLWithPath: [applicationSupportDirectory

stringByAppendingPathComponent: @"storedata"]];

persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]

initWithManagedObjectModel: mom];

if (![persistentStoreCoordinator

addPersistentStoreWithType:NSXMLStoreType

configuration:nil URL:url options:nil error:&error]){

In the first highlighted line, we complete the path to where we are stor-

ing the data on disk by appending storedata to the path to the CDBook-

shelf folder in the Application Support directory. In the second highlighted

line, we add the persistent store to the persistent store coordinator and

set its type to be NSXMLStoreType. So, we’ve specified that we want to

store the data as XML, and we’ve named the file that will contain the

data.

You’ll often do your development work using XML as your persistence

format and decide whether to switch to SQLite or some custom format

3. This is the project CDBookshelf1 in your code download.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CoreData/CDBookshelf1/CDBookshelf_AppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=357

INTRODUCING RELATIONSHIPS 358

as you get close to deploy time. Working in XML lets you open up the

stored data and read what was written to disk.4

When it’s time to ship your app, you can switch the persistent store type

to be NSSQLiteStoreType and change the name of the file you’re storing the

data in if you’d like.

For now, let’s continue to work with XML.

22.5 Introducing Relationships

Let’s change our data model a bit. A book can have more than one

author, and an author might be an entity all on its own containing its

own attributes. We’ll keep things simple and let an author consist of a

first name, middle initial, and last name.

We’re about to introduce a bit of complexity into the data model, so you

should also delete the entire directory CDBookshelf from your Application

Support folder.5

Now open your data model, and select the author attribute in the Prag-

Book entity. Delete it either by using the menu item Edit > Delete or by

hitting your Delete key.

Create a new entity named Author, and give it three attributes: firstName,

middleInitial, and lastName. Make them all strings, and make sure that

only the middleInitial is optional. Also, set the middleInitial’s minimum and

maximum length to be one.

This gives you two entities with nothing to connect them in any way.

We have books. We have authors.

We’re going to create a relationship in PragBook that points to the Author

entity. Every PragBook will have one or more Authors. Select PragBook; in

4. Sure, if you’re already someone who loves using SQLite, you are probably comfortable

issuing commands from the terminal to look at your tables, but it still feels easier to me

to start with XML and switch to SQLite.
5. There are ways to migrate from one version of your schema to another, but those will

take us too far afield.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=358

INTRODUCING RELATIONSHIPS 359

the properties area, click the +, and choose to add a relationship. You

can also use the menu item Design > Data Model > Add Relationship or the

keyboard shortcut CD R.

Name the relationship authors, and set its destination to be the entity

Author. The relationship should be a to-many relationship and not be

optional, and the minimum count should be one. Every book needs at

least one author, but there may be more than one.

Similarly, every author could have written or helped to write more than

one book. So, we need a relationship in the other direction as well.

Select Author, and add an optional to-many relationship named books

with destination PragBook. This time, click the inverse relationship pull-

down, and select authors.

You now have these two inverse relationships between your entities.

When you are working with Core Data, you always want to have two-

way relationships even if you don’t think you need to connect in both

directions.

A book also has chapters, so let’s add a Chapter entity that has the

required attribute title of type string. Of course, a real model would

have a great deal more complexity, but including them would get in the

way of explaining the basics of working with Core Data.

Since a book has one or more chapters, select PragBook, and create a

new relationship named chapters. It is a required to-many relationship

with target entity Chapter. Select Chapter, and create the inverse rela-

tionship named book. Although other publishers may repurpose chap-

ters, for now each chapter belongs to only one book, so this is not a

to-many relationship. It is, however, nonoptional and has target entity

PragBook and inverse relationship chapters.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=359

CHOOSING A RELATIONSHIP’S DELETE RULE 360

Our entity relationship diagram now looks like this:

We have a simple data model with three entities, a handful of attributes,

and a relationship between each pair of entities. We have one more step

before our model is ready for prime time.

22.6 Choosing a Relationship’s Delete Rule

Before we wrap up this data model, we need to consider what happens

when the user deletes data. For instance, when the user deletes a book,

then the book’s chapters should disappear as well. But when the user

deletes a chapter, the book shouldn’t disappear. When the user deletes

a book, what should happen to the authors?

We have several options when the user deletes an entry: Deny, Nul-

lify, Cascade, and No Action. These delete rules are part of defining a

relationship. Let’s look at some examples in our current model.

To start with, how should we set the delete rule for the chapters rela-

tionship? We want to make sure that if there are any chapters left in

a book, then the user can’t delete the book that currently contains the

chapters.

In other words, we choose the Deny option so that when a user tries to

delete the book, their request will be denied if there are still chapters

that would be orphaned without the book they belong to. The Deny

option won’t let you delete the entity if there is at least one item at the

relationship’s destination.

Authors are different. One author may have written more than one

book, so we don’t want to delete the authors when we delete a book.

In this case, we choose Nullify as the option. With Nullify, we are not

prevented from deleting the book if one or more author still exists. We

will set the book relationship in each of the authors to be null. We nul-

lify that relationship because that book no longer exists, so the author

couldn’t have written it.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=360

UPDATING THE VIEW 361

We have another option for the chapters relationship. When we delete

the book, we could delete all of the chapters for that book as well. In

other words, we want the delete to cascade down. We are still enforcing

the idea that it doesn’t make sense for the chapters to survive if the

book doesn’t—we’ve just chosen a different result.

So, set the Delete rule for chapters to Cascade. The inverse relationship

book should have the Delete rule Nullify. When we delete a chapter,

we don’t delete the book it belongs to, but we make sure the book no

longer has a reference to this deleted chapter. Similarly, the rule for

authors and books should be Nullify.6

22.7 Updating the View

By this point, you should be comfortable using Interface Builder with-

out a lot of direction. Open your nib file, select your table view, and

reduce the number of columns to one. Select all of the components

inside your content view, and choose Layout > Embed Objects In > Box.

Change the box’s title to Prag Books. Copy that box, paste it twice, and

customize the contents to look like this:

The contents of the chapter and authors boxes need to depend on which

book is selected. That’s a job for the controller layer.

6. You can compare your work with the data model in CDBookshelf2 in the code download.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=361
Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

MANAGING DEPENDENCIES 362

22.8 Managing Dependencies

To let your users add chapters to a book, start by following the same

steps we followed for the Book Controller. Drag an array controller from

the Library to your Document window. In the Identity inspector, change

its name to Chapter Controller. In the Attributes inspector, change the

mode to Entity and Entity Name to Chapter. This time leave Prepares

Content unselected. In the Bindings inspector, bind Managed Object

Context to the CDBookshelf_AppDelegate with the Model Key Path setting

of managedObjectContext.

Now we’ll do something dramatically different. Each book has its own

set of chapters. The Chapter Controller will manage the chapters for

whatever book is currently selected. As you’ll soon see, if you switch

books, the chapters should switch as well. In the Bindings inspector,

you’ll need to bind Content Set for the Chapter Controller to the appro-

priate keypath in the Book Controller. To do this, Controller Key should

be selection, and Model Key Path should be chapters.

All that remains is to wire up the view. If you created the chapter table

and buttons by duplicating the book table, the elements are probably

connected to the BookController. Let’s move everything to the Chapter-

Controller.

Select the + button in the Chapter section. In the Connections inspec-

tor, connect the selector: to the Chapter Controller. When you get a pop-up

of available connections, choose add:. Similarly, connect the - button’s

selector: to the Chapter Controller’s remove: method.

We also need to set the bindings on the buttons. Select the + button

again, and use the Bindings inspector to bind Enabled to the Chapter

Controller with Controller Key canAdd. Similarly, bind Enabled for the -

button with the Controller Key canRemove.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=362

EXERCISE: ENABLING AUTHOR ADDITION AND REMOVAL 363

Finally, you need to bind the table column to the Chapter Controller. As

before, you’ll bind Value with the Controller Key setting of arrangedOb-

jects because you are binding a column to the contents of an array.

You’ll use the Model Key Path setting of title. I’ll pause while you retrace

these steps for the author table in the following exercise.

22.9 Exercise: Enabling Author Addition and Removal

Add an Author Controller to your nib file. It should connect to the man-

aged object context and work with Author entities associated with the

selected book. Connect and bind the visual elements to the Author Con-

troller much as you did for the Chapter Controller.7

Click Build & Run. Without writing any code, you have a fully functional

app that allows you to add and remove book titles and their chapter

titles. Your buttons will be enabled or disabled appropriately, and the

information will be saved to and retrieved from disk. We even got Undo

for free. Add some books and their corresponding chapters. Now use

Edit > Undo or DZ, and you can undo your work a step at a time.

22.10 Sorting

You might have noticed that there’s a slight problem—if you quit and

restart the application, undo a chapter entry, or just move from book to

book, the chapter order may change. The reason is that the content sets

are sets. In other words, there is no built-in order. You can enter the

chapters for a book in order, but there’s no way to guarantee they will

come up in that same order the next time you select the book or restart

the app. There has been discussion on the Apple cocoa-dev list about

this over the years.8 People like Tim Isted9 and Brian Webster10 have

created useful workarounds that are beyond the scope of this book.

We’ll take a simpler approach and create another attribute to store the

chapter numbers and allow the chapter table to be sorted on this list.

Before we start, delete the CDBookshelf directory from Application Support.

7. You can find the solution in CDBookshelf3 in the code download.
8. For example, see this thread: http://www.cocoabuilder.com/archive/message/cocoa/2005/6/14/138793.
9. http://www.timisted.net/blog/archive/core-data-drag-drop/.
10. http://www.fatcatsoftware.com/blog/2008/per-object-ordered-relationships-using-core-data.

Report erratum

this copy is (P1.0 printing, April 2010)

http://www.cocoabuilder.com/archive/message/cocoa/2005/6/14/138793
http://www.timisted.net/blog/archive/core-data-drag-drop/
http://www.fatcatsoftware.com/blog/2008/per-object-ordered-relationships-using-core-data
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=363

SORTING 364

Open your data model in Xcode. Select the Chapter entity, and add a

new attribute named chapterNumber of type Integer 16. Save your work,

and head to your nib.

In Interface Builder, add a second column to the table in the Chapters

area. Rearrange the two columns so that the new column is on the

left and is fairly narrow, with only # as the column’s title. Bind the

column’s value to the Chapter Controller with the Controller Key setting

of arrangedObjects and the Model Key Path setting of chapterNumber.

We have a small adjustment to make. The column expects to get input

as an NSNumber, but when you type into the available field, it will be

read as an NSString. To fix this, grab a number formatter from the

Library, and drop it on the table cell. Use the Attributes inspector to

set the number formatter to support a Decimal style with a maximum

of 0 fraction digits. Your formatter should be set to support Mac OS X

10.4+ Custom. You’ll know that you have this set up if you see “123”

where you used to see “Text Cell.”

Now we’ll set both columns to sort on the chapter number. Select the

first column, and open the Attributes inspector. Set Sort Key to chap-

terNumber, and set Selector to compare:. Do the same in the second

column—make sure that you are still sorting on chapterNumber.

Click Build & Run. Enter the chapter numbers and titles for a book.

If the chapters get out of order, you can reorder the table by clicking

the title bar of either column. I’m still not happy with this behavior. I’d

like to be able to start up the application and have the Chapters table

sorted by default. Unfortunately, we’re going to need just a little bit of

code to make that work so it will have to wait.

Before we move on, I want you to pause and take a look back at how

far we’ve come in this chapter without writing any code. We have an

application that can persist its data on disk and allow the user to create

and modify information on books, authors, and chapters.11 Up next

we’ll let the user filter which books are displayed.

11. Compare your version with CDBookshelf4 in the code download.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=364

FILTERING ITEMS 365

22.11 Filtering Items

Once your book list grows, you’re going to want to filter it to narrow the

list based on some criteria. As a first step, let’s filter by the name of the

book. I want to have a search box that allows me to start typing some

part of a title and immediately restrict the displayed list to book titles

containing the string I’ve entered so far. It should work just like the

search field at the bottom of your Library window in Interface Builder.

We’re going to be able to do all our work in the nib file. Grab a search

field from the Library, and place it inside your window. You may want

to add a label to let the user know what they can search for.

Select the search field, and use the Bindings inspector to set the search

criteria. In the Search group, open the Predicate disclosure triangle.

We’re going to bind this search to the Book Controller with a Controller

Key of filterPredicate.

You search by constructing a predicate and passing this predicate in.

Predicates can be quite complicated and can be constructed in code if

you find they grow too much to be comfortably entered in the provided

space.12 In our case, you are searching for books whose title contains

the text the user is typing in. We’ll also make this a case-insensitive

search like this:

title contains[c] $value

In short, you should have modified the search field’s Bindings inspector

like this:

12. See Apple’s Predicate Programming Guide.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=365

CODING THE SORT DESCRIPTOR 366

Now, when I type Core into the search field, my list of all the Prag-

matic Bookshelf books is narrowed to Core Animation and Core Data.

Compare your results to CDBookshelf5.

This search isn’t interesting or exceptionally useful. I could have scan-

ned the list of books to find the book titles that included Core myself.

What if I want to turn the hierarchy on its head? Let’s search for all

books written by a particular author. This would be a pain to do by

hand. We’d have to select each book title, look at the author names

that appear, and see whether any match our criteria. Automating this

search is a great idea and doesn’t take much work.

We still bind our search to the Book Controller. This time we’ll search

through all the authors for each book to see whether their last name

contains the string the user has entered. To do this, replace the Predi-

cate Format setting with this:

any authors.lastName contains[c] $value

Now when I type in Dudney, my book list displays the Core Animation

book that Bill wrote and the iPhone SDK book that he coauthored. This

is pretty powerful. Otherwise, you would have had to select each book

title in turn and then look through the list of authors that came up.13

22.12 Coding the Sort Descriptor

Anything you can do in Interface Builder you can also do in code. In

fact, some of the things we’ve done in Interface Builder are very thin

layers on method calls. For example, when you added sorting to the

table columns, you specified the method name when you entered com-

pare: for the selector.

Remember that we didn’t quite get the behavior we wanted. I’d like the

chapter table to be sorted the moment it displays. We’re going to need

a little bit of code. Declare an instance variable named sortDescriptors

of type NSArray and a corresponding property of the same name in the

CDBookShelf_AppDelegate header file.

13. This version of the search is CDBookshelf6 in the code download.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=366

CODING THE SORT DESCRIPTOR 367

Synthesize the sort descriptor and initialize to key off the chapterNumber

attribute by implementing the app delegate’s applicationDidFinishLaunch-

ing: method like this:

Download CoreData/CDBookshelf7/CDBookshelf_AppDelegate.m

@synthesize window, sortDescriptors;

-(void) applicationDidFinishLaunching: (NSNotification *) notification {

self.sortDescriptors = [NSArray arrayWithObject:

[[NSSortDescriptor alloc] initWithKey:@"chapterNumber"

ascending:YES]];

}

Now that we’ve created and initialized the sortDescriptors, we can bind

the Chapter Controller’s sort descriptors to it:

Click Build & Run, and now the chapters remain ordered according to

their chapter number from launch time to quit time.

In this chapter, I’ve described how you work with Core Data in apps

that target Mac OS X. Remember that we don’t have bindings yet in

iPhone OS, so the details of how you work with Core Data are a little

bit different. You still define your data in the same way, but you fetch

the data a bit differently.

There’s no way to completely cover Core Data in a chapter or two. Mar-

cus Zarra’s Core Data [Zar09] book looks at some of the more advanced

ideas. You should also look at Apple’s Introduction to Core Data Pro-

gramming [App09d].

Much of the code you will need or want to write will fit nicely into the

controller layer or into your app delegate. There are times, however,

when you’d really like to make changes or additions to a class that

represents an entity. In the next chapter, you’ll learn a technique that

makes it easier to make changes to classes outside of the class itself

using a powerful technique called categories.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/CoreData/CDBookshelf7/CDBookshelf_AppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=367

Chapter 23

Categories
Way back on Section 17.5, Saving an Archive to Disk, on page 276, we

wanted to save an NSSet to disk and then read it back later. This would

have been easy if we had an NSArray. An NSArray has built-in methods for

writing itself to a file and for creating an array from a file. NSSet doesn’t

have this ability.

Categories let us scoff at these limitations. We use categories to declare

and implement new methods for existing classes. These can be classes

that we create, or they can be classes for which we don’t even have

access to the source code.

In this chapter, we will use categories to teach a set to save itself to

and retrieve itself from disk. Then we’ll use a variant of categories to

declare private methods in our code. Finally, we’ll use categories with

Core Data to modify the behavior of objects in two different ways.

23.1 Overcoming Limitations

Let’s start with a simple application that can read and write an array to

disk. Create a new Cocoa application named Bounce. Make sure that

the Use Core Data for Storage checkbox is unselected. Our application

will create an array, save it to disk, create a second array from what is

saved on disk, and log the new array.

CREATING A CATEGORY 369

The simplest way is to put this code in the applicationDidFinishLaunching:

method in the file BounceAppDelegate.m:

Download Categories/Bounce1/BounceAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

NSArray *source = [NSArray arrayWithObjects:@"One", @"Two", nil];

[source writeToFile:@"savedArray" atomically:YES];

NSArray *fromDisk = [NSArray arrayWithContentsOfFile:@"savedArray"];

NSLog(@"Array from disk: %@",fromDisk);

}

Click Build & Run, and everything works fine. Our first array is created

and saved to disk. Our second array is created with the contents of

what was saved, and the following is logged to the Console window:

Array from disk: (

One,

Two

)

I’d like to do the same thing with an NSSet instead of an NSArray. In

other words, I’d like to change the applicationDidFinishLaunching: method

implementation to the following and have it just work:

Download Categories/Bounce2/BounceAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

NSSet *source = [NSSet setWithObjects:@"One", @"Two", nil];

[source writeToFile:@"savedSet" atomically:YES];

NSSet *fromDisk = [NSSet setWithContentsOfFile:@"savedSet"];

NSLog(@"Set from disk: %@",fromDisk);

}

The compiler complains that NSSet may not respond to the methods

writeToFile:atomically: and setWithContentsOfFile:. Even worse, if we ignore

these warnings and run our application, we get a runtime exception

because the selector writeToFile:atomically: doesn’t exist.

Let’s fix that. An NSSet doesn’t know how to write itself to a file location.

We’re going to create a category for NSSet named Persistence to add this

ability.

23.2 Creating a Category

Create a new Objective-C class that extends NSObject. I know we

are really creating a category and not a class, but there currently isn’t a

template for a category. The convention is to name the file by

combining the name of the category with the name of the class it is a

category on. We will name our category Persistence. It will add

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Categories/Bounce1/BounceAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Categories/Bounce2/BounceAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=369

CREATING A CATEGORY 370

functionality to the NSSet class, so the category’s implementation file

is named NSSet+Persistence.m.

A category cannot contain any instance variables. You are essentially

decorating a class after the memory has been allocated and the vari-

ables have been initialized. You can add new methods to the class you’re

decorating, but that’s all.

This may seem a little bit like protocols. There’s a huge difference.

As you saw back in Chapter 12, Creating Protocols for Delegation, on

page 203, a protocol is a collection of method declarations that can

be optional or required. Any class is free to adopt a protocol. A class

that promises in its header file to conform to a protocol is promising to

implement the required methods somehow.

A category, on the other hand, is tied to a specific class, which it must

name in both the interface and implementation. The category also has

to implement the methods it declares. The methods you declare and

implement in a category are just like the ones you declare and imple-

ment in the class’ header and implementation file.

Doctor up your header file to look like this:

Download Categories/Bounce3/NSSet+Persistence.h

#import <Cocoa/Cocoa.h>

@interface NSSet(Persistence)

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag;

+ (id)setWithContentsOfFile:(NSString *)aPath;

@end

There’s a lot to notice in this small file. You can see how you specify that

this is the interface of the Persistence category that you’re defining on

NSSet. We got rid of the curly brackets since we can’t have any instance

variables. As for the methods we’re declaring, I’ve copied the signature

of the method writeToFile:atomically: from the NSArray class and adapted

the signature of arrayWithContentsOfFile:.

Here’s the shell of the corresponding implementation file:

Download Categories/Bounce3/NSSet+Persistence.m

#import "NSSet+Persistence.h"

@implementation NSSet(Persistence)

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Categories/Bounce3/NSSet+Persistence.h
http://media.pragprog.com/titles/dscpq/code/Categories/Bounce3/NSSet+Persistence.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=370

CATEGORY CAUTIONS 371

We just need to implement the two methods we declared in the header

file. Remember, the strategy is to convert our set to and from an array

and then use the array’s methods to write to and read from disk. For-

tunately, NSSet has a class method setWithArray: that creates a new NSSet

from an NSArray. We can chain that with NSArray’s arrayWithContentsOfFile:

like this:

Download Categories/Bounce3/NSSet+Persistence.m

+ (id)setWithContentsOfFile:(NSString *)aPath {

return [NSSet setWithArray:[NSArray arrayWithContentsOfFile:aPath]];

}

It’s slightly trickier to write to disk because NSArray doesn’t have a

convenience constructor for creating an array from a set. Create an

NSMutableArray of the same size as our NSSet, and iterate through all

elements of the set, adding them one at a time to the array. Once you’re

done, the array can write itself to disk.

Download Categories/Bounce3/NSSet+Persistence.m

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag {

NSMutableArray *temp = [NSMutableArray arrayWithCapacity:self.count];

for (id element in self) {

[temp addObject:element];

}

return [temp writeToFile:path atomically:YES];

}

Notice we can call methods and access instance variables from the class

we’re decorating. We’re using count and iterating over all of the elements

of the underlying NSSet object.

Click Build & Run. You should still get the two compiler warnings that

NSSet may not respond to the methods writeToFile:atomically: and setWith-

ContentsOfFile:. This time, however, there are no runtime errors. The

application runs perfectly. The set is created, and the methods added

in the category take care of writing it to and reading it from disk.

23.3 Category Cautions

Did you notice what just happened?

We wrote some client code that called two methods that didn’t exist in

the NSSet class. The compiler complained, and we got a runtime excep-

tion. We fixed our problem without ever touching this code again and

without having access to the NSSet source code.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Categories/Bounce3/NSSet+Persistence.m
http://media.pragprog.com/titles/dscpq/code/Categories/Bounce3/NSSet+Persistence.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=371

PRIVATE METHODS IN CLASS EXTENSIONS 372

We added a category for NSSet and added the methods we needed to

this category, and everything worked fine. Sure, the compiler still com-

plained, but our app worked fine.

How do you feel about that?

Your answer will probably reveal more about your programming back-

ground than anything else. Rubyists don’t see what the big deal is—this

is just mix-ins. They’ve been wondering for a dozen or more chapters

when we were going to get to them. If you were raised in a statically

typed language, your head is reeling. How do you ever know what to

depend on? The foundations on which you are building your code could

be changed by someone else creating categories.

It’s true that they could, but in practice they don’t. Don’t use categories

to redefine existing methods. In fact, if there is any possibility of a name

collision, you should prepend the method name with something that

sets it apart. For example, I might use PP for Pragmatic Programmers

and name the methods PP_writeToFile: and PP_setWithContentsOfFile:.

I also want to be explicit when my code uses a category. Add this import

to the top of BounceAppDelegate.m:

#import "NSSet+Persistence.h"

Once you add this, the compiler warning will go away. This class now

knows about the additional methods.

Soon we’ll apply categories to our Core Data example, but first let’s look

at a special kind of category—one with no name.

23.4 Private Methods in Class Extensions

Suppose we want to refactor the BounceAppDelegate’s applicationDidFin-

ishLaunching: method. Remember that right now everything is jumbled

together.

Download Categories/Bounce3/BounceAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

NSSet *source = [NSSet setWithObjects:@"One", @"Two", nil];

[source writeToFile:@"savedSet" atomically:YES];

NSSet *fromDisk = [NSSet setWithContentsOfFile:@"savedSet"];

NSLog(@"Set from disk: %@",fromDisk);

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Categories/Bounce3/BounceAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=372

PRIVATE METHODS IN CLASS EXTENSIONS 373

Joe Asks. . .

Why Couldn’t You Give the Category a Name?

We could have. Let’s name it Private and declare it like this:

@interface BounceAppDelegate(Private)

at the top of BounceAppDelegate.m. This is a different construct
called an informal protocol. To create an informal protocol,
you declare the interface for a named category with no corre-
sponding implementation. The class or any subclass of the class
to which the category is attached is free to implement or not
implement the methods that are declared.

I don’t spend much time on informal protocols since you will
most likely never declare any yourself. In fact, now that meth-
ods in protocols can be declared to be optional, Apple is phas-
ing out some of the informal protocols for formal. Look at the
description of numberOfRowsInTableView: in the NSTableViewData-

Source protocol reference. Under Availability you’ll see that until
Snow Leopard, this method was part of an informal protocol.
Now it is part of a formal protocol—what I’ve been referring to
as protocol throughout this book.

Let’s create a new method named createSetOnDisk that contains the first

two lines and a new method named setFromDisk that contains the last

two lines. Here’s your refactored applicationDidFinishLaunching: method:

Download Categories/Bounce4/BounceAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

[self createSetOnDisk];

[self setFromDisk];

}

Where should I put these new methods createSetOnDisk and setFromDisk?

So far I have only two choices. One option is to put the methods in

source code before applicationDidFinishLaunching: so that the compiler

doesn’t complain that the BounceAppDelegate class might not imple-

ment the methods. The other option is to declare the methods in the

header file. Then I am free to put them anywhere I want.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Categories/Bounce4/BounceAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=373

PRIVATE METHODS IN CLASS EXTENSIONS 374

It’s not really a big deal in this little toy example, but there are times

that I don’t like either one of these choices. My source file could be get-

ting long, so I want to group my methods logically for a human reader

unconstrained by a compiler that reads through the source code lin-

early. On the other hand, these methods are not part of the public

interface. I don’t want to declare them in the header file. What I really

want is a way of declaring them privately.

The class extension is created for exactly this situation. Add this to the

top of your implementation file just under your imports:

@interface BounceAppDelegate()

@end

A class extension looks just like a category with no name. Because

the extension is defined in our implementation file, we aren’t sharing

these method declarations with anyone else. These are private func-

tions just for our own use. Declare our new methods in the class exten-

sion, and then you are free to put the methods anywhere in the class

implementation.

Download Categories/Bounce4/BounceAppDelegate.m

#import "BounceAppDelegate.h"

#import "NSSet+Persistence.h"

@interface BounceAppDelegate()

-(void)createSetOnDisk;

-(void)setFromDisk;

@end

@implementation BounceAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

[self createSetOnDisk];

[self setFromDisk];

}

-(void) createSetOnDisk {

NSSet *source = [NSSet setWithObjects:@"One", @"Two", nil];

[source writeToFile:@"savedSet" atomically:YES];

}

-(void) setFromDisk {

NSSet *fromDisk = [NSSet setWithContentsOfFile:@"savedSet"];

NSLog(@"Set from disk: %@",fromDisk);

}

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Categories/Bounce4/BounceAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=374

EXERCISE: EXTENDING PROPERTIES WITH CLASS EXTENSIONS 375

Our class extension is treated as an extension of the methods declared

in the class’ interface, and the compiler will enforce that you implement

the methods declared there.1

23.5 Exercise: Extending Properties with Class Extensions

Here’s another fun trick you can do with class extensions. You can

create a property that is read-only to the outside world and yet is read-

write for you. This lets you take advantage of all the memory manage-

ment goodness you get for free in properties while restricting client code

to only get the value of your property.

Add a read-only property of type NSSet to BounceAppDelegate named

retrievedSet. Add a line to the end of your implementation of application-

DidFinishLaunching: to write the value of the retrievedSet to the Console

window. Here you are using the property’s getter method.

Modify the setFromDisk method so that it sets the value of retrievedSet to

the contents of the file savedSet. Here you are using the setter, so when

you build the project, you should get the compiler error.

Object cannot be set - either readonly property or no setter found

Fix this error by adding a property declaration to the class extension.

You will get a compiler warning that this definition doesn’t agree with

the property definition in the class interface. The warning is correct,

and it is good to be warned of such things so you don’t accidentally

change the behavior you declared in the header file. The build succeeds,

and you can successfully run your app.

23.6 Solution: Extending Properties with Class Extensions

Add your instance variable and read-only property to BounceAppDele-

gate.h:

Download Categories/Bounce5/BounceAppDelegate.h

#import <Cocoa/Cocoa.h>

@interface BounceAppDelegate : NSObject <NSApplicationDelegate> {

NSWindow *window;

NSSet *retrievedSet;

}

1. Bill Bumgarner has blogged on the implementation issues and the intent of the class

extension at http://www.friday.com/bbum/2009/09/11/class-extensions-explained/.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Categories/Bounce5/BounceAppDelegate.h
http://www.friday.com/bbum/2009/09/11/class-extensions-explained/
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=375

CATEGORIES AND CORE DATA 376

@property (readonly) NSSet *retrievedSet;

@property (assign) IBOutlet NSWindow *window;

@end

Synthesize your property in the implementation file, and add this line

to the applicationDidFinishLaunching: method:

Download Categories/Bounce5/BounceAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

[self createSetOnDisk];

[self setFromDisk];

NSLog(@"Set from disk: %@", self.retrievedSet);

}

The additional line uses the property’s getter, and this change to set-

FromDisk uses the property’s setter:

Download Categories/Bounce5/BounceAppDelegate.m

-(void) setFromDisk {

self.retrievedSet = [NSSet setWithContentsOfFile:@"savedSet"];

}

Make the property writable by overriding the declaration of the retrieved-

Set property:

Download Categories/Bounce5/BounceAppDelegate.m

@interface BounceAppDelegate()

-(void)createSetOnDisk;

-(void)setFromDisk;

@property(copy) NSSet *retrievedSet;

@end

Now any client code that imports the header will see this property as

read-only while internally we have redefined the property as read-write

before synthesizing the methods. You can’t add a new property in the

class extension unless there is already an underlying instance variable.

Here we’ve just modified the attributes of an existing property.

23.7 Categories and Core Data

Suppose I want to add behavior to my Core Data entities. Suppose I

want to log some sort of report to the Console window. We can add an

action to CDBookshelf_AppDelegate.h:

- (IBAction)createReport:(id) sender;

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Categories/Bounce5/BounceAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Categories/Bounce5/BounceAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Categories/Bounce5/BounceAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=376

CATEGORIES AND CORE DATA 377

Add a button to the user interface, and connect it to this action. Let’s

enumerate through all of the managed objects in memory and ask the

ones that know how to report to do so.

Download Categories/CDBookshelf8/CDBookshelf_AppDelegate.m

- (IBAction)createReport:(id) sender {

for(NSManagedObject* element in

[[self managedObjectContext] registeredObjects]){

if ([element respondsToSelector:@selector(PP_report)]) {

[element PP_report];

}

}

}

Where should we define the PP_report method? In this first example, let’s

add a category to NSManagedObject and create it there. Declare it in the

header.

Download Categories/CDBookshelf8/NSManagedObject+Report.h

#import <Cocoa/Cocoa.h>

@interface NSManagedObject(Report)

-(void) PP_report;

@end

To implement it, just log the description to the Console:

Download Categories/CDBookshelf8/NSManagedObject+Report.m

#import "NSManagedObject+Report.h"

@implementation NSManagedObject(Report)

-(void)PP_report {

NSLog(@"%@",[self description]);

}

@end

You can add the import for the category to your app delegate and click

Build & Run. Click the report button, and you should see a bunch of

entries that look something like this in the Console:

<NSManagedObject: 0x2000a9f60> (entity: Author;

id: 0x20008cb80 <x-coredata://44E-0D0D-46A2-9497-182BB3C/Author/p103> ;

data: {

books = "<relationship fault: 0x2000c44e0 'books'>";

firstName = Chad;

lastName = Fowler;

middleInitial = nil;

})

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Categories/CDBookshelf8/CDBookshelf_AppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Categories/CDBookshelf8/NSManagedObject+Report.h
http://media.pragprog.com/titles/dscpq/code/Categories/CDBookshelf8/NSManagedObject+Report.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=377

GENERATED CLASSES IN CORE DATA 378

That was pretty straightforward if we want to report on all objects

regardless of which entity they come from. What if we want to report

on books only? Let’s get rid of this category on NSManagedObject and

introduce one on PragBook instead.

23.8 Generated Classes in Core Data

Create a new category named Report on the class PragBook. The imple-

mentation file should look like this:

Download Categories/CDBookshelf9/PragBook+Report.m

#import "PragBook+Report.h"

@implementation PragBook(Report)

-(void)PP_report {

NSLog(@"%@",[self description]);

}

@end

The header file needs to import PragBook, and that’s something we’re

not able to do.

Download Categories/CDBookshelf9/PragBook+Report.h

#import <Cocoa/Cocoa.h>

#import "PragBook.h"

@interface PragBook(Report)

-(void)PP_report;

@end

PragBook.h doesn’t exist. Currently the class associated with the Prag-

Book entity is NSManagedObject. We need to generate the PragBook class

source code.

Select your data model, and choose the menu item File > New File.... If

you have the data model selected, when you do this, then you’ll see a

new option listed under Mac OS X > Cocoa Class. Choose the Managed

Object Class, and click the Next button. The wizard will let you select

the location, project, and targets. Stick with the defaults, and click the

Next button again.

The next panel lets you choose which entities you are generating classes

for. Select the PragBook entity. You have three options at the bottom of

the panel. Select the Generate Obj-C 2.0 Properties box, and leave the

“Generate accessors” and “Generate validation methods” checkboxes

unselected. Click the Finish button.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Categories/CDBookshelf9/PragBook+Report.m
http://media.pragprog.com/titles/dscpq/code/Categories/CDBookshelf9/PragBook+Report.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=378

ACCESSING PROPERTIES 379

The data model shows that the PragBook entity is now tied to the Prag-

Book class we just generated and not the generic NSManagedObject:

Next, take a look at the generated header file PragBook.h:

Download Categories/CDBookshelf9/PragBook.h

#import <CoreData/CoreData.h>

@interface PragBook : NSManagedObject{}

@end

There’s nothing there except that the PragBook class extends NS-

ManagedObject and not just NSObject. The implementation file is empty

as well. That’s all we need to get our revised application to compile and

run.

Click Build & Run; you will get a report as before, but this time it only

includes PragBook objects and not Chapter or Author objects.

PragBook is a subclass of NSManagedObject. You should carefully read

the overview section of the docs for notes on subclassing NSManaged-

Object. The bottom line is that you absolutely shouldn’t override most

of the methods, and you should have little need to override the others.

In addition, the documentation lets you know there is little reason to

write custom accessor methods.

Mostly you will need to add functionality to your classes and not modify

existing behavior. You should make these modifications in a category

like we just did and not in the generated file. Categories allow you to

split your functionality for a class across multiple source files. In the

case of Core Data, this is particularly convenient because if you change

your data model and need to regenerate class files, you would overwrite

any local modifications.

23.9 Accessing Properties

OK, here’s something pretty cool. Let’s change the report to display only

the book’s title and not all the other stuff that is returned by description.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Categories/CDBookshelf9/PragBook.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=379

REGENERATING CLASS FILES FROM ENTITIES 380

Change the implementation of PP_report to this:

Download Categories/CDBookshelf10/PragBook+Report.m

#import "PragBook+Report.h"

@implementation PragBook(Report)

-(void)PP_report {

NSLog(@"%@", [self title]);

}

@end

Now when I click Build & Run and create a report, I see something like

this in the Console:

Core Animation

The Passionate Programmer

Core Data

iPhone SDK Development

This makes me pretty happy. I can access the property title by calling

its getter because the attributes in Core Data support KVC. I’d prefer to

access the property using dot notation. To do this, I need to regenerate

the PragBook class with different options selected.2

23.10 Regenerating Class Files from Entities

Select your data model again, create a new Mac OS X > Cocoa Class, and

again choose Managed Object Class. We’re going to again generate files

for PragBook, but this time you will leave both the “Generate accessors”

and “Generate Obj-C 2.0 Properties” checkboxes selected.

When you click Finish, you will be warned that the template files exist.

Choose to remove the old files and create new ones. This highlights a

great reason for us declaring and implementing PP_report in a category

as opposed to in the PragBook source files. Our work in the source files

would have been blown away by this process. Categories allows us to

write our custom code in a separate location than where the generator

is placing its code. This is another reason to split our code for one class

over several locations.

2. I wouldn’t bother doing all of this if I just wanted to enable dot notation. I want to

show you a few more things about Core Data and categories.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Categories/CDBookshelf10/PragBook+Report.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=380

REGENERATING CLASS FILES FROM ENTITIES 381

Take a look at the new header file for PragBook:

Download Categories/CDBookshelf11/PragBook.h

#import <CoreData/CoreData.h>

@interface PragBook : NSManagedObject {}

@property (nonatomic, retain) NSString * title;

@property (nonatomic, retain) NSSet* authors;

@property (nonatomic, retain) NSSet* chapters;

@end

@interface PragBook (CoreDataGeneratedAccessors)

- (void)addAuthorsObject:(NSManagedObject *)value;

- (void)removeAuthorsObject:(NSManagedObject *)value;

- (void)addAuthors:(NSSet *)value;

- (void)removeAuthors:(NSSet *)value;

- (void)addChaptersObject:(NSManagedObject *)value;

- (void)removeChaptersObject:(NSManagedObject *)value;

- (void)addChapters:(NSSet *)value;

- (void)removeChapters:(NSSet *)value;

@end

Wow, there’s a lot of added code. At the top there are three properties.

One corresponds to the title attribute, and the two others correspond to

the authors and chapters relationships.

The bottom consists of an informal protocol—a category interface with-

out the corresponding implementation. We’re not going to implement

any of these methods, so we can delete the entire informal protocol.

The implementation file contains a keyword we haven’t seen before:

Download Categories/CDBookshelf11/PragBook.m

#import "PragBook.h"

@implementation PragBook

@dynamic title;

@dynamic authors;

@dynamic chapters;

@end

Instead of synthesizing the properties, the template uses the @dynamic

keyword. This tells the compiler not to synthesize the getters and

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Categories/CDBookshelf11/PragBook.h
http://media.pragprog.com/titles/dscpq/code/Categories/CDBookshelf11/PragBook.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=381

REGENERATING CLASS FILES FROM ENTITIES 382

setters. In this case, it indicates that the method implementations will

be provided at runtime.3

These three properties are now available to us, so we can revise the

PP_report method to use dot notation to access the title property.

Download Categories/CDBookshelf11/PragBook+Report.m

#import "PragBook+Report.h"

@implementation PragBook(Report)

-(void)PP_report {

NSLog(@"%@", self.title);

}

@end

Click Build & Run, and when you click the button to generate the

report, the book titles will be logged to the Console.

In this chapter, we’ve used categories to add code to classes you create,

to classes Apple creates, and to classes that are created from Core Data

entities. We’ve also worked with a variation of categories, class exten-

sions, to add private methods to a class. There’s a lot of power and

freedom available to you—it should not be the first option you consider.

3. You can also use @dynamic if you are providing the implementations of the getter and

setter yourself.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Categories/CDBookshelf11/PragBook+Report.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=382

Chapter 24

Blocks
Usually when we have work to do, we call a method that knows how

to do the work and send it the data it needs. In this chapter, we’ll look

at three cases where we also send the method some of the work that

needs to be done. This work is passed in as a special Objective-C object

known as a block. A block is a chunk of executable code that can be

passed around along with data that is copied from the scope containing

the block.

We’re going to look at three uses of blocks. First we’ll look at wrappers—

code that performs some specific setup, invokes the code in a block,

and then possibly does some tidying up after the block finishes. Next

we’ll look at how well blocks work with collections of objects—they allow

you to specify code that applies to each element of the collection inde-

pendent of the way you access the collection. And finally we’ll look at

callbacks—the ability to have a chunk of code run when some event

occurs.1

If you have used blocks, closures, lambdas, or even function pointers

in other languages, much of what you know applies here as well. The

syntax and specifics may be different, but the big ideas and general

strategies are the same.

1. In addition, we’ll look at applications of blocks to concurrency in Chapter 26, Dispatch

Queues, on page 412.

THE NEED FOR BLOCKS IN WRAPPERS 384

Official Support for Blocks

Blocks are currently available only on Mac OS X Snow Leopard
and newer. You won’t use blocks if you are targeting the iPhone
or earlier releases of Mac OS X.

24.1 The Need for Blocks in Wrappers

Suppose we want to add two integers that I’ve stored as NSNumbers. Cre-

ate a new Cocoa application named SimpleCalc, and create this add:to:

method in SimpleCalcAppDelegate.m.2

Download Blocks/SimpleCalc1/SimpleCalcAppDelegate.m

-(NSNumber *) add: (NSNumber *)x to:(NSNumber *) y {

NSInteger xAsInt = [x integerValue];

NSInteger yASInt = [y integerValue];

NSInteger result = xAsInt + yASInt;

return [NSNumber numberWithInteger:result];

}

The two NSNumbers are converted to NSIntegers and added together, and

then the sum is converted back to an NSNumber and returned.

Very little of this code has anything to do with the actual calculation. To

see this, we can create a new method named multiply:by: that multiplies

two NSNumbers. There’s a lot of repeated code between this method and

add:to:. We still have to convert the NSNumbers to NSIntegers, and we still

have to return the result. The only thing that changes is the method

name and the operation on the two NSIntegers.

Download Blocks/SimpleCalc2/SimpleCalcAppDelegate.m

-(NSNumber *) multiply: (NSNumber *)x by:(NSNumber *) y {

NSInteger xAsInt = [x integerValue];

NSInteger yASInt = [y integerValue];

NSInteger result = xAsInt * yASInt;

return [NSNumber numberWithInteger:result];

}

What I really want is a method that allows me to pass in the two NS-

Numbers and the operation to be performed on them. This new method

will take the two NSNumbers as its first two parameters and will begin

2. I’ve removed the window property from the app delegate. Make sure you edit the project

settings so that garbage collection is required.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Blocks/SimpleCalc1/SimpleCalcAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Blocks/SimpleCalc2/SimpleCalcAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=384

DECLARING A BLOCK 385

by converting them to NSIntegers the same way we did in both add:to:

and multiply:by:. Our new method will have a third parameter that will

accept the operation that will act on the two NSIntegers. This information

is captured in a block.

24.2 Declaring a Block

Here’s the signature for the method we’ll use to replace add:to: and

multiply:by::

Download Blocks/SimpleCalc4/SimpleCalcAppDelegate.m

-(NSNumber *) combine:(NSNumber *) x

with:(NSNumber *) y

usingBlock:(NSInteger (^)(NSInteger,NSInteger)) block

Before we look at the block declaration, take another look at how we

declare the first parameter of the combine:with:usingBlock: method:

(NSNumber *) x

We put the type for x in parentheses before the variable. This type is a

pointer to an NSNumber.

The third parameter declares a special kind of object called a block.

A block is essentially a function that captures and copies data at the

moment that execution passes over the point of declaration of the block.

A block may take one or more inputs, and it might have a return value.

The format for specifying a block as a method parameter looks generally

like this:

(return_type (^) (parameterType1, parameterType2)) block_name

The ^ indicates a block. It is preceded by the type returned by the block

and followed by the types of the block’s parameters.

In our specific case, the block is declared like this:

(NSInteger (^) (NSInteger, NSInteger)) block

In words, our block will be referred to by the name block. It is a func-

tion that takes two NSIntegers and returns an NSInteger. This lets the

compiler check to make sure the block being passed in has the right

signature.

Later in the chapter we’ll declare a block as a variable. That form looks

slightly different. Here is what our example block would look like:

NSInteger (^block) (NSInteger, NSInteger) = // block definition

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Blocks/SimpleCalc4/SimpleCalcAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=385

USING BLOCKS IN WRAPPERS 386

We use that same form if our block is a parameter in a C function:

(NSInteger *) combineUsingBlock (NSNumber *x, NSNumber *y,

NSInteger (^block)(NSInteger,NSInteger)){

//function body

}

We’re going to continue with the method parameter version. Next, let’s

see how you would implement and call this particular block.

24.3 Using Blocks in Wrappers

You use the block inside the combine:with:usingBlock: method as you

would a function.

Download Blocks/SimpleCalc4/SimpleCalcAppDelegate.m

-(NSNumber *) combine:(NSNumber *) x

with:(NSNumber *) y

usingBlock:(NSInteger (^)(NSInteger,NSInteger)) block

{

NSInteger xAsInt = [x integerValue];

NSInteger yASInt = [y integerValue];

NSInteger result = block(xAsInt, yASInt);

return [NSNumber numberWithInteger:result];

}

We’re all set up to accept and use a block in the combine:with:usingBlock:

method. Here’s the block we’re going to pass to this method to add two

numbers. In this case, the return type of the block can be inferred and

doesn’t need to be specified.

^(NSInteger x, NSInteger y) {

return x+y;

}

This type of expression is called a block literal. The body can contain

multiple statements and declared variables. Ours happens to be very

simple. It is a block that takes two NSIntegers as arguments. We need

to name these arguments so that we can use them inside the body of

the block. We’ll name them x and y, and the block will do nothing more

than return their sum.

So when you call block(xAsInt,yAsInt); in combine:with:usingBlock:, it’s as if

you are calling this function:

(NSInteger) block(NSInteger x, NSInteger y) {

return x+y;

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Blocks/SimpleCalc4/SimpleCalcAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=386

CAPTURING VALUES 387

The power of blocks is that you can change the body of this function to

return the product instead just by passing in a different block. Here

is the complete applicationDidFinishLaunching: method. I’ve highlighted

passing in the two different blocks.

Download Blocks/SimpleCalc4/SimpleCalcAppDelegate.m

Line 1 - (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

- NSNumber *firstNumber = [NSNumber numberWithInteger:7];

- NSNumber *secondNumber = [NSNumber numberWithInteger:5];

- NSNumber *sum = [self combine:firstNumber

5 with:secondNumber

- usingBlock:^(NSInteger x,NSInteger y){return x+y;}];

- NSLog(@"The sum of %@ and %@ is %@.",

- firstNumber, secondNumber, sum);

- NSNumber *product = [self combine:firstNumber

10 with:secondNumber

- usingBlock:^(NSInteger x,NSInteger y){return x*y;}];

- NSLog(@"The product of %@ and %@ is %@.",

- firstNumber, secondNumber, product);

- }

You already know how to provide a block as a parameter. We pass in

blocks for addition and multiplication in lines 6 and 11.

This was sort of a silly example of using wrappers, but it illustrated the

technique. A more typical situation might be performing actions on a

file that is stored remotely. No matter what your action, you need to

perform a set of steps to access the file before your action, and you

need to perform another set of steps to clean up your resource after

your action. It would make sense to write a method that includes that

protocol with the action accepted in the middle as a block. In fact, any

time you have more than one action that is preceded and/or followed

by the same steps, consider using this wrapper technique with blocks.

What about iterating through an array and performing an action on

each one of the elements? It turns out that this is such a common

situation that Apple has built in the ability to send a block to each

element of a collection into arrays, sets, and dictionaries. We’ll look at

that after we look at how blocks work with variables defined in the same

scope.

24.4 Capturing Values

So far, I’ve ignored a major feature of blocks: they include a snapshot

of the values of variables that are in scope at the time the block is

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Blocks/SimpleCalc4/SimpleCalcAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=387

CAPTURING VALUES 388

declared. I’m going to simplify our example in a couple of ways. First,

I’m going to replace the NSNumbers with NSIntegers to eliminate the con-

verting back and forth. That was useful to show you how and why we

would use blocks to pass an operation into a wrapper, but it now mud-

dies things a bit. Second, instead of multiplying two numbers together,

I will triple a number that is defined in a local variable in the same

scope as where the block is defined.

Download Blocks/SimpleCalc5/SimpleCalcAppDelegate.m

Line 1 #import "SimpleCalcAppDelegate.h"

-

- @implementation SimpleCalcAppDelegate

-

5 -(NSInteger) tripleUsingBlock:(NSInteger (^)(NSInteger)) block

- {

- return block(3);

- }

- - (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

10 NSInteger multiplicand = 5;

- NSInteger product = [self tripleUsingBlock:^(NSInteger multiplier){

- return multiplier * multiplicand;

- }];

- NSLog(@"Triple %d is %d.", multiplicand, product);

15 }

- @end

There’s a lot going on in this short listing. Start with the declaration of

the tripleUsingBlock: method in line 5. We aren’t passing in the value of

the multiplicand. The only parameter is the block itself.

The multiplicand is declared in applicationDidFinishLaunching: just before

we declare the block on line 11. Here’s the actual block definition:

^(NSInteger multiplier){ return multiplier * multiplicand; }

The block takes a single argument, an NSInteger named multiplier. Now

here’s the point of this example. The block returns the result of multi-

plying this multiplier by a second variable named multiplicand. The value

of the multiplicand is 5 at the point that the execution hits the ^, so that

value travels with the block. The result is that when the block is called

in line 10, the value of multiplicand is still frozen at 5, so that’s the value

that 3 is multiplied by.

Now that you understand what’s going on, take another look back at

the code. Initially, blocks look a bit strange. As you look back at the

code listing with greater understanding, they will start to look more

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Blocks/SimpleCalc5/SimpleCalcAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=388

BLOCKS AND COLLECTIONS 389

natural to you. Next, let’s extend this example by passing blocks to a

collection.

24.5 Blocks and Collections

Apple has added dozens of methods to let you pass blocks into col-

lections for sorting or transforming the elements in Snow Leopard. As

an example of how to use them, let’s put a handful of integers into an

NSArray and then iterate through the array and multiply each element

by 3.

Create a new Cocoa project named CollectionCalc. In applicationDidFin-

ishLaunching:, we’ll create and display our initial array, multiply each of

the elements by 3, and display the result.

Download Blocks/CollectionCalc1/CollectionCalcAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

NSArray *numbers = [self createArray];

NSLog(@"Elements in the initial array:%@", numbers);

NSArray *transformedNumbers = [self tripleElementsIn: numbers];

NSLog(@"Elements in the tripled array:%@", transformedNumbers);

}

There’s not much to the createArray method. You just need to remem-

ber that arrays can contain only objects, not primitives, so we have to

convert our NSIntegers to NSNumbers.

Download Blocks/CollectionCalc1/CollectionCalcAppDelegate.m

-(NSArray *) createArray {

return [NSArray arrayWithObjects:[NSNumber numberWithInt:5],

[NSNumber numberWithInt:2],

[NSNumber numberWithInt:17],

[NSNumber numberWithInt:-3],

[NSNumber numberWithInt:14],nil];

}

We will transform the array in the tripleElementsIn: method. If we weren’t

using blocks, we’d just use the for in fast enumeration introduced in

Objective-C 2.0. In this case, we would be responsible for enumerating

through the array. After the enumerator moves to the next element, it

asks us what work needs to be done.

for (NSNumber *element in originalArray) {

// do some work

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Blocks/CollectionCalc1/CollectionCalcAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Blocks/CollectionCalc1/CollectionCalcAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=389

DECLARING, DEFINING, AND USING BLOCKS 390

With Snow Leopard, we can call this method on an array:

- (void)enumerateObjectsUsingBlock:

(void (^)(id obj, NSUInteger idx, BOOL *stop))block

Now we’re telling the array to apply the work we pass in to each of its

elements. We aren’t calling out the enumeration as a separate activity.

Here’s how we use this technique to triple each value in the array:

Download Blocks/CollectionCalc1/CollectionCalcAppDelegate.m

-(NSArray *) tripleElementsIn:(NSArray *) originalArray {

NSMutableArray *tempArray =

[[NSMutableArray alloc] initWithCapacity:[originalArray count]];

[originalArray enumerateObjectsUsingBlock:

^(id obj, NSUInteger idx, BOOL *stop) {

[tempArray addObject:[NSNumber numberWithInt: 3 * [obj intValue]]];

}];

return tempArray;

}

Notice in this array example that the block is passed three parameters.

The first parameter, obj, is the pointer to the current element. That

gives us a handle to the object whose value we’re tripling. The second

parameter is the index of the current element. We don’t have any need

for it in our current application. The final parameter acts as a break.

It is a BOOL that allows you to stop iterating through the array when

you set its value to YES. You might, for example, want to traverse an

array until you find the first occurrence of something. At that point,

you would set stop to YES.

At this point, there’s probably a “What’s the big deal?” welling up inside

you. Good question. Let’s dig a little deeper. Remember, blocks are

objects. We can declare and initialize them and pass them around

instead of just declaring them in place. Let’s see how that changes our

code.

24.6 Declaring, Defining, and Using Blocks

So far, we’ve described our blocks inline. When blocks are very short,

this is a convenient way to capture the work that needs to be done.

But blocks are also objects, so we can declare them and use them as

we would other objects. For example, let’s declare a block that mul-

tiplies an NSNumber and an NSInteger and returns their product as an

NSNumber. We’ll create both an instance variable and the corresponding

property in CollectionCalcAppDelegate.h.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Blocks/CollectionCalc1/CollectionCalcAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=390

DECLARING, DEFINING, AND USING BLOCKS 391

Download Blocks/CollectionCalc2/CollectionCalcAppDelegate.h

#import <Cocoa/Cocoa.h>

@interface CollectionCalcAppDelegate : NSObject <NSApplicationDelegate> {

NSNumber *(^multiply)(NSNumber *, NSInteger);

}

@property(copy) NSNumber *(^multiply)(NSNumber *, NSInteger);

@end

Don’t forget to synthesize this property at the top of CollectionCalcAp-

pDelegate.m:

Download Blocks/CollectionCalc2/CollectionCalcAppDelegate.m

@synthesize multiply;

Add the block initialization to the applicationDidFinishLaunching: method:

Download Blocks/CollectionCalc2/CollectionCalcAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

NSArray *numbers = [self createArray];

self.multiply = ^(NSNumber *x, NSInteger y) {

return [NSNumber numberWithInt:[x intValue] * y];

};

NSLog(@"Elements in the initial array:%@", numbers);

NSArray *transformedNumbers = [self tripleElementsIn: numbers];

NSLog(@"Elements in the tripled array:%@", transformedNumbers);

}

If you’re passing a block out of the scope where it was created, you need

to copy it. Otherwise, the block may be destroyed when the method

containing the block initialization returns. This is why we are using

the property for multiply. We are taking advantage of the copy memory

attribute that we set on multiply.

Now use this block from inside the block we are using when enumerat-

ing the array:

Download Blocks/CollectionCalc2/CollectionCalcAppDelegate.m

-(NSArray *) tripleElementsIn:(NSArray *) originalArray {

NSMutableArray *tempArray =

[[NSMutableArray alloc] initWithCapacity:[originalArray count]];

[originalArray enumerateObjectsUsingBlock:

^(id obj, NSUInteger idx, BOOL *stop) {

[tempArray addObject:multiply(obj,3)];

}];

return tempArray;

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Blocks/CollectionCalc2/CollectionCalcAppDelegate.h
http://media.pragprog.com/titles/dscpq/code/Blocks/CollectionCalc2/CollectionCalcAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Blocks/CollectionCalc2/CollectionCalcAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Blocks/CollectionCalc2/CollectionCalcAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=391

USING __BLOCK 392

Isn’t that nice? If I didn’t have to shorten the lines to fit in this book,

we’d have the entire array transformation on a single line.

24.7 Using __block

We are going to push this example in several different directions to ex-

plore variables. In this section, let’s create a new method named squa-

reElementsIn: to return an array containing the square of each element

in the original array.

Download Blocks/CollectionCalc3/CollectionCalcAppDelegate.m

-(NSArray *) squareElementsIn:(NSArray *) originalArray {

NSMutableArray *tempArray =

[[NSMutableArray alloc] initWithCapacity:[originalArray count]];

[originalArray enumerateObjectsUsingBlock:

^(id obj, NSUInteger idx, BOOL *stop) {

[tempArray addObject:multiply(obj,[obj intValue])];

}];

return tempArray;

}

Call this method in applicationDidFinishLaunching:, and display the re-

sults. When you click Build & Run, everything runs fine, and you

should get an array containing the squares of the original array.

Now, introduce a temporary variable for [obj integerValue] outside the

block so you can see what can go wrong.

Download Blocks/CollectionCalc4/CollectionCalcAppDelegate.m

-(NSArray *) squareElementsIn:(NSArray *) originalArray {

NSMutableArray *tempArray =

[[NSMutableArray alloc] initWithCapacity:[originalArray count]];

NSInteger multiplier;

[originalArray enumerateObjectsUsingBlock:

^(id obj, NSUInteger idx, BOOL *stop) {

multiplier = [obj intValue];

[tempArray addObject:multiply(obj,multiplier)];

}];

return tempArray;

}

This won’t even compile. We’ve declared an NSInteger outside the block

and tried to update it. The error message is “Assignment of read-only

variable ’multiplier’.” We could have avoided this problem by declaring

the variable inside the block, but the point is for us to understand why

multiplier is read-only.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Blocks/CollectionCalc3/CollectionCalcAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Blocks/CollectionCalc4/CollectionCalcAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=392

CLEANING UP WITH TYPEDEF 393

This is a very important point. When you enter the block, the runtime

takes a snapshot of the accessible variables at that time. That’s how

we were able to use the multiplicand variable in the block we used back

in Section 24.4, Capturing Values, on page 387. Unless you indicate

otherwise, these variables are treated as if they were constants—code

in the block can read their values but not alter them. This helps with

performance and multithreading.

More precisely, when we enter the block, execution passes over to the

block literal. Nonobject types have their values set at that point. If

instead of an NSInteger, multiplier was an object, then the object the vari-

able points to would be mutable by the block.

So, how do you indicate otherwise? If you need the block to change the

value of a nonobject variable that is declared outside the block, then

you need to use __block when you declare the variable.3 With this single

change, the application now builds and runs fine.

Download Blocks/CollectionCalc5/CollectionCalcAppDelegate.m

-(NSArray *) squareElementsIn:(NSArray *) originalArray {

NSMutableArray *tempArray =

[[NSMutableArray alloc] initWithCapacity:[originalArray count]];

__block NSInteger multiplier;

[originalArray enumerateObjectsUsingBlock:

^(id obj, NSUInteger idx, BOOL *stop) {

multiplier = [obj intValue];

[tempArray addObject:multiply(obj,multiplier)];

}];

return tempArray;

}

There are a lot of subtleties with blocks and variables. You should def-

initely read Apple’s Blocks Programming Topics [App09b], particularly

the section titled “Blocks and Variables.”

24.8 Cleaning Up with typedef

Let’s declare a second block named add with the same signature as

multiply. Declare it to be a property and synthesize it. We aren’t going to

use this block; I’m only introducing it to show you a way to clean up

your declarations.

3. That is two underscores followed by the word block.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Blocks/CollectionCalc5/CollectionCalcAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=393

EXERCISE: USING BLOCKS IN CALLBACKS 394

Download Blocks/CollectionCalc6/CollectionCalcAppDelegate.h

#import <Cocoa/Cocoa.h>

@interface CollectionCalcAppDelegate : NSObject <NSApplicationDelegate> {

NSNumber *(^multiply)(NSNumber *, NSInteger);

NSNumber *(^add)(NSNumber *, NSInteger);

}

@property(copy) NSNumber *(^multiply)(NSNumber *, NSInteger);

@property(copy) NSNumber *(^add)(NSNumber *, NSInteger);

@end

The add and multiply blocks have the same type—they both take an

NSNumber and an NSInteger and return an NSNumber. Let’s formalize that

concept by using typedef to define this new type that we’ll call Arithmeti-

cOperation.

Download Blocks/CollectionCalc7/CollectionCalcAppDelegate.h

#import <Cocoa/Cocoa.h>

typedef NSNumber *(^ArithmeticOperation)(NSNumber *, NSInteger);

@interface CollectionCalcAppDelegate : NSObject <NSApplicationDelegate> {

ArithmeticOperation multiply;

ArithmeticOperation add;

}

@property(copy) ArithmeticOperation multiply;

@property(copy) ArithmeticOperation add;

@end

There are positives and negatives to this approach. On the plus side,

you can certainly see that the code is much cleaner. On the negative

side, it can be a pain in larger programs for people to locate the typedefs

and figure out what is going on underneath.

24.9 Exercise: Using Blocks in Callbacks

Let’s round out this introduction to blocks with an example of a call-

back. Our application will listen for all notifications issued from the

notification center and log them to the Console. We need to send a

message to the notification center and specify the object and method

that should be called by the notification center whenever this type of

notification is posted. Once we’ve set this up in the traditional way,

you’ll replace the callback mechanism with a block.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Blocks/CollectionCalc6/CollectionCalcAppDelegate.h
http://media.pragprog.com/titles/dscpq/code/Blocks/CollectionCalc7/CollectionCalcAppDelegate.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=394

EXERCISE: USING BLOCKS IN CALLBACKS 395

Create a new Cocoa application that doesn’t use Core Data. Name it

Callback, and change the CallbackAppDelegate.m file to this:

Download Blocks/Callback1/CallbackAppDelegate.m

#import "CallbackAppDelegate.h"

@implementation CallbackAppDelegate

@synthesize window;

-(void) response:(NSNotification *) notification {

NSLog(@"Received: %@.", [notification name]);

}

-(void)registerWithoutBlocks {

[[NSNotificationCenter defaultCenter]

addObserver:self

selector:@selector(response:)

name:nil

object:nil];

}

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

[self registerWithoutBlocks];

}

@end

Look at the registerWithoutBlocks method where we register to receive

notifications. In this case, we pass in nil for the notification name to

receive every notification. We also specify which object is to be notified

and which method will be called back when the notification is received.

You can see that the callback method response: doesn’t do very much.4

The Snow Leopard APIs adds a new method for registering a block to

receive notifications. You eliminate the need for the callback method by

passing in what you want done when the notification is received as a

block. This one method combines both the registration for notifications

and the callback.

addObserverForName:(NSString *)name

object:(id)obj

queue:(NSOperationQueue *)queue

usingBlock:(void (^)(NSNotification *arg1))block

Revise CallbackAppDelegate.m to use this method and a block.

4. I do find it a bit disturbing that we just have to know that the callback method

needs to accept a single parameter of type NSNotification. You’ll see that this requirement

is clearer in the blocks version.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Blocks/Callback1/CallbackAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=395

SOLUTION: USING BLOCKS IN CALLBACKS 396

24.10 Solution: Using Blocks in Callbacks

You can eliminate the response: method and replace the registerWithout-

Blocks method with this method:

Download Blocks/Callback2/CallbackAppDelegate.m

-(void)registerWithBlocks {

[[NSNotificationCenter defaultCenter]

addObserverForName:nil

object:nil

queue:nil

usingBlock:^(NSNotification *notification) {

NSLog(@"Received: %@.", [notification name]);

}];

}

The body of the block is the body of the old response:. For clarity, I’ve

changed the name of the NSNotification from arg1 to notification. One

advantage of using blocks is that you are expressing what needs to

be done where it needs to be done. Your logic isn’t split all over the

place.

Click Build & Run, and your Console should be filled with notifications

like these:

Received: NSMenuDidChangeItemNotification.

Received: NSWindowDidBecomeKeyNotification.

Received: NSWindowDidBecomeMainNotification.

There is a big problem with this code. The problem isn’t block-specific,

but it trips people up enough that we should talk a bit about it. After

a few seconds, the notifications stop. Even if you resize the application

window, you won’t see an NSWindowDidResizeNotification or other related

event notifications.

You may remember this problem from when we worked with KVO.

With automatic garbage collection, we have to explicitly hold on to the

observer, or it is garbage collected, and there is no object there to receive

the notification. Add an instance variable to the header file.

Download Blocks/Callback3/CallbackAppDelegate.h

#import <Cocoa/Cocoa.h>

@interface CallbackAppDelegate : NSObject <NSApplicationDelegate> {

NSWindow *window;

NSObject *observer;

}

@property (assign) IBOutlet NSWindow *window;

@end

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Blocks/Callback2/CallbackAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Blocks/Callback3/CallbackAppDelegate.h
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=396

SOLUTION: USING BLOCKS IN CALLBACKS 397

Set observer to be the object returned when we register to listen for

notifications and retain this object.

Download Blocks/Callback3/CallbackAppDelegate.m

-(void)registerWithBlocks {

observer = [[[NSNotificationCenter defaultCenter]

addObserverForName:nil object:nil queue:nil

usingBlock:^(NSNotification *notification) {

NSLog(@"Received: %@.", [notification name]);

}] retain];

}

Now everything works perfectly. Notifications are sent and received

until we quit the application.

Blocks turn the way you think about code on its head. Instead of pass-

ing a lot of parameters to a method that knows what to do with them,

you are passing in an action to the object along with a snapshot of some

of the data that needs to be acted upon. With practice, you’ll get a feel

for whether you are in a situation that would benefit from blocks.

There is a lot of good online material on blocks. BBum has an essential

series of posts that you should read on his weblog-o-mat. In particu-

lar, read Basic Blocks5 and Blocks Tips & Tricks.6 Mike Ash posted

two very good entries in his Friday Q&A series on blocks.7,8 Joachim

Bengtsson has an online introduction to blocks,9 and Drew McCor-

mack wrote an excellent guide to “10 Uses for Blocks” in his Cocoa for

Scientists series.10

In this chapter, you got a feel for various ways to use blocks when you

need to wrap some behavior, use a callback, or work with collections.

Next we’ll look at concurrency and how blocks are built to make your

code perform better.

5. http://www.friday.com/bbum/2009/08/29/basic-blocks/

6. http://www.friday.com/bbum/2009/08/29/blocks-tips-tricks/

7. http://mikeash.com/pyblog/friday-qa-2008-12-26.html

8. http://mikeash.com/pyblog/friday-qa-2009-08-14-practical-blocks.html

9. http://thirdcog.eu/pwcblocks/

10. http://www.macresearch.org/cocoa-scientists-xxxii-10-uses-blocks-cobjective-c

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Blocks/Callback3/CallbackAppDelegate.m
http://www.friday.com/bbum/2009/08/29/basic-blocks/
http://www.friday.com/bbum/2009/08/29/blocks-tips-tricks/
http://mikeash.com/pyblog/friday-qa-2008-12-26.html
http://mikeash.com/pyblog/friday-qa-2009-08-14-practical-blocks.html
http://thirdcog.eu/pwcblocks/
http://www.macresearch.org/cocoa-scientists-xxxii-10-uses-blocks-cobjective-c
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=397

Chapter 25

Operations and Their Queues
Concurrency is difficult. Computers are not particularly good at medi-

ating access to shared resources (in particular memory). The good news

is that folks are working hard to make things easier so that we can take

advantage of the additional processors on our machines.

One technique is to carve larger tasks into discrete units of work that

can be either performed in order or run in parallel in separate threads.

When that work completes, our original program collects the results.

Mac OS X Leopard introduced this idea of operation queues to coordi-

nate the distribution of work between multiple threads. Snow Leopard

takes this further with dispatch queues, which we’ll cover in the next

chapter.

Let’s start by creating a bad application that makes its users wait (the

infamous spinning beach ball effect), and then we’ll fix it up using oper-

ation queues.

25.1 Making the Beach Ball Spin

In this first example, we’ll spin twenty-five progress indicators for one

second each, one at a time. This application should be unresponsive,

and you should see the spinning beach ball while the progress indica-

tors are displayed.

Create a new Cocoa application named Spinner. When the application

runs, it will first create and configure an array of twenty-five progress

indicators, and then it will tell each of them to spin for one second.

MAKING THE BEACH BALL SPIN 399

Download Operations/Spinner1/SpinnerAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

NSArray *arrayOfSpinners = [self arrayOfSpinners];

for (NSProgressIndicator *spinner in arrayOfSpinners) {

[self spin:spinner];

}

}

I’m going to size the window and place the progress indicators so that

if all were visible at once, they would look like this:

To do this, resize the window in Interface Builder so that its width is

415 and its height is 56. Create and place the progress indicators using

Xcode in the arrayOfSpinners method.

Download Operations/Spinner1/SpinnerAppDelegate.m

-(NSArray *) arrayOfSpinners {

NSMutableArray *array = [[NSMutableArray alloc] initWithCapacity:25];

for (int i = 0; i < 25; i++){

NSProgressIndicator *spinner = [[NSProgressIndicator alloc]

initWithFrame: NSMakeRect(16 * i + 8, 20, 16, 16)];

[spinner setStyle:NSProgressIndicatorSpinningStyle];

[spinner setControlSize:NSSmallControlSize];

[spinner setDisplayedWhenStopped:NO];

[window.contentView addSubview:spinner];

[array addObject:spinner];

}

return array;

}

The arrayOfSpinners method returns an array filled with the progress

indicators. We iterate through this array and tell each one to start ani-

mating, sleep for one second, and then stop animating.

Download Operations/Spinner1/SpinnerAppDelegate.m

-(void) spin:(NSProgressIndicator *) spinner {

[spinner startAnimation:self];

sleep(1);

[spinner stopAnimation:self];

}

Click Build & Run. The application will start up, and the progress indi-

cators will appear and spin one at a time. If you hover your mouse

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Operations/Spinner1/SpinnerAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Operations/Spinner1/SpinnerAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Operations/Spinner1/SpinnerAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=399

INVOCATION OPERATIONS 400

pointer over the window, you will see the spinning beach ball. You might

notice that the window is not the active window. If you try to click the

window, it will be unresponsive.

You can also see this if you create a release version of the applica-

tion and run it as a stand-alone application. It will be reported as “not

responding” in your window for force-quitting applications.

The app is nonresponsive because its main event processing thread

is blocked waiting on the spin method to complete. We’ll fix this lack of

responsiveness with operations and queues. There are three basic types

of operations. We’ll begin with a type that allows us to turn a method

call into an operation.

25.2 Invocation Operations

Right now we just call the spin: method directly:

Download Operations/Spinner1/SpinnerAppDelegate.m

for (NSProgressIndicator *spinner in arrayOfSpinners) {

[self spin:spinner];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Operations/Spinner1/SpinnerAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=400

INVOCATION OPERATIONS 401

An NSInvocationOperation allows us to create an object from this method

call by specifying the method, the target for the method, and the param-

eter to be passed to the method.

NSInvocationOperation *op =

[[NSInvocationOperation alloc] initWithTarget:self

selector:@selector(spin:)

object:spinner];

Once you have some sort of an operation, you add it to an operation

queue that manages the operations in it.

Download Operations/Spinner2/SpinnerAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

NSArray *arrayOfSpinners = [self arrayOfSpinners];

NSOperationQueue *queue = [[NSOperationQueue alloc] init];

for (NSProgressIndicator *spinner in arrayOfSpinners) {

[queue addOperation:[[NSInvocationOperation alloc]

initWithTarget:self

selector:@selector(spin:)

object:spinner]];

}

}

Click Build & Run, and things are quite a bit different.1 All of the spin-

ners spin at once, and you can select the application window. There’s

no spinning beach ball. The window will become the active window.

So, how do we get the spinners to spin one at a time? We can cap the

number operations that can be performed concurrently. We can set this

value to three and watch three progress indicators spin at a time. As

a special case, we can set this value to one and turn the queue into a

serial queue. The operations will be performed one at a time.

Download Operations/Spinner3/SpinnerAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

NSArray *arrayOfSpinners = [self arrayOfSpinners];

NSOperationQueue *queue = [[NSOperationQueue alloc] init];

[queue setMaxConcurrentOperationCount:1];

1. If this goes by too quickly, you may want to increase the sleep time from one second

to ten seconds.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Operations/Spinner2/SpinnerAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Operations/Spinner3/SpinnerAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=401

BLOCK OPERATIONS 402

for (NSProgressIndicator *spinner in arrayOfSpinners) {

[queue addOperation:[[NSInvocationOperation alloc]

initWithTarget:self

selector:@selector(spin:)

object:spinner]];

}

}

Now the progress indicators spin one at a time, and the application is

responsive. No spinning beach balls; we can select the window, and it

becomes the active window.

I know I’m making a big deal out of this. This is a big deal. Even when

you have serial tasks to perform, you can make your application more

responsive and performant by using NSOperation. You are pushing tasks

to background threads and reserving the main thread for user interac-

tion.

25.3 Block Operations

If you are targeting Mac OS X 10.6 or newer, then you can use blocks

instead of methods.2 You create an NSBlockOperation object with this

convenience constructor:

+ (id)blockOperationWithBlock:(void (^)(void))block

This signature means that the block doesn’t take any parameters and

doesn’t return anything. This fits our needs perfectly. Create a block

inline with the same body as the spin: method:

Download Operations/Spinner4/SpinnerAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

NSArray *arrayOfSpinners = [self arrayOfSpinners];

NSOperationQueue *queue = [[NSOperationQueue alloc] init];

[queue setMaxConcurrentOperationCount:1];

for (NSProgressIndicator *spinner in arrayOfSpinners) {

[queue addOperation:[NSBlockOperation blockOperationWithBlock:^{

[spinner startAnimation:self];

2. You may want to take a look back at Chapter 24, Blocks, on page 383 to refamiliarize

yourself with the block syntax.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Operations/Spinner4/SpinnerAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=402

INTERACTING WITH THE QUEUE AND OPERATIONS 403

sleep(1);

[spinner stopAnimation:self];

}]];

}

}

Eliminate the spin: method. Click Build & Run, and the application

should run as before with the progress indicators spinning one at a

time and with the application being responsive to mouse clicks.

In this case, we can also use the addOperationWithBlock: method that

was added to NSOperationQueue in Snow Leopard. Replace the following:

[queue addOperation:[NSBlockOperation blockOperationWithBlock:^{

with this:

[queue addOperationWithBlock:^{

Also remove one of the closing square braces that follows the curly

brace that closes the block:

Download Operations/Spinner5/SpinnerAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

NSArray *arrayOfSpinners = [self arrayOfSpinners];

NSOperationQueue *queue = [[NSOperationQueue alloc] init];

[queue setMaxConcurrentOperationCount:1];

for (NSProgressIndicator *spinner in arrayOfSpinners) {

[queue addOperationWithBlock:^{

[spinner startAnimation:self];

sleep(1);

[spinner stopAnimation:self];

}];

}

}

That’s it. Click Build & Run, and everything runs as before.

25.4 Interacting with the Queue and Operations

You can get information from and send messages to your NSOperations

and your NSOperationQueue. For instance, we can get an array of all

current operations in a queue or just get a count of how many there

are. We can cancel them all or just suspend or resume the queue. We

can ask an operation if it is canceled, executing, finished, ready, or

concurrent. We can cancel an operation before it starts.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Operations/Spinner5/SpinnerAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=403

INTERACTING WITH THE QUEUE AND OPERATIONS 404

To explore these a little bit, add three actions to the header file. We’ll

also move the declaration of the NSOperationQueue to the header file so

that it can be accessed from more than one method.

Download Operations/Spinner6/SpinnerAppDelegate.h

#import <Cocoa/Cocoa.h>

@interface SpinnerAppDelegate : NSObject <NSApplicationDelegate> {

NSWindow *window;

NSOperationQueue *queue;

}

@property (assign) IBOutlet NSWindow *window;

-(IBAction)toggleIsSuspended:(id)sender;

-(IBAction)cancelAllOperations:(id)sender;

-(IBAction)queueStatus:(id)sender;

@end

You’ll need to remove the declaration of the NSOperationQueue from

the applicationDidFinishLaunching: method. While we’re there, I’m going

to change the maximum number of concurrent threads to three just for

fun.

Download Operations/Spinner6/SpinnerAppDelegate.m

queue = [[NSOperationQueue alloc] init];

[queue setMaxConcurrentOperationCount:3];

Let’s implement the action to cancel all operations in the queue.

Download Operations/Spinner6/SpinnerAppDelegate.m

-(IBAction)cancelAllOperations:(id)sender {

[queue cancelAllOperations];

}

When you tell a queue to cancel all of its operations, it will send each

operation in its queue the cancel message. If an operation hasn’t started

yet, then it will be canceled and won’t be run. If an operation has

already started, then it’s up to you to respond to cancel or not. By

default cancel doesn’t force the task to quit. You need to check to see

whether isCancelled returns YES or NO and respond accordingly. You’ll

see how this works at the end of the next section.

In our example, any NSProgressIndicator that is spinning when we can-

cel all operations will continue to spin. Any that have not yet begun

spinning will be canceled.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Operations/Spinner6/SpinnerAppDelegate.h
http://media.pragprog.com/titles/dscpq/code/Operations/Spinner6/SpinnerAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Operations/Spinner6/SpinnerAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=404

INTERACTING WITH THE QUEUE AND OPERATIONS 405

Next let’s allow users to pause and resume the spinning:

Download Operations/Spinner6/SpinnerAppDelegate.m

-(IBAction)toggleIsSuspended:(id)sender {

[queue setSuspended:![queue isSuspended]];

}

When you send the queue the message setSuspended:YES, the queue will

be paused. As with cancel, the progress indicators that are currently

spinning will continue to spin until they have finished, but no fur-

ther indicators will spin until you send the queue the message setSus-

pended:NO.

Finally, we can create an array of the operations in the queue and ask

each one if it is executing or in a ready state. Operations that are exe-

cuting are also considered to be ready.

Download Operations/Spinner6/SpinnerAppDelegate.m

-(IBAction)queueStatus:(id)sender {

NSArray *ops =[queue operations];

int executing =0;

int ready=0;

for (NSOperation *operation in ops) {

if ([operation isExecuting]) executing++;

if ([operation isReady]) ready++;

}

NSLog(@"Status for %d operations: executing %d and %d are waiting.",

[queue operationCount], executing, ready - executing);

}

This will generate reports like the following in the Console. After nine

operations have completed, this is the report that I get:

Status for 16 operations: executing 3 and 13 are waiting.

Head over to Interface Builder, and add these three buttons to the top

of the window:

Wire your actions to these buttons. Save, and click Build & Run. The

buttons should work just as I’ve described them.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Operations/Spinner6/SpinnerAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Operations/Spinner6/SpinnerAppDelegate.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=405

CUSTOM NSOPERATIONS 406

25.5 Custom NSOperations

Block operations and invocation operations are going to meet most of

your needs. When they don’t, you can create your own subclass of

NSOperation to create custom operations that you add to a queue.

Add a new file to your project, a class of type NSObject named Spinner-

Operation. We need to make some changes to the header file. The Spin-

nerOperation class must subclass the NSOperation class. We also need to

declare an instance variable for the spinner and a custom init method

to set the spinner when we initialize the SpinnerOperation object.

Download Operations/Spinner7/SpinnerOperation.h

#import <Foundation/Foundation.h>

@interface SpinnerOperation : NSOperation {

NSProgressIndicator *spinner;

}

-(id) initWithSpinner:(NSProgressIndicator *) newSpinner;

@end

Implement the custom init like this:

Download Operations/Spinner7/SpinnerOperation.m

-(id) initWithSpinner:(NSProgressIndicator *) newSpinner {

if (self = [super init]) {

spinner = newSpinner;

}

return self;

}

When you subclass NSOperation and you don’t have to worry about con-

currency, put work that needs to be performed by this operation in the

main method.3

Download Operations/Spinner7/SpinnerOperation.m

-(void) main {

[spinner startAnimation:self];

sleep(4);

[spinner stopAnimation:self];

}

3. The NSOperation docs specify a lot of extra work that needs to be done if you are

making your operations concurrent. We aren’t, and you never have to if you use your

operations with an operation queue. The NSOperation docs make it clear that when you

use an operation queue, there is no reason to make your operation concurrent.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Operations/Spinner7/SpinnerOperation.h
http://media.pragprog.com/titles/dscpq/code/Operations/Spinner7/SpinnerOperation.m
http://media.pragprog.com/titles/dscpq/code/Operations/Spinner7/SpinnerOperation.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=406

CUSTOM NSOPERATIONS 407

The rest of the changes are in the SpinnerAppDelegate.m file. After adding

an import for our new header file, we’ll change the arrayOfSpinners method

to this arrayOfSpinnerOperations method:

Download Operations/Spinner7/SpinnerAppDelegate.m

-(NSArray *) arrayOfSpinnerOperations {

NSMutableArray *array = [[NSMutableArray alloc] initWithCapacity:25];

for (int i = 0; i < 25; i++){

NSProgressIndicator *spinner = [[NSProgressIndicator alloc]

initWithFrame: NSMakeRect(16 * i + 8, 20, 16, 16)];

[spinner setStyle:NSProgressIndicatorSpinningStyle];

[spinner setControlSize:NSSmallControlSize];

[spinner setDisplayedWhenStopped:NO];

[window.contentView addSubview:spinner];

SpinnerOperation *op = [[SpinnerOperation alloc]

initWithSpinner:spinner];

[array addObject:op];

}

return array;

}

The two methods are very similar. In addition to changing the name of

the method, we pass in the progress indicator we create and configure

to the SpinnerOperation’s initWithSpinner: method and add the SpinnerOper-

ation object to the array instead of the NSProgressIndicator.

The applicationDidFinishLaunching: method is much cleaner now. It is

focused on the operation queue and not on the work the operations

perform.

Download Operations/Spinner7/SpinnerAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

NSArray *arrayOfSpinnerOperations = [self arrayOfSpinnerOperations];

queue = [[NSOperationQueue alloc] init];

[queue setMaxConcurrentOperationCount:1];

for (SpinnerOperation *spinnerOp in arrayOfSpinnerOperations) {

[queue addOperation:spinnerOp];

}

}

I’d like to make one more change to make this application more respon-

sive. In our case the work is trivial—the thread sleeps for some amount

of time. We can split this time into smaller bits and check the status of

the cancelled flag.

Download Operations/Spinner8/SpinnerOperation.m

-(void) main {

[spinner startAnimation:self];

for (int i = 0; i<4; i++){

if ([self isCancelled]) break;

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Operations/Spinner7/SpinnerAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Operations/Spinner7/SpinnerAppDelegate.m
http://media.pragprog.com/titles/dscpq/code/Operations/Spinner8/SpinnerOperation.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=407

FROM OPERATION QUEUES TO DISPATCH QUEUES 408

sleep(1);

}

[spinner stopAnimation:self];

}

Click Build & Run. Now you can cancel all operations in the middle of

a running operation.

25.6 From Operation Queues to Dispatch Queues

Concurrency can be difficult. But, as you’ve seen even in the contrived

example in this chapter, judicious use of concurrency is how you give

your users the feeling that their computers and your application are

responsive.

The techniques for using operation queues are a lot easier than the

techniques I’ll show you in the next chapter for using dispatch queues.

Operation queues are straightforward and fairly easy to use. Dispatch

queues are a lower-level C-based API that require you to know more of

the details of what’s going on. You should always start with the higher-

level abstractions, in this case operation queues, before you start using

the C-level APIs for dispatch queues.

Also, if you are targeting Snow Leopard or higher, the classes you’ve

worked with in this chapter have been reengineered to work on top of

Grand Central Dispatch (the marketing term for the infrastructure that

manages the dispatch queues).

Don’t believe me? I’ll show you.

Open Xcode, and build the Spinner app you’ve just created. Once you

have a successful build, choose Run > Run with Performance Tool > Multicore.

This will start up Instruments with two instruments loaded: the Thread

States instrument is on top, and the Dispatch instrument is on the

bottom. The Spinner app will then run while Instruments records the

activity.

Here’s the graphical summary from the Dispatch instrument:

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=408

FROM OPERATION QUEUES TO DISPATCH QUEUES 409

The text is a bit hard to read, but the writing at the left side identifies

the four global dispatch queues that you’ll explicitly use in the next

chapter. The main thread is at the top. It is where items submitted

to the main queue happen. The main queue and the associated main

thread are where all of UI occurs.

You can see that the bottom three queues are kept pretty busy so that

the main thread is available for user input. The bottom three queues

are all global queues designed to accept work at three different prior-

ity levels. From top to bottom in the image these are default priority,

high priority, and low priority. You can see that the workload has been

spread around pretty evenly.

Contrast that with a run of the first version of the Spinner before we

used any queues.

You can see that things get underway in much the same way as our con-

current version. But after the work is divided up, nothing else happens

until just after twenty-five seconds when the final spinner is finished

spinning. You can poke around in Instruments if you want more of the

details of what’s going on, but even a quick glance at these two reports

shows you that something is different.

Take a look at the reports from the Thread States instrument, and

you’ll see even more of the story. We aren’t explicitly creating and using

threads, but underneath this is being done for us. First here’s the

report for the original nonresponsive version of Spinner:

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=409

FROM OPERATION QUEUES TO DISPATCH QUEUES 410

Compare that with this bottom part of the report for our concurrent

version. The diagonal pattern of threads continues up and to the right.

You can see the contents of Dispatch Worker 7 in the first version is dis-

tributed over all of those threads near the top of the image and beyond

in the second version. Again, even without delving into the details, you

can see that the concurrent version is likely to be more performant and

responsive.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=410

FROM OPERATION QUEUES TO DISPATCH QUEUES 411

The next chapter will dig into the details of explicitly using Grand Cen-

tral Dispatch. There’s a good chance that you’ll never need to do any-

thing more than use operation queues to get the behavior you want.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=411

Chapter 26

Dispatch Queues
As computers ship with more cores, one way to make your application

faster and more responsive is to keep those processors busy. In the

previous chapter, you learned the easiest way for your application to

take advantage of concurrency is to use operation queues.

Sometimes you need finer control or need to integrate with system-level

activities. If you’re writing an iPhone app or a desktop app that targets

Leopard or earlier, you’re out of luck. You have to use threads. It’s hard

to write and schedule threads. It’s easy to make a mistake when you’re

using threads and actually make your app worse.

Apple introduced Grand Central Dispatch (GCD) in Snow Leopard. GCD

puts the operating system in charge of managing the tasks in the

threads. You add tasks to dispatch queues, and GCD takes care of

when to send the tasks in the various queues off to a processor.

In this chapter, you’ll learn how and when to use the different types

of dispatch queues. We’re just skimming the surface of a deep and

difficult topic, but you’ll get an idea of what is possible and how to

integrate dispatch queues in your application.

26.1 When to Use Dispatch Queues

Imagine you’ve written a program that searches different websites for

the least expensive flights to a particular location on a particular day.

Your program would ask the user where they want their trip to begin

and end and when they want to travel. You wouldn’t think of searching

one site at a time. The user could do that themselves. You would send

WHEN TO USE DISPATCH QUEUES 413

off all of the queries one after another asynchronously, and you would

gather and begin to present the results as you get them.

This is an example of the type of problem that is well suited for dispatch

queues. You have a collection of tasks that can be performed concur-

rently, and each task takes enough time that you don’t want to block

the program to wait until it finishes.

Once you start looking for tasks that could benefit from using dispatch

queues, you’ll find them everywhere. Suppose you have a bunch of

images to which you want to apply a filter. If you have multiple cores

available, you could easily have the same filter being applied to differ-

ent images at the same time and finish the batch much more quickly.

For some filters, the task might be accelerated even more by breaking

an image into smaller pieces and applying the filter to each of the pieces

and reassembling at the end.

Our example in this chapter centers around a long series of calculations

that we apply to hundreds of thousands of square regions of a grid to

determine the color to use to fill the square.

The details of the fractal I’m drawing aren’t important. What makes

this a good candidate for dispatch queues is that the calculations for

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=413

QUICK QUEUE OVERVIEW 414

each of the more than quarter million squares is independent of each

other, and the calculations are nontrivial. In our case, thousands of

calculations are required to determine the color of each square. So,

we’re doing significant work that is easily parallelized.

26.2 Quick Queue Overview

There are three basic types of dispatch queues:

• Concurrent queues

• The main dispatch queue

• Private dispatch queues

We looked briefly at concurrent and main queue at the end of the pre-

vious chapter.

You’ll use global concurrent queues for parallelizable operations. There

are actually three different concurrent queues with low, medium, and

high priorities. Even though the tasks in each queue are available to

be run concurrently, all dispatch queues are first-in, first-out, so the

tasks will be started in the same order that they are added to the queue.

Tasks in the high-priority queue are run before those in the default

priority queue, and so on.

Sometimes you want to run a set of tasks in a set order. In that case,

you’ll pass the tasks to a serial queue. The main dispatch queue is a

global serial queue. You often use it for GUI operations and to synchro-

nize with the event loop. You can also use it to synchronize access to a

shared resource across your application.

If you are just looking to synchronize tasks, you can create a serial

queue to ensure that the tasks submitted to a queue are executed in

order. You could use the main queue to synchronize tasks because it is

a serial queue as well, but the goal is to get increased performance and

responsiveness by pushing tasks off the main queue.

You can submit either a block or a function to a queue. In this book,

we’ll use blocks. You can add blocks to the queues either synchronously

or asynchronously. Mostly you will prefer to use the dispatch_asynch()

function to add a block to a queue and return immediately. That’s

right—we need to use C syntax as we’re working with plain old C func-

tions and variables.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=414

DRAWING OUR FRACTAL 415

If you need to wait until a task finishes before executing the next line

in your program, then you’ll add the block to a queue using the dis-

patch_synch() function. There are other techniques, such as groups,

that you can use to coordinate what work gets done when. We won’t

be covering them in this book. Once you get your head around how to

work with these basic options, you’ll want to read Apple’s Concurrency

Programming Guide [App09c].

26.3 Drawing Our Fractal

Start with the Newton project you’ll find in the Dispatch/Newton1 direc-

tory in the code download. It contains two classes in addition to the

application delegate. The Grid classis an NSView that we use to display

the results. The Grid will create an instance of the Tile class that repre-

sents a rectangle to be colored. The Tile object will calculate its color and

spawn four subrectangles that need to be colored. We’ll repeat this cycle

of coloring the rectangle and splitting into four subrectangles until we

have covered our 512 by 512 Grid with 262,144 one-by-one squares.

The Grid class has a property of type NSMutableArray named tiles that

holds the rectangles and their color. You can see in the code that follows

that we initialize the array in the initWithFrame: method. For the drawing,

we copy over the array and iterate through the tiles that are contained

in the dirty rectangle and draw any one that needs to be redrawn. The

startTiling method creates the initial Tile and starts things off.

Download Dispatch/Newton1/Grid.m

#import "Grid.h"

#import "Tile.h"

@implementation Grid

@synthesize tiles;

- (id)initWithFrame:(NSRect)frame {

if (self= [super initWithFrame:frame]) {

self.tiles = [[NSMutableArray alloc] initWithCapacity:1000];

}

return self;

}

-(void)startTiling {

[[[Tile alloc] initWithFrame:self.frame view:self] cycle];

}

- (void)drawRect:(NSRect)dirtyRect {

for (Tile *tile in [NSArray arrayWithArray:tiles]){

if(NSContainsRect(dirtyRect, tile.frame)) {

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dispatch/Newton1/Grid.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=415

WORKING WITHOUT DISPATCH QUEUES 416

[tile.color set];

[NSBezierPath fillRect:tile.frame];

}

}//NSLog(@"here");

}

@end

For the most part, we aren’t going to touch any of these files as we

introduce dispatch queues. In the next section, I’ll show you the areas

of the Tile class that we’ll optimize with queues.

26.4 Working Without Dispatch Queues

In this application, the bulk of the work is performed in the Tile class.

At the top level, the life of a Tile object looks like this:

Download Dispatch/Newton1/Tile.m

-(void) cycle {

[self calculateColor];

[self.grid.tiles addObject:self];

[self.grid setNeedsDisplayInRect:self.frame];

if (self.frame.size.width > 2) {

[self split];

}

}

We call the calculateColor method, which iterates 2,000 times using

Newton’s method and sets the color of the current Tile object. We can

improve on this algorithm, but in this chapter we’ll explore how much

we can improve the performance and responsiveness using dispatch

queues.

The rest of the cycle method adds the current tile to the grid’s tiles array

and then tests to see whether we should continue subdividing. The split

method creates four equal subtiles that cover the current tile.

Download Dispatch/Newton1/Tile.m

-(void) split {

CGFloat size = (self.frame.size.width)/2;

CGFloat x = self.frame.origin.x;

CGFloat y = self.frame.origin.y;

[self tileWithX:x Y:y size:size];

[self tileWithX:x Y:y+size size:size];

[self tileWithX:x+size Y:y size:size];

[self tileWithX:x+size Y:y+size size:size];

[self.grid.tiles removeObject:self];

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dispatch/Newton1/Tile.m
http://media.pragprog.com/titles/dscpq/code/Dispatch/Newton1/Tile.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=416

WORKING WITHOUT DISPATCH QUEUES 417

I’ve chosen to start with a square with sides of length 512. Each time

I subdivide the squares and then determine their color. Once we add

threads, we can set the minimum size of the squares at one, but for

now I’ve chosen to stop when the width of the square is 8.

Click Build & Run with various values for the minimum width. On

my laptop, I see results almost immediately when the minimum width

is eight. Here’s the final image when the minimum size of the tiles is

eight:

At four there is a slight pause before the results show up. When the

minimum width is two, there is a long pause where I see nothing but

the proverbial spinning beach ball. There’s nothing else but a white

screen for just under twenty seconds, and then the final image appears

all at once.

Log a message from the drawRect: method in Grid.m to see that the

method is called only once.

Suppose that you call the drawRect: method directly instead of using

setNeedsDisplayInRect:. Don’t do it. Just suppose. If you did, then the

Grid’s drawRect: method would be called every time through the loop,

but nothing would be displayed until the calculations have finished. In

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=417
Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

THE MAIN QUEUE 418

addition, this direct call increases the running time of the application.

Leave the call as setNeedsDisplayInRect: and not drawRect:.

Next let’s add some multithreading goodness.

26.5 The Main Queue

Remember that several global queues are available to you and that

the one associated with the main thread is a serial queue known as

the main queue. Events and changes to your GUI happen on the main

thread, so as you start to use asynchronous threads to get better per-

formance in your app, you’ll push updates to the main thread so that

your users aren’t sitting there watching the spinning beach ball. This

is going to take us a couple of sections to get right.

You don’t create the main queue or any of the global queues your-

self. You will call a function that returns a reference to the queue

you are requesting. In the case of the main queue, you use the func-

tiondispatch_get_main_queue() to get a reference to it. Here’s how you get

and store a handle to the main queue. Note the type is dispatch_queue_t.

dispatch_queue_t main = dispatch_get_main_queue();

We’ll be passing blocks to queues using either the dispatch_async() or dis-

patch_sync() function. Mostly we’ll use dispatch_async() so that we don’t

have to wait for the task to complete. Both methods take two argu-

ments. The first is the queue, and the second is the block describing

the task to be performed.

dispatch_async(main, ^{

//code to be executed

});

Revise the cycle method to push our requests both to add the tile to the

Grid’s array and to display the results to the main thread.

Download Dispatch/Newton2/Tile.m

-(void) cycle {

[self calculateColor];

dispatch_async(dispatch_get_main_queue(), ^{

[self.grid.tiles addObject:self];

[self.grid setNeedsDisplayInRect:self.frame];

});

if (self.frame.size.width > 2) {

[self split];

}

}

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dispatch/Newton2/Tile.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=418

GLOBAL CONCURRENT QUEUES 419

On my laptop the performance is even better than before. The time for

the minimum width of two has gone from around twenty seconds to less

than five. The time for a width of one is now around twenty seconds.

Next, we’ll start to wrap the calculations in queues that don’t execute

on the main thread.

26.6 Global Concurrent Queues

This next change is striking. You’ll get a little performance improve-

ment, but the main difference is that the drawing will begin right away,

and the image will update until it is finished.

When you don’t need to integrate with the main GUI thread, you should

look to see whether you can safely spin off an operation to another

thread. When you can, you should use a global concurrent queue. You

get a handle to one by calling the function dispatch_get_global_queue().

The first argument specifies the priority of the queue. Your choices

are DISPATCH_QUEUE_PRIORITY_DEFAULT, DISPATCH_QUEUE_PRIORITY_LOW, and

DISPATCH_QUEUE_PRIORITY_HIGH. The docs explain that the second argu-

ment should be 0 for now because that slot is being reserved for future

expansion.

Soon we’ll use lots of these concurrent queues. For now we’ll just send

the calls to spawn off the four subtiles to a concurrent queue inside the

split method. Use the default priority level.

Download Dispatch/Newton3/Tile.m

-(void) split {

CGFloat size = (self.frame.size.width)/2;

CGFloat x = self.frame.origin.x;

CGFloat y = self.frame.origin.y;

dispatch_async(

dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

[self tileWithX:x Y:y size:size];

[self tileWithX:x Y:y+size size:size];

[self tileWithX:x+size Y:y size:size];

[self tileWithX:x+size Y:y+size size:size];

});

[self.grid.tiles removeObject:self];

}

The result is much more satisfying. You should quickly see some of

the larger squares displayed, and then you should see the fractal ani-

mate a bit as the image is refined. Try this with different values for the

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dispatch/Newton3/Tile.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=419

SYNCHRONIZING ON THE MAIN QUEUE 420

minimum width of a tile. The program should run slightly faster than

before, but more importantly, it’s kind of fun to watch.

26.7 Synchronizing on the Main Queue

We’ve sped up the application—it now looks and feels better—but we’ve

also introduced a problem. Because this is a concurrent application,

you may see this message in your Console each time you run the appli-

cation. When the minimum size is small enough, I fairly consistently

see this warning:

*** -[NSCFArray initWithObjects:count:]:

attempt to insert nil object at objects[5733]

The problem is that we are adding objects to and removing objects from

the tiles property, an array belonging to our Grid object. We are adding

the objects to the array from the main queue, which is a global serial

queue, but not removing them from that queue, so the program may be

checking whether the tile needs to be drawn after it has been removed

from the array. We can fix the problem by dispatching the call to remove

objects from the tile array to the main queue.

Download Dispatch/Newton4/Tile.m

-(void) split {

CGFloat size = (self.frame.size.width)/2;

CGFloat x = self.frame.origin.x;

CGFloat y = self.frame.origin.y;

dispatch_async(

dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

[self tileWithX:x Y:y size:size];

[self tileWithX:x Y:y+size size:size];

[self tileWithX:x+size Y:y size:size];

[self tileWithX:x+size Y:y+size size:size];

});

dispatch_async(dispatch_get_main_queue(), ^{

[self.grid.tiles removeObject:self];

});

}

The main queue is a serial queue, so by accessing the array only from

the main queue, we can ensure that there will be no resource con-

tention. The main queue is also where events are processed, so that is

where you can do any other UI tasks you need to do.

You might also notice that the animation is a bit different. I preferred

the way it was before with an initial coloring of the entire view and

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dispatch/Newton4/Tile.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=420

PRIVATE DISPATCH QUEUES 421

then a refinement as further calculations are made. Now the animation

begins in the bottom-left corner and mostly works its way up and to the

right.

26.8 Private Dispatch Queues

It makes sense to use the main queue to synchronize access to the tiles

array because we’re using it for the drawing we’re doing on the main

thread. We’re also synchronizing these calls among thousands of Tile

objects.

Sometimes, however, you want to organize a small collection of tasks

over a short span of time or in a small portion of code. You can do

this with serial queues that you create and release yourself. The serial

queues are not global; you have to create them yourselves using a call

like this:

dispatch_queue_t myQ = dispatch_queue_create("com.pragprog.myQ",NULL);

The first parameter is a label for your queue that is used for debugging.

Use a reverse DNS scheme, and give your queues a unique name so

you can figure out where things went wrong. The second parameter is

currently unused, and the docs tell you to just past NULL.

This is a serial queue so that each task we add to the queue is per-

formed before the next one begins. Here we’ll add two tasks to the

queue. In fact, each task is a dispatch to a queue. In the first we spawn

the four subtiles, and in the second we remove the parent tile from the

tiles array.

Download Dispatch/Newton5/Tile.m

-(void) split {

CGFloat size = (self.frame.size.width)/2;

CGFloat x = self.frame.origin.x;

CGFloat y = self.frame.origin.y;

dispatch_queue_t myQ =

dispatch_queue_create("com.pragprog.myQ", NULL);

dispatch_async(myQ, ^{

dispatch_async(

dispatch_get_global_queue(

DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

[self tileWithX:x Y:y size:size];

[self tileWithX:x Y:y+size size:size];

[self tileWithX:x+size Y:y size:size];

[self tileWithX:x+size Y:y+size size:size];

});

});

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dispatch/Newton5/Tile.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=421

SYNCHRONOUS TASKS 422

dispatch_async(myQ, ^{

dispatch_async(dispatch_get_main_queue(), ^{

[self.grid.tiles removeObject:self];

});

});

dispatch_release(myQ);

}

These private dispatch queues are reference counted and are not cur-

rently cleaned up by the automatic garbage collection. You can see

in the last highlighted line above that we had to explicitly release the

queue like this:

dispatch_release(myQ)

Similarly, if you had to pass one of these queues around, any object that

needed to own the queue would have to explicitly retain it and later re-

lease it. When you create a serial queue using dispatch_queue_create(),

the reference count for the returned queue is one. That’s why we needed

to manually release it once we’re done with it.

Click Build & Run, and this works fine. There’s a lot of overhead here,

though. You’re creating and destroying a lot of dispatch queue objects.

You can see this by running Instruments against this version of the

project using the Dispatch instrument. You can see that a ton of queues

are created and used for a very short time.

In general, when you create or use a queue, you want to make sure

that it’s doing enough work to justify its use. Unfortunately, sometimes

you can’t avoid this overhead. Next we’ll consider a situation where we

don’t need to use the main queue or these private dispatch queues.

26.9 Synchronous Tasks

Everything is running so much faster and better that you’re going to

be tempted to use dispatch queues everywhere. For example, let’s push

the calculation of the color of the tile into a concurrent queue:

Download Dispatch/Newton6/Tile.m

-(void) cycle {

dispatch_async(

dispatch_get_global_queue(

DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

[self calculateColor];

});

dispatch_async(dispatch_get_main_queue(), ^{

[self.grid.tiles addObject:self];

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dispatch/Newton6/Tile.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=422

SYNCHRONOUS TASKS 423

[self.grid setNeedsDisplayInRect:self.frame];

});

if (self.frame.size.width > 1) {

[self split];

}

}

It’s easier to see the problem with this approach if we take out the serial

queue we added in the previous section:

Download Dispatch/Newton6/Tile.m

-(void) split {

CGFloat size = (self.frame.size.width)/2;

CGFloat x = self.frame.origin.x;

CGFloat y = self.frame.origin.y;

dispatch_async(

dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT,0),^{

[self tileWithX:x Y:y size:size];

[self tileWithX:x Y:y+size size:size];

[self tileWithX:x+size Y:y size:size];

[self tileWithX:x+size Y:y+size size:size];

});

}

Click Build & Run. I see splotches of color on a black background. The

code to draw the rectangles to the screen is being called before the color

has been calculated. You can see varying amounts of black by changing

the number of iterations in Newton’s method from 2,000 to 200 to 20 if

you’d like.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dispatch/Newton6/Tile.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=423

SYNCHRONOUS TASKS 424

We have a race condition. There is no guarantee that calculateColor will

be executed before self is drawn in the main queue. This illustrates the

problem that we avoided in the previous section by using serial dispatch

queues. In this code, we send the calculation of the tile’s color to a

global concurrent thread using dispatch_async(). We don’t wait for the

color calculation to complete when we send an asynchronous request

to the main queue to draw the tile.

Let’s make one tiny change to the code. Change the first call to the

function dispatch_async() in the cycle todispatch_sync().

Download Dispatch/Newton7/Tile.m

-(void) cycle {

dispatch_sync(

dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

[self calculateColor];

});

dispatch_async(dispatch_get_main_queue(), ^{

[self.grid.tiles addObject:self];

[self.grid setNeedsDisplayInRect:self.frame];

});

if (self.frame.size.width > 1) {

[self split];

}

}

Now the calculation of the tile’s color completes before we push the

request to draw the tile to the main thread. This version runs in the

same way as the version using the serial queues without the overhead

of creating those queues.

In this quick introduction to dispatch queues, we looked at the three

basic types of queues and how to send tasks to them using the func-

tions dispatch_async() and dispatch_sync(). If this example program were

the ends and not the means, we would have a lot of tuning left to do.

We could streamline the drawing routine so that we don’t redraw cells

where nothing is changing. We would also speed up the algorithm with-

out losing accuracy.

You can gain a lot of speed and responsiveness usingqueues, but there

are costs. You need to make sure you don’t accidentally introduce unin-

tended behavior, and you have to make sure that adding the complexity

that queues require really results in perceivable improvements.

Report erratum

this copy is (P1.0 printing, April 2010)

http://media.pragprog.com/titles/dscpq/code/Dispatch/Newton7/Tile.m
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=424

SYNCHRONOUS TASKS 425

Read Mike Ash’s four-part series on Grand Central Dispatch and his

other related posts.1 Drew McCormack also has a nice introduction to

GCD.2

1. http://mikeash.com/pyblog/?tag=gcd

2. http://www.macresearch.org/cocoa-scientists-xxxi-all-aboard-grand-central

Report erratum

this copy is (P1.0 printing, April 2010)

http://mikeash.com/pyblog/?tag=gcd
http://www.macresearch.org/cocoa-scientists-xxxi-all-aboard-grand-central
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=425

Chapter 27

Up and Out
So now you’ve gotten a solid introduction to the Mac and iPhone devel-

opers’ neighborhood. You know the programming equivalent of where

to go for coffee and where to catch the bus that takes you downtown. I

didn’t list the entire menu and prices for the local coffeehouse nor did

I give you the entire bus schedule. These details will change, and you

can look them up when you need them.

You’ve been on quite a journey. You’ve learned how to use the fun-

damental development tools for Mac OS X and iPhone apps. You’ve

learned the ins and outs of Cocoa and Objective-C. Most importantly,

you’ve learned how to get the most out of this platform using the tech-

niques and design patterns central to Cocoa development.

27.1 But What About...

There are a ton of topics I considered including but didn’t. I wanted to

keep the focus of the book on the skills you needed for programming

and not on the APIs. You will have pet topics that you hoped would be

covered but weren’t.

For instance, I developed a web services example where you would have

created a simple Twitter client. When I stepped back and looked at the

example, it was way too API focused. You learned how to send syn-

chronous and asynchronous requests, parse the XML that you received

in response, and even respond to an authentication challenge. This is

similar to an example used in our iPhone SDK book and to a sequence

we teach in our iPhone Studio course, but it didn’t fit this book. Other

than introducing you to a few more classes and methods, the main

technique used in this example was delegates.

WHAT’S NEXT 427

Similarly, at one point I ported the Core Data example to the iPhone.

There are no bindings on the iPhone, so you have to fetch the data

yourself and present it in the table views. Although this is a difference

in the specific settings of Core Data, it uses techniques that you used to

fill tables long before we got to Core Data, so there was no justification

for including this material.

And so it went. This book could have easily been twice as long as it is,

but in each case I asked the material to justify its existence. Do you

really add something new here? Often the candidate chapters shrugged

their shoulders and said, “I guess not.”

There was one exception. I wrestled with whether to end with a chapter

on OpenCL for months. I finally decided that it was a niche topic. In

fact, this decision made me scale back the chapter on Grand Central

Dispatch to cover the basics.

So when you say, “You could have included a chapter on...,” I agree with

you. I could have. In many cases, I considered doing so but decided the

book would not have been made stronger with this additional mate-

rial. I wanted to minimize the side trips that we’d take on this journey

through Cocoa development techniques.

27.2 What’s Next

It’s time to stop reading books and to start writing a real application.

Before you sit down and write a line of code, make sure you nail what

it is you are writing and who it’s for. Can you picture someone using

your app? What are they doing with it? When do they use it? What itch

are they scratching, or what problem are they solving? How will you

explain to someone why they should download or pay money for your

app?

This sounds small, but if you look at the previous section, you can

see how useful it was. I knew exactly who I intended this book for and

what it was I was providing for you in this book. It made the hard

decisions easier. Identify your audience and what they will get from

your application.

You still aren’t ready to write any code. Sketch your screens, and imag-

ine the user navigating from screen to screen and interacting with your

application. This paper prototyping step might feel unnecessary, but it

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=427

ACKNOWLEDGMENTS 428

helps you think through the flow of your application. It’s a lot easier to

fix problems before you start writing code and creating nibs than after.

During these initial steps, make sure that you don’t use words that

programmers use. Don’t talk about using a delegate or describe your

model or talk about separate nibs. All of your thoughts at this point

should be in terms of the person using your application. This is the

hardest rule to follow, but the idea is that you should not be worried

about implementation at this point. For now, you’re making sure that

you have something worth implementing.

Now you are ready to open up Xcode and start coding. When you have

something you can get into the hands of testers, do so. You are too close

to the application. You know that you have to go to some particular

submenu to find just what you need—if this isn’t clear to your testers,

then you need to address it. For the most part, you want your app to

behave consistently with other Mac or iPhone applications.

Along the way, you will run into dead ends. You won’t be able to find

what you need in the docs. You’ll need some special case that isn’t

covered in this book or in any of the other books you own. Arm yourself

with Mike Ash’s post on “Getting Answers,” and head to Apple and

third-party forums and mailing lists.1

Keep pushing and polishing, but remember Steve Jobs’ famous admo-

nition that “Real artists ship.”2

I can’t wait to see what you come up with.

27.3 Acknowledgments

I couldn’t figure out where to put the acknowledgments in this book. I

know they usually go up front, but this book is about your journey, not

mine. I couldn’t see starting you on this journey and then stopping to

talk about me. If this were a GCD-enabled program and not a book, I

would have kept the book on the main queue and sent the thanks to a

concurrent high-priority thread. Please understand that these acknowl-

edgments have not been left to the end because they aren’t important.

First, thanks to Kimberli Diemert and Margaret Steinberg. No one is

more important to me than my wife, Kim, and my daughter, Maggie.

1. http://www.mikeash.com/getting_answers.html

2. http://www.folklore.org/StoryView.py?story=Pirate_Flag.txt

Report erratum

this copy is (P1.0 printing, April 2010)

http://www.mikeash.com/getting_answers.html
http://www.folklore.org/StoryView.py?story=Pirate_Flag.txt
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=428

DEDICATION 429

Nothing gets done without their help and support and daily doses of

reality.

Second, thanks to Dave Thomas for agreeing to edit this book. That

was a gift that I have benefited on every page of this book. He made

suggestions to the prose and the code. Anything that you don’t like

about the book is definitely his fault.

Of course, I’m kidding. It’s probably Andy Hunt’s fault.

Yes, kidding again. Beyond editing the book, I’d like to thank Dave and

Andy for giving me a home as an author and editor and for providing a

great set of tools that support the writing and life cycle of a technology

book.

Thanks to Mike and Nicole Clark for letting me teach Cocoa program-

ming and iPhone programming at the Pragmatic Studios. Thanks to the

many students in the studios who gave me great feedback on the mate-

rial. Thanks to friends and colleagues Craig Castelaz, Chris Adamson,

Bill Dudney, Eric Freeman, Scott Kovatch, and Dee Wu for their helpful

comments throughout the life of this project.

Thanks also to the tech reviewers and the readers who submitted errata

over the year that this book was in beta. Thanks to folks at Apple who

I’m not allowed to name or it would get them in trouble. Two in partic-

ular took me out to lunch several years ago to make sure I understood

that I needed to move from Java to Objective-C if I wanted to continue

to write code for this platform. Finally, thanks to the folks at Apple who

have created such a wonderful platform. Writing Cocoa and Objective-C

is a pleasure.

27.4 Dedication

This book is dedicated to my friend James Duncan Davidson.

I met Duncan at an Apple Worldwide Developer Conference (WWDC)

back when they were held in San Jose. He was researching his book

Learning Cocoa [DA02]. Honestly, if I’d had my druthers, he would have

written this book, and I would have edited it. I’ve tried to be true to the

spirit of his book.

Duncan met Kim, my wife, on a Mac geek cruise and quickly became

a family friend. He first met my daughters while visiting before the two

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=429

DEDICATION 430

of us drove up to Mac Hack. In other words, all of my family’s first

interactions with this man were tied up in Mac events.

My daughter Maggie would tell her friends in a hushed voice, “He’s very

famous. He created Ant and Tomcat.” She also messed up his name on

purpose and called him James David Duncanson.

I loved his relationship with my youngest daughter. Both in our house

and when we visited him in Portland or met him in San Francisco, they

had a special give-and-take. She would tease him and flirt with him,

and in return he would talk to her in a way that was both age appropri-

ate and respectful of who she was. Yes, was. After Elena died, Duncan

came out and took care of us. He dropped everything and stayed with

us after the funeral was over and made sure we had what we needed.

A couple of years ago I approached Duncan about writing an updated

version of his Cocoa book. He declined, and he suggested I write it. I was

nervous. I remembered him saying to the Cleveland Java Users Group

that he had thought he was an OO “badass” when he was working at

Sun on Java but that working with Objective-C and Cocoa made him

realize he wasn’t at the time. That thought was what stood at the core

of this book for me. I didn’t want to walk through Cocoa APIs and just

teach you tools. I wanted to look at the techniques that would make

you an OO badass.

Thank you, James.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=430

Appendix A

Bibliography

[App06] Apple, Inc. Coding Guidelines for Cocoa. http://developer.

apple.com/mac/library/documentation/Cocoa/Conceptual/

CodingGuidelines/Articles/NamingMethods.html, 2006.

[App08a] Apple, Inc. Cocoa Bindings Programming Topics. http://

developer.apple.com/documentation/Cocoa/Conceptual/

CocoaBindings, 2008.

[App08b] Apple, Inc. Cocoa Bindings Reference. http://developer.apple.

com/documentation/Cocoa/Reference/CocoaBindingsRef,

2008.

[App08c] Apple, Inc. Cocoa Fundamentals: Communicating

with Objects. http://developer.apple.com/mac/library/

documentation/cocoa/Conceptual/CocoaFundamentals/

CommunicatingWithObjects/CommunicateWithObjects.html,

2008.

[App08d] Apple, Inc. Garbage Collection Programming Guide.

http://developer.apple.com/mac/library/documentation/cocoa/

Conceptual/GarbageCollection/Introduction.html, 2008.

[App08e] Apple, Inc. Interface Builder User Guide. http://developer.

apple.com/mac/library/DOCUMENTATION/DeveloperTools/

Conceptual/IB_UserGuide/Introduction/Introduction.html, 2008.

[App08f] Apple, Inc. Key-Value Coding Observing Guide. http://

developer.apple.com/documentation/Cocoa/Conceptual/

KeyValueObserving, 2008.

http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CodingGuidelines/Articles/NamingMethods.html
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CodingGuidelines/Articles/NamingMethods.html
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CodingGuidelines/Articles/NamingMethods.html
http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaBindings
http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaBindings
http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaBindings
http://developer.apple.com/documentation/Cocoa/Reference/CocoaBindingsRef
http://developer.apple.com/documentation/Cocoa/Reference/CocoaBindingsRef
http://developer.apple.com/mac/library/documentation/cocoa/Conceptual/CocoaFundamentals/CommunicatingWithObjects/CommunicateWithObjects.html
http://developer.apple.com/mac/library/documentation/cocoa/Conceptual/CocoaFundamentals/CommunicatingWithObjects/CommunicateWithObjects.html
http://developer.apple.com/mac/library/documentation/cocoa/Conceptual/CocoaFundamentals/CommunicatingWithObjects/CommunicateWithObjects.html
http://developer.apple.com/mac/library/documentation/cocoa/Conceptual/GarbageCollection/Introduction.html
http://developer.apple.com/mac/library/documentation/cocoa/Conceptual/GarbageCollection/Introduction.html
http://developer.apple.com/mac/library/DOCUMENTATION/DeveloperTools/Conceptual/IB_UserGuide/Introduction/Introduction.html
http://developer.apple.com/mac/library/DOCUMENTATION/DeveloperTools/Conceptual/IB_UserGuide/Introduction/Introduction.html
http://developer.apple.com/mac/library/DOCUMENTATION/DeveloperTools/Conceptual/IB_UserGuide/Introduction/Introduction.html
http://developer.apple.com/documentation/Cocoa/Conceptual/KeyValueObserving
http://developer.apple.com/documentation/Cocoa/Conceptual/KeyValueObserving
http://developer.apple.com/documentation/Cocoa/Conceptual/KeyValueObserving

APPENDIX A. BIBLIOGRAPHY 432

[App08g] Apple, Inc. Key-Value Coding Programming Guide. http://

developer.apple.com/documentation/Cocoa/Conceptual/

KeyValueCoding, 2008.

[App08h] Apple, Inc. Notification Programming Topics for Cocoa. http://

developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/

Notifications, 2008.

[App09a] Apple, Inc. Automated Unit Testing with Xcode 3 and

Objective-C. http://developer.apple.com/mac/articles/tools/

unittestingwithxcode3.html, 2009.

[App09b] Apple, Inc. Blocks Programming Topics. http://developer.

apple.com/mac/library/documentation/Cocoa/Conceptual/

Blocks/Articles/bxUsing.html, 2009.

[App09c] Apple, Inc. Concurrency Programming Guide. http://

developer.apple.com/mac/library/DOCUMENTATION/General/

Conceptual/ConcurrencyProgrammingGuide/Introduction/

Introduction.html, 2009.

[App09d] Apple, Inc. Introduction to Core Data Programming

Guide. http://developer.apple.com/documentation/Cocoa/

Conceptual/CoreData/cdProgrammingGuide.html, 2009.

[App09e] Apple, Inc. Memory Management Programming Guide for

Cocoa. http://developer.apple.com/mac/library/documentation/

cocoa/Conceptual/MemoryMgmt/MemoryMgmt.html, 2009.

[App09f] Apple, Inc. The Objective C Programming Language. http://

developer.apple.com/documentation/Cocoa/Conceptual/

ObjectiveC, 2009.

[DA02] James Duncan Davidson and Apple Computer. Learning

Cocoa with Objective-C. O’Reilly Media, Inc., Sebastopol, CA,

2002.

[DA09] Bill Dudney and Chris Adamson. iPhone SDK Development.

The Pragmatic Programmers, LLC, Raleigh, NC, and Dallas,

TX, 2009.

[GL06] David Gelphman and Bunny Laden. Programming with

Quartz, 2D and PDF Graphics in Mac OS X. Morgan Kauf-

man, San Francisco, 2006.

[Tho06] R. Scott Thompson. Quartz 2D graphics for Mac OS X devel-

opers. Pearson Education, Inc., Boston, MA, 2006.

Report erratum

this copy is (P1.0 printing, April 2010)

http://developer.apple.com/documentation/Cocoa/Conceptual/KeyValueCoding
http://developer.apple.com/documentation/Cocoa/Conceptual/KeyValueCoding
http://developer.apple.com/documentation/Cocoa/Conceptual/KeyValueCoding
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/Notifications
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/Notifications
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/Notifications
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/Blocks/Articles/bxUsing.html
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/Blocks/Articles/bxUsing.html
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/Blocks/Articles/bxUsing.html
http://developer.apple.com/mac/library/DOCUMENTATION/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/mac/library/DOCUMENTATION/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/mac/library/DOCUMENTATION/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/mac/library/DOCUMENTATION/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/documentation/Cocoa/Conceptual/CoreData/cdProgrammingGuide.html
http://developer.apple.com/documentation/Cocoa/Conceptual/CoreData/cdProgrammingGuide.html
http://developer.apple.com/mac/library/documentation/cocoa/Conceptual/MemoryMgmt/MemoryMgmt.html
http://developer.apple.com/mac/library/documentation/cocoa/Conceptual/MemoryMgmt/MemoryMgmt.html
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=432

APPENDIX A. BIBLIOGRAPHY 433

[Zar09] Marcus Zarra. Core Data: Apple’s API for Persisting Data

under Mac OS X. The Pragmatic Programmers, LLC, Raleigh,

NC, and Dallas, TX, 2009.

Report erratum

this copy is (P1.0 printing, April 2010)

http://books.pragprog.com/titles/dscpq/errata/add?pdf_page=433

Index
Symbols
* (asterisk) for declaring pointers, 87

@ (at sign) for NSString, 63

[] (brackets) to call class methods, 75

^ (caret) for blocks, 385

: (colon) for methods with arguments,

54

%@ type, 81, 82

A
accessInstanceVariablesDirectly method,

300

accessor methods, 89–92

dot notation for, 93–96

generating when declaring

properties, 96

as properties, 92–93

retain-release pattern, 116–117

searching for, with KVC, 300

setting names for, 96

actions

connecting and implementing,

133–134

declaring, 130–132

declaring for classes, 146–149

viewing, for classes, 145

Actions tab (Document window), 145

activity indicators, 173–174, 185–188

ActivityController class, 197

separate nib file for, 230

ActivityMonitorDelegate protocol, 244

ActivityView class

separate nib file for, 230–233,

236–237

ADC, see Apple Developer Connection

adding entries to dictionaries, 218–221

addObserver:forKeyPath:options:context:

method, 320, 321

addObserver:selector:name:object:

method, 194

addOperationWithBlock: method, 403

alloc method, 78, 103

alpha value, changing, 183

Apple Developer Connection (ADC), 19

application delegates, 65, 165–166

Application Support directory, 273

applicationDidFinishLaunching: method, 65,

165

for iPhone apps, 176

moving main window and, 293

refactoring, 70, 78

applicationDidLaunch: method

ActivityMonitorDelegate protocol, 244

combining with

applicationDidTerminate:, 216–217

posting notifications from, 200

applicationDidTerminate: method

ActivityMonitorDelegate protocol, 244

combining with applicationDidLaunch:,

216–217

posting notifications from, 200

applications

activities required during launch,

165

building and releasing, 41–42

changing views, 285–297

moving main window, 293–294

user preference for launch view,

287–289

using lazy initialization, 296–297

support data for, where to put,

273–274

archiving data to disk, 276–277

arguments, method, 53–56

array controllers, 343

binding (example), 346–349

connecting, 347

ARRAYS CATEGORIES

arrays

Bounce application (example), 368

iterating with blocks, 389–390

KVC and, 311–313

writing themselves to files, 274–275

arrayWithContentsOfFile: method, 370

assign attribute, 97, 108

* (asterisk) for declaring pointers, 87

asynchronous operations, 414

@ (at sign) for NSString, 63

atomic properties, 98

attributes (Core Data), 351–352

attributes, property, 96–98

Attributes inspector (Interface Builder),

33

with Mac OS X applications, 178

Text Input Traits settings, 182

autocomplete functionality, 170

automatic garbage collection, 63

turning off (Unsupported setting),

104

autorelease message, 119

autorelease pool, 117–119

autosizing settings, 31

@avg operator, 312

awakeFromNib method, 152, 172

alternative in iPhone apps, 180

B
Back button, building, 36

bindings, see Cocoa Bindings

Bindings inspector (Interface Builder),

337

Managed Object Context settings,

354

__block, 392–393

block literals, 386

block operations, 402–403

blocks, 383–397

collections and, 389–390

declaring, 385–386, 390–392

getting snapshot of variables

when, 387–389

using typedef, 393–394

using __block, 392–393

using in callbacks, 394–397

wrappers, 384–387

bookshelf application (example), 299

bookshelf with bindings application

(example), 344–349

binding with NSArrayController,

346–349

model for, 344–345

view for, 345–346

BOOL type, 53

Bounce application (example), 368

[] (brackets) to call class methods, 75

browser application (example), 24–42

adding WebKit framework, 39–41

building and releasing, 41–42

creating appearance in IB, 26–30,

33–34

creating Xcode project for, 25–26

as iPhone app, 175–190

limitations of UIWebView, 178–179

loading Web pages at launch,

179–181

testing with Cocoa Simulator, 31–33,

38

wiring components together, 35–39

building projects, 39–41

buttons, 29

connecting to web view, 35

enabling and disabling, 153–157

hiding (example), 135–136

keyboard equivalents for, setting, 33

labeling, 33

in menu bar, customizing, 292–293

Remove buttons (example), 268

represented in nib files, 45

C
C-style functions, 64

callbacks, using blocks in, 394–397

calling class methods, 75

canGoBack method, 155, 157

canGoForward method, 155, 157

^ (caret) for blocks, 385

Cascade option (delete rule), 361

case statements, replacing with

dictionaries, 218

categories, 368–382

class extensions

private methods in, 372–375

read-write properties with,

375–376

Core Data and, 376–378

accessing properties, 379–380

generated classes, 378–379

regenerating class files from

entities, 380–382

435

CDBOOKSHELF PROJECT (EXAMPLE) COMPONENTS

creating new, 369–371

protocols vs., 370

CDBookshelf project (example),

350–367

filtering items, 365–366

managing dependencies, 362–363

model for, 351–352

persistence layer, 356–358

relationships, 358–361

delete rule, 360–361

sorting items, 363–364

coding sort descriptor, 366–367

using managed object context,

354–356

using the Core Data widget, 352–354

CGFloat class, 88

chaining messages, 49

Clang Static Analyzer, 104–106

@class declarations, 149, 192, 193

class extensions

private methods in, 372–375

read-write properties with, 375–376

class methods

for creating and initializing strings,

120

creating new, 75–76

identifying in reference

documentation, 52

class reference documentation, 21,

50–53

classes

single inheritance languages, 205

creating class methods, 75–76

creating controller classes, 143–144

creating instances of, 144–146

creating new, 72–75

declaring outlets and actions,

146–149

delegate methods of, 160

delegate objects, about, 65

design tensions, 229

filling from dictionaries, 305–306

generated classes in Core Data,

378–379

getters and setters, 89–92

dot notationfor, 93–96

generating when declaring

properties, 96

lazy initialization, 296–297

listing methods for, 52

naming, 73n

navigating hierarchies with

keypaths, 306–309

nib files and, 228

refactoring, advantages of, 228

regenerating class files from entities,

380–382

viewing inheritance lineage of, 145

viewing outlets and actions for, 145

Classes folder, 73

Clear When Editing Begins option, 181

closing windows, 164

Cocoa Bindings, 334–349

bookshelf with bindings application

(example), 344–349

binding with NSArrayController,

346–349

model for, 344–345

view for, 345–346

counter with bindings application

(example), 334–344

controller for, 335–338

model and view for, 335

number formatters with, 339–341

creating and connecting

NSObjectController, 335–338

Cocoa Simulator, testing with

(example), 31–33, 38

cocoa-dev mailing list, 21

Code Sense settings, 170

collection classes, declaring copy

attribute with, 108

collections

blocks and, 389–390

operations on, using KVC, 312

: (colon) for methods with arguments,

54

color defaults, saving, 279

columns in tables, 259

identifiers for, 265

numbers (indices) for, 260

combine:with:usingBlock: method, 385

commenting with #pragma mark,

188–189

Companion Guide section (class

reference), 52

compilation warnings and warnings,

147, 148

completion, code, 170

components, binding to object

controllers, 337

436

COMPRESSING APPLICATIONS FOR DISTRIBUTION DECLARING

compressing applications for

distribution, 42

concurrency, see operation queues

concurrent queues, 414, 422–424

fractal project (example), 419–420

connecting actions, 133–134

connecting to UI elements, about, 125

Connections Inspector (Interface

Builder)

having multiple connections, 59–61

Connections inspector (Interface

Builder)

connecting actions, 133–134

creating and using outlets, 127, 129

looking at UIWebViews, 178

web browser application (example),

35–39

Console, logging output to, 63–66

ContentView class, 68

controllers, 124–125, 343

array controllers

binding (example), 346–349

connecting, 347

awakeFromNib method, 152

binding components to, 337

creating, 141–157

creating controller classes,

143–144

creating instances, 144–146

declaring outlets and actions,

146–149

object controllers, 335–338

connecting, 336

view controllers, 176

convenience constructors, 120–122

coordinate system, 247

copy attribute, 97, 215

with collection classes, 108

copy message, 103

core classes, names for, 63

Core Data, 350–367

categories and, 376–378

accessing properties, 379–380

generated classes, 378–379

regenerating class files from

entities, 380–382

entities and attributes, 351–352

filtering items, 365–366

managing dependences, 362–363

persistence layer, 356–358

relationships in the data model,

358–361

delete rule, 360–361

sorting items, 363–364

coding sort descriptor, 366–367

using managed object context,

354–356

using the Core Data widget, 352–354

@count operator, 312

counter application (example), 314–318

counter with bindings application

(example), 334–344

controller for, 335–338

model and view for, 335

number formatters with, 339–341

creating new Xcode projects, 25–26

D
data, displaying in tables, 256–269

adding and removing rows, 266–269

filling cells by column title, 263–266

implementing data source, 259–263

setting up for, 256–258

data sources, implementing, 259–263

data, writing themselves to files,

274–275

dates, writing themselves to files,

274–275

dealloc method, 115–116

debugging

compilation warnings and warnings,

147, 148

memory leaks, finding, 104–106,

111–112

memory leaks, fixing, 106–107,

112–113

zombies, 113–114

declaring

actions, 130–132, 146–149

blocks, 385–386, 390–392

getting snapshot of variables

when, 387–389

using typedef, 393–394

class methods, 75

IBActions, 131, 132

methods, 87

getters and setters, 93

outlets, 146–149

pointers, 87

properties, 92–93

with attributes, 96–98

437

DEFAULT VALUES EDITING DICTIONARIES

dot notation for, 93–96

protocols, 164, 206

default values, setting

factory defaults, 278–280

radio button selection for,

287–289

for text fields, 34

user defaults, 280–284

delegate methods, 160

instead of subclass inheritance, 166

spelling of, 163

delegate objects, about, 65

delegates, 158–174

application delegates, 165–166

checking if implementing a method,

208

creating, 204–207

how they work, 158–161

example of, 162–165

instead of subclass inheritance, 166

delete rule (data model relationships),

360–361

deleting

Core Data data, 360–361

from dictionaries, 218–221

rows from tables, 266–269

dealloc method, 104

Deny option (delete rule), 360

dependencies in data model, managing,

362–363

dependent variables, recalculating,

331–333

Developer directory, 19

developer documentation, 21, 50–53

developer registration for iPhone, 109

developer tools installation, 19

dictionaries, 213–226

adding and removing entries,

218–221

eliminating magic numbers with,

290–292

for flow control, 218

KVC and, 305–306

treating objects like dictionaries,

299–300

reading from, 214

user info (notifications), 213–214

writing themselves to files, 274–275

dictionary controllers, 343

didChangeValueForKey: method, 323

disabling and enabling buttons,

153–157

disk, saving data to, 276–277

dispatch_asynch() function, 414, 418,

424

dispatch_get_global_queue() method, 419

dispatch_get_main_queue() function, 418

Dispatch instrument, 408

dispatch_queue_create() function, 422

DISPATCH_QUEUE_PRIORITY_ values, 419

dispatch queues, 408–410, 412–424

basics of, 414–415

fractal project (example)

concurrent queues, 422–424

global concurrent queues,

419–420

main dispatch queue, 418–419

private dispatch queues, 421–422

synchronizing on main queue,

420–421

when to use, 412–414

dispatch_synch() function, 415, 418, 424

displaying data in tables, 256–269

adding and removing rows, 266–269

filling cells by column title, 263–266

implementing data source, 259–263

setting up for, 256–258

@distinctUnionOfArrays operator, 312

@distinctUnionOfObjects operator, 312

@distinctUnionOfSets operator, 312

distributing projects, 41–42

Document window (Interface Builder),

43, 144

documentation (reference), 21, 50–53

dot notation, 93–96

reason to use, 95

drawing in custom views

images, 250–251

shapes, 245–247

stroke color for (example),

248–250

strings, 252–254

drawinRect:withAttributes: method, 252

drawRect: method (NSView), 245, 248

resizing images with, 251

dynamic binding, 56–57

E
Edit All in Scope command, 70

editing dictionaries, 218–221

438

ENABLING AND DISABLING BUTTONS INITWITHWINDOWNIBNAME: METHOD

enabling and disabling buttons,

153–157

encodeWithCoder: method, 276, 277

@end statement, 74

entities (Core Data), 351–352

regenerating class files from,

380–382

errors (compilation result), 147, 148

F
factory defaults, setting, 278–280

radio button selection for, 287–289

File’s Owner (nib files), 176, 234–236

files, organizing, 73

fillRect: method, 246

filtering, within Core Data, 365–366

finalize method, 321, 330

Flashlight app (example), 109–122

finding memory leaks in, 111–112

fixing memory leaks in, 112–113

using zombies, 113–114

flow control, dictionaries for, 218

folders for files, 73

for statements, replacing with

dictionaries, 218

forward declarations, 149, 193

Foundations framework, 110

fractal project (example), 415–424

with dispatch queues, 418–424

without dispatch queues, 416–418

frameLoadDelegate method, 167

frameworks, defined, 16

G
garbage collection, 63

Flashlight app (example), 109–122

iPhone apps, 179

properties and, 107–109

releasing serial queues, 422

requiring, 106–107

turning off (Unsupported setting),

104

when object count reaches zero,

115–116

GCD (Grand Central Dispatch), 412

generated classes in Core Data,

378–379

getters, 89–92

declaring as properties, 92–93

dot notation for, 93–96

generating when declaring

properties, 96

setting names for, 96

getValue: method, 302

global concurrent queues, 414

fractal project (example), 419–420

global serial queues, 414

goBack method (WebView), 52, 54

goBack: method (WebView), 36, 54

goBack method (WebView), 185

goForward: method (WebView), 37

goForward method (WebView), 185

Grand Central Dispatch (GCD), 412

Grid class , 415

H
.h files, 74n

header files for classes, 73

Hello, World! program, 62–85

help documentation, 21, 50–53

hierarchies (class), traversing with

keypaths, 306–309

I
IBAction return type, 131

IBAction return type, 88n

IBOutlet type, 126

icon, displaying (example), 221–226

id return type, 88

identifiers for table columns, 265

if statements, replacing with

dictionaries, 218

image views, 250–251

image well, 222

images in custom views, 250–251

importing header files, 73

independent variables, recalculating

dependent variables from,

331–333

index numbers for columns, 260

informal protocols, 373

inheritance, delegation vs., 166

init method, 79, 103

initialize method, setting factory defaults

in, 279

initializing objects, 79–82

initWithCoder: method, 276, 277

initWithNibName:bundle: method, 240

initWithWindowNibName: method, 239,

240

moving main window and, 293

439

INPUT FIELDS LEAKS (MEMORY)

input fields, see text fields

installing developer tools, 19

instance methods

for creating and initializing strings,

120

creating new, 76–78

declaring, with pointers, 87

getters and setters, 89–92

dot notation for, 93–96

generating when declaring

properties, 96

setting names for, 96

identifying in reference

documentation, 52

searching for, with KVC, 300

instance variables, 86

creating, 80

disallowed in categories, 370

removing, 100–101

instantiating classes, 143

Instruments application, 111–112

integrating multiple nib files, 233–234

Interface Builder

Document window, 43, 144

Library, 28

Size inspector, 31

using with Xcode, rhythm of, 129

web browser application (example),

26–30, 33–34

see also Attributes inspector;

Bindings inspector; Connections

inspector

@interface declaration, 74

invocation operations, 400–402

iPhone apps, 175–190

activity indicators, 185–188

limitations of UIWebView, 178–179

loading Web pages at launch,

179–181

nib file for, 176

text fields in, 181–182

iPhone developer, registering as, 109

iterating arrays with blocks, 389–390

ivar, 300n

K
Key Value Coding (KVC), 298–313

arrays and, 311–313

filling tables using, 309–311

getting variables using, 301–303

navigating class hierarchies with

keypaths, 306–309

for observing multiple attributes,

328–329

setting variables using, 304–305

undefined keys, handling, 303–304

working with dictionaries, 305–306

treating objects like dictionaries,

299–300

Key Value Observing (KVO), 314–333

adding observers, 318–320, 324–325

listening for changes, 323–324

making observations observable,

321–323

observing multiple attributes,

325–331

using conditionals, 325–328

using KVC, 328–329

using Observer helper objects,

329–331

registering observers, 320–321

unregistering observers, 321

updating dependent variables,

331–333

keyboard equivalents (buttons), 33

keyboards, for iPhone app input, 182

keypaths

multiple observed attributes and,

327

navigating class hierarchies with,

306–309

keyPathsForValuesAffectingValueForKey:

method, 332, 333

L
labeling buttons, 33

launch, activities required at, 165

launch notifications, 196

communicating in text fields,

199–201

example of, 201

responding to, 198

lazy initialization, 296–297

leaks (memory)

autorelease pool, 117–119

convenience constructors and,

120–122

finding with Clang Static Analyzer,

104–106

finding with Instruments

application, 111–112

440

LIBRARY (INTERFACE BUILDER) METHODS

fixing on Mac OS X, 106–107,

112–113

zombies and, 113–114

Library (Interface Builder), 28

Lineage tab (Document window), 145

List view mode (Document window), 43

listening for notifications, 194

loading nib files (examples), 236–237,

239–240

loadPreviousPage: method (example),

146, 150

logging

to Console, 63–66

objects, 82

M
.m files, 74n

magic numbers, eliminating, 290–292

main dispatch queues, 409, 414

fractal project (example), 418–419

synchronizing on, 420–421

main() function, 64

main window, moving, 293–294

MainMenu.xib file, 26

accessing, as unnecessary, 35

contents of, about, 43–47

splitting into multiple files, 229–231

MainWindow.nib file, 176

managed object context, 354–356

managed objects, adding categories to,

377

@max operator, 312

memory management, 102–123

autorelease pool, 117–119

convenience constructors and,

120–122

Flashlight app (example), 109–122

memory leaks

finding with Clang Static Analyzer,

104–106

finding with Instruments

application, 111–112

fixing on Mac OS X, 106–107,

112–113

properties and garbage collection,

107–109

property attributes for, 97

reference counting, 103–104,

112–113

when object count reaches zero,

115–116

retain-release pattern, 116–117

zombies, 113–114

menu bar, customizing, 292–293

message expression, 49

messages

chaining, 49

dynamic binding, 56–57

links back to self, 58

problems with sending, 57–58

sending without arguments, 48

sent to freed objects, 113

methods

actions, connecting, 133–134

actions, declaring, 130–132

with arguments, 53–56

blocks as parameters of, 383–397

with callbacks, 394–397

capturing values of variables,

387–389

collections and, 389–390

declaring, 385–386, 390–394

using __block, 392–393

wrappers, 384–387

checking if implemented, 208

convenience constructors and,

120–122

for creating and initializing strings,

120

creating new class methods, 75–76

creating new instance methods,

76–78

creating selectors from strings, 139

declaring, with pointers, 87

delegate methods, 160

instead of subclass inheritance,

166

spelling of, 163

design tensions, 229

getters and setters, 89–92

dot notation for, 93–96

generating when declaring

properties, 96

setting names for, 96

lists of, for specific classes, 52

nib files and, 227–229

optional vs. required, in protocols,

205

private, in class extensions, 372–375

redefining with categories (don’t),

372

441

@MIN OPERATOR NSKEYVALUEOBSERVINGOPTIONS CLASS

redundancy among, reducing,

216–217

refactoring, advantages of, 228

using with blocks

block operations, 402–403

@min operator, 312

minimum size, window, 33

mix-ins (Ruby), 372

Model Key Path setting, 354

moving main window, 293–294

multithreading, see dispatch queues

N
name method (NSNotification), 195

displaying name property (example),

215

names for buttons, 33

naming accessors, 96

naming classes, 73n

naming conventions, importance of, 90

navigating class hierarchies with

keypaths, 306–309

new method, 103

Newton project (example), 415–424

with dispatch queues, 418–424

without dispatch queues, 416–418

nib files, 26

accessing, as unnecessary, 35

awakeFromNib method, 152

contents of, about, 43–47

creating new, 232

creating objects in, 141

File’s Owner, 176, 234–236

for Preferences window (example),

281–284

unsaved changes in, 162

working with multiple, 227–242

integrating, 233–234

loading nibs (examples), 236–237,

239–240

splitting nib files, 229–231

NO value, 53

nonatomic attribute, 98

nonatomic attribute, 179

notifications, 191–201

to observers, 321–323

posting, 199–201

example of, 201

registering for, 194–195

example of, 198–199

user info in, 213–214

using blocks in callbacks, 394–397

using protocols instead of, 203

of workspace activity, responding to,

195–196

NS in class names, 63n

NSAddTemplate class, 346

NSApplicationDelegate protocol, 166

NSArchiver class, 280

NSArray class

declaring copy attribute with, 108

iterating with blocks, 389–390

writing to plist files, 274–275

NSArrayController class

binding with (example), 346–349

NSAttributedString class, 253n

NSBezierPath class, 246, 247

NSBlockOperation class, 402–403

NSButton class, 29, 135, 145

enabling and disabling buttons,

153–157

represented in nib files, 45

NSButtonCell class, 286

NSColor class, 246, 248

NSController class, 343

NSCopying protocol, 97

NSCopying protocol, 215, 248

NSData class, writing to plist files,

274–275

NSDate class, writing to plist files,

274–275

NSDictionary class, 195

declaring copy attribute with, 108

eliminating magic numbers with,

290–292

as immutable, 218

writing to plist files, 274–275

NSFullUserName() function, 134

NSImageCell class, 263

NSImageView class, 222, 250–251

NSInteger class, 89

NSInvocationOperation class, 400–402

NSKeyedArchiver class, 276

NSKeyedUnarchiver class, 276

NSKeyValueObservingOptionInitial value,

320

NSKeyValueObservingOptionNew value,

320

NSKeyValueObservingOptionOld value, 320

NSKeyValueObservingOptionPrior value,

320

NSKeyValueObservingOptions class, 320

442

NSLOG() FUNCTION OBJECT PROPERTIES

NSLog() function, 63, 64, 82

NSMakePoint() function, 68

NSMakeRect() function, 68, 247

NSManagedObject class

adding categories to, 377

for entities in data model, 355

overriding methods of, 379

NSMatrix class, 285–289

NSMenuItems class, 292–293

NSMutableArray class, 262

bookshelf with bindings application

(example), 344

NSMutableDictionary class, 218–221

NSMutableString class

declaring NSStrings with copy

attribute, 108

NSNotification class, 194, 213

instance methods of, 195

NSNumber class, 89

using for user preferences, 287

writing to plist files, 274–275

NSNumberFormatter class, 339–341

for sorting data, 364

NSObjectController class, 335–338, 343

NSOperation class, 402

custom, 406–408

dispatch queues, 408–410, 412–424

basics of, 414–415

when to use, 412–414

interacting with, 403–405

NSOperationQueue class, interacting

with, 403–405

NSPersistentStoreCoordinator class, 357

NSPoint class, 68, 88, 247

NSRect class, 68, 88

NSRemoveTemplate class, 268, 346

NSRunningApplication class, 222–225

NSScrollView class, 258

NSSearchPathForDirectoriesInDomains()

function, 273

NSSelectorFromString() function, 139

NSSet class, 369

declaring copy attribute with, 108

NSSize class, 88, 247

NSStepper class, 315

NSString class, 63

declaring copy attribute with, 108

displaying name property of

(example), 215

methods for creating strings, 120

writing to plist files, 274–275

NSTableColumn class, 260

NSTableView class, 258

NSTableViewDataSource protocol, 260

NSTableViewDelegate protocol, 260

NSTextField class, 68

NSUnarchiver class, 280

NSURLs, creating from strings, 180

NSURLRequest class, 180

NSView class

drawing images in, 250–251

drawing shapes in, 246–247

stroke color, 248–250

drawing strings in, 252–254

how drawn, 245

NSWebView class, delegates of, 166

NSWindow class

delegate methods of, 160

delegates of, 166

separate nib file for (example), 230,

237–240

NSWindowDelegate protocol, 164

NSWorkspace class, 195

NSWorkspaceDidLaunchApplicationNotification

class, 196, 198

NSWorkspaceDidTerminateApplicationNotification

class, 196, 198

NSZombie class, 114

Nullify option (delete rule), 360

number formatters, 339–341

for sorting data, 364

numberOfRowsInTableView: method, 259,

261, 310

numbers

in collections, operating on, 312

for columns, 260

writing themselves to files, 274–275

O
object controllers, 335–338, 343

binding components to, 337

connecting, 336

object method (NSNotification), 195

object properties, 86

accessing with Core Data and

categories, 379–380

calling using dot notation, 93–96

creating, 92–93

declaring with attributes, 96–98

filling using dictionaries, 305–306

garbage collection and, 107–109

Flashlight app (example), 109–122

443

OBJECTFORKEY: METHOD PLIST FILES

read-write, with class extensions,

375–376

removing instance variables backing,

100–101

tagging as IBOutlet, 126

objectForKey: method, 214, 216

Objective-C language

process of learning, 18

as single inheritance language, 205

objects

blocks, 383–397

block operations, 402–403

capturing values of variables,

387–389

collections and, 389–390

declaring, 385–386, 393–394

declaring and defining, 390–392

using __block, 392–393

using in callbacks, 394–397

wrappers, 384–387

convenience constructors and,

120–122

creating as categories, 369–371

creating new, 76–78, 141–143

memory management and, 102

File’s Owner, 176, 234–236

freed, messages sent to, 113

initializing, 79–82

instantiating classes, 143

lazy initialization, 296–297

logging, 82

nib files and, 227–229

Observer objects, 329–331

registering for notifications, 194–195

example of, 198–199

treating like dictionaries, 299–300

Objects tab (Library, Interface Builder),

28

objects, observing with, see observers

objects, variables pointing to, see

pointers

observers

adding new, 318–320, 324–325

listening for changes, 323–324

making observations observable,

321–323

observing multiple attributes,

325–331

using conditionals, 325–328

using KVC, 328–329

using Observer helper objects,

329–331

registering, 320–321

unregistering, 321

observeValueForKeyPath: method

multiple observed attributes and,

327

observeValueForKeyPath:ofObject:change:context:

method, 329, 333

“Only stop on tick marks” setting, 339

operation queues, 398–410, 424

block operations, 402–403

custom NSOperations, 406–408

dispatch queues, 408–410, 412–424

basics of, 414–415

when to use, 412–414

interacting with queue and

operations, 403–405

invocation operations, 400–402

operations on arrays, using KVC, 312

@optional directive, 205

optional methods in protocols, 205

organizing files, 73

outlets, 125–130

creating and using (example),

128–130, 137–139

declaring for classes, 146–149

viewing, for classes, 145

Outlets tab (Document window), 145

outputting to Console, 63–66

Overview section (class reference), 52

ownership of objects, about, 103

P
parallelizable operations, 414

persistence, 270–284

Core Data persistence layer, 356–358

factory defaults, 278–280

reading from plist files, 275–276

saving in running applications,

270–273

saving to disk (archives), 276–277

saving to plist files, 274–275

user preferences, 278

radio button selection for,

287–289

setting user defaults, 280–284

where to put application support,

273–274

persistentStoreCoordinator method, 357

plist files

444

POINTERS RELEASE MESSAGE

reading from, 275–276

saving to, 274–275

storing user defaults in, 280–284

pointers, 87–88

populating classes using dictionaries,

305–306

populating data tables

adding and removing rows, 266–269

by column title, 263–266

populating tables with KVC, 309–311

posting notifications, 199–201

example of, 201

postNotificationName:object: method, 201

#pragma marks, 188–189

predicates (searching within Core

Data), 365–366

preferences (user), saving, 278

radio button selection for, 287–289

setting user defaults, 280–284

private dispatch queues, 421–422

private methods in class extensions,

372–375

progress indicators, 173–174, 185, 188

Spinner application (example), 398

projects

building, 39–41

creating new, 25–26

properties, object, 86

accessing with Core Data and

categories, 379–380

calling using dot notation, 93–96

creating, 92–93

declaring with attributes, 96–98

filling using dictionaries, 305–306

garbage collection and, 107–109

Flashlight app (example), 109–122

read-write, with class extensions,

375–376

removing instance variables backing,

100–101

tagging as IBOutlet, 126

property attributes, 96–98

@property directive, 93, 96–98

@protocol declarations, 206

protocols, 164

categories vs., 370

checking if method is implemented,

208

creating, 204–207

declaring, 206

informal, 373

optional vs. required methods in,

205

when better than notifications, 203

Push button, 29

Q
queues, see operation queues

R
race conditions, 424

radio buttons, 285–289

read-write properties in class

extensions, 375–376

reading data

from plist files, 275–276

user preferences, 278

radio button selection for,

287–289

reading from dictionaries, 214

readonly attribute, 96

readwrite attribute, 96

recalculating dependent variables, with

KVO, 331–333

receiver, nonexistent, 57

records in tables, about, 259

rectangles, drawing in custom views,

245–247

redundancy among methods, reducing,

216–217

refactoring methods, advantages of,

228

refactoring tools, Xcode, 70

reference counting, 103–104, 112–113

releasing serial queues, 422

when object count reaches zero,

115–116

reference documentation, 21, 50–53

regenerating class files from entities,

380–382

registering as iPhone developer, 109

registering for notifications, 194–195

example of, 198–199

registering observers, 320–321

registerNotifications method, 201, 228

Registration domain defaults, 278–280

relationships (data model), 358–361

delete rule, 360–361

managing dependencies, 362–363

release message, 104

when object count reaches zero,

115–116

445

RELEASING PROJECTS STROKERECT: METHOD

releasing projects, 41–42

removeObjectForKey: method

(NSDictionary), 220

removeRow: method, 269

removing entries from dictionaries,

218–221

renaming variables, 69

reportActivity: method, 195

@required directive, 205, 207

Required setting (Objective-C Garbage

Collection), 106–107

requiring methods in protocols, 205,

207

resetButtons method, 155, 171

resizing window

components and, 31

limiting size when, 33

respondsToSelector: method, 208

respondToChange: method (NSDictionary),

220

retain attribute, 97

retain message, 103

retain-release pattern of memory

management, 116–117

rows, table, 259

adding and removing, 266–269

running applications

saving data from, 270–273

S
saving data

Core Data persistence layer, 356–358

to disk (archiving), 276–277

factory defaults, setting, 278–280

to plist files, 274–275

in running applications, 270–273

user preferences, 278

radio button selection for,

287–289

setting user defaults, 280–284

where to put application support,

273–274

scope, blocks, 391

scroll views, 258

searchFor:direction:caseSensitive:wrap:

method, 55

searching within Core Data, 365–366

selector, unrecognized, 57

selectors, creating from strings, 139

self keyword, 80

Sent on Enter Only option, 34

serial queues, 414

manually releasing, 422

setHidden: method (NSView), 136

setNeedsDisplay: method, 248

setObject:forKey: method (NSDictionary),

220

setStringValue: method (NSControl), 169

setters, 89–92

declaring as properties, 92–93

dot notation for, 93–96

generating when declaring

properties, 96

retain-release pattern, 116–117

setting names for, 96

setUpNotification: method, 228

setUpNotification:withSelector: method, 201

setValue:forKey: method, 304–305

making observations observable

with, 322

setValue:forKey: method, 308

setValue:forKeyPath: method, 308

setWithArray: method, 371

setWithContentsOfFile: method, 369

shapes in custom views, 245–247

stroke color for (example), 248–250

SimpleBrowser application, see web

browser application (example)

single inheritance languages, 205

Size inspector (Interface Builder), 31

sliders, 339

sorting, within Core Data, 363–364

coding sort descriptor, 366–367

Spinner application (example), 398

splitting nib files, 229–231

Stack Overflow, 89n

starting Cocoa Simulator, 31

status messages in text fields, 199–201

example of, 201

steppers (NSStepper), 315

strings, 63

attributes for displaying, 253n

creating NSURLs from, 180

creating and initializing, 120

creating selectors from, 139

drawing in custom views, 252–254

writing themselves to files, 274–275

stringWithFormat: method, 121

stringWithFormat: method, 81n

stroke color for shapes (example),

248–250

strokeRect: method, 247

446

SUBCLASSES VARIABLES

subclasses, delegates instead of, 166

@sum operator, 312

synchronizing on main queue, 420–421

synchronous operations, 415

@synthesize directive, 93

T
table views, 256–258

adding and removing rows, 266–269

bookshelf with bindings application

(example), 345–346

filling cells by column title, 263–266

implementing data source, 259–263

tables, displaying data in, 256–269

adding and removing rows, 266–269

filling cells by column title, 263–266

implementing data source, 259–263

setting up for, 256–258

tables, filling using KVC, 309–311

tableView:objectValueForTableColumn:row:

method, 259, 263

takeIntegerValueFrom: method, 315

takeStringURLFrom: method (WebView), 37,

58, 60

represented in nib file, 46

Tasks section (class reference), 52

Test-Driven Development, 171n

testing projects

web browser application (example),

38

testing projects (example), 31–33

text fields, 68, 252

binding to object controllers, 337

connecting to web view, 35

creating, 29

default values for, 34

displaying status messages, 199–201

example of, 201

in iPhone apps, 181–182

number formatters with, 339–341

resizing when window resizes, 33

text in custom views, drawing, 252–254

Text Input Traits settings, 182

text views, 252

Thread States instrument, 409

threading, see dispatch queues

Tile class, 415, 416

title attribute, application windows, 168

tools installation, 19

traversing class hierarchies with

keypaths, 306–309

Treat Warnings as Errors setting, 148

tree controllers, 343

typedef statements, 393–394

U
UIActivityIndicatorView class, 185–188

UIApplication class, 176

UIBarButtonItem class, 177

UITextField class, 177

UITextFieldDelegate protocol, 183

UIToolbar class, 177

UIWebView class, 178

limitations of, 178–179

loading Web pages at launch,

179–181

UIWebViewDelegate protocol, 184

@unionOfArrays operator, 312

@unionOfObjects operator, 312

@unionOfSets operator, 312

unregistering observers, 321

unsaved changes in nib files, 162

Unsupported setting (Objective-C

Garbage Collection), 104

updateDisplay: method, 317

updating dependent variables, with

KVO, 331–333

URL (keyboard type), 182

URLWithString: method, 180

user defaults controllers, 343

user preferences, 278

radio button selection for, 287–289

setting user defaults, 280–284

userInfo method (NSNotification), 195,

213–214

example of, 221–226

V
valueForKey: method, 266, 299, 308

valueForKeyPath: method, 308

valueForUndefinedKey: method, 303–304

values, setting defaults for

factory defaults, 278–280

radio button selection for,

287–289

user defaults, 280–284

variables

blocks as, 385

dependent, recalculated from

independent variables, 331–333

getting using KVC, 301–303

instance variables, 86

447

VARIABLES Y-AXIS (COORDINATE SYSTEM)

creating, 80

disallowed in categories, 370

removing, 100–101

renaming, 69

setting using KVC, 304–305

variables, pointing to objects, see

pointers

view controllers, 176

separate nib files for, 230–233,

236–237

viewDidLoad method, 180

views, 243–255

changing at runtime, 285–297

moving main window, 293–294

user preference for launch view,

287–289

using lazy initialization, 296–297

custom, creating, 243–245

drawing images in, 250–251

drawing shapes in, 245–247

stroke color for (example),

248–250

drawing strings in, 252–254

Grid class, 415

menu bar, customizing, 292–293

table views, 256–258

adding and removing rows,

266–269

filling cells by column title,

263–266

implementing data source,

259–263

virtual keyboards, iPhone apps, 182

W
warnings (compilation result), 147, 148

web browser application (example),

24–42

adding WebKit framework, 39–41

building and releasing, 41–42

creating appearance in IB, 26–30,

33–34

creating Xcode project for, 25–26

as iPhone app, 175–190

limitations of UIWebView, 178–179

loading Web pages at launch,

179–181

testing with Cocoa Simulator, 31–33,

38

wiring components together, 35–39

web views, 30

class reference for WebView, 21,

51–53

connecting components to, 35–39

having multiple connections,

59–61

delegates of, 166

disabling and lowering alpha value,

183

WebFrameLoadDelegate protocol, 167,

168

WebKit framework, 30, 39–41

webView:didReceiveTitle:forFrame: method,

167, 168

webView:didStartProvisionalLoadForFrame:

method, 174

webView:didFinishLoadForFrame method,

170

webViewDidFinishLoad: method, 185, 186

webViewDidStartLoad: method, 186

willChangeValueForKey: method, 323

window method (NSView), 168

WindowDressing app (example), 162

windows

closing, 164

minimum size for, 33

resizing, 31

title attribute, 168

windowShouldClose: method, 164

windowShouldZoom:toFrame: method, 165

windowWillClose: method, 164

workspace activity, responding to,

195–196

wrappers, 384–387

writeToFile:atomically: method, 369

X
x-axis (coordinate system), 247

Xcode, 17

Code Sense settings, 170

creating classes in, 143–144

creating new classes in, 72

creating new project, 25–26

refactoring tools, 70

using with Interface Builder, rhythm

of, 129

.xib files, 27

creating new, 232

XML of nib files, 44–47

Y
y-axis (coordinate system), 247

448

YES VALUE ZOMBIES

YES value, 53

Z
zipping applications for distribution, 42

zombies, 113–114

449

More Core

Core Animation for OS X/iPhone
Have you seen Apple’s Front Row application and

Cover Flow effects? Then you’ve seen Core

Animation at work. It’s about making applications

that give strong visual feedback through movement

and morphing, rather than repainting panels. This

comprehensive guide will get you up to speed

quickly and take you into the depths of this new

technology.

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

Bill Dudney

(220 pages) ISBN: 978-1-9343561-0-4. $34.95

http://pragprog.com/titles/bdcora

Core Data
Learn the Apple Core Data APIs from the ground

up. You can concentrate on designing the model for

your application, and use the power of Core Data to

do the rest. This book will take you from beginning

with Core Data through to expert level

configurations that you will not find anywhere else.

Learn why you should be using Core Data for your

next Cocoa project, and how to use it most

effectively.

Core Data: Apple’s API for Persisting Data under

Mac OS X

Marcus S. Zarra

(256 pages) ISBN: 978-1-93435-632-6. $32.95

http://pragprog.com/titles/mzcd

http://pragprog.com/titles/bdcora
http://pragprog.com/titles/mzcd
Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

More iPhone and iPad

iPhone SDK Development
Jump into application development for today’s

most remarkable mobile communications platform,

the Pragmatic way. This Pragmatic guide takes you

through the tools and APIs, the same ones Apple

uses for its applications, that you can use to create

your own software for the iPhone and iPod touch.

Packed with useful examples, this book will give

you both the big-picture concepts and the everyday

“gotcha” details that developers need to make the

most of the beauty and power of the iPhone OS

platform.

iPhone SDK Development

Bill Dudney, Chris Adamson, Marcel Molina

(545 pages) ISBN: 978-1-9343562-5-8. $38.95

http://pragprog.com/titles/amiphd

iPad Programming
It’s not an iPhone and it’s not a laptop: the iPad is a

groundbreaking new device. You need to create true

iPad apps to take advantage of all that is possible

with the iPad. If you’re an experienced iPhone

developer, iPad Programming will show you how to

write these outstanding new apps while completely

fitting your users’ expectation for this device.

iPad Programming: A Quick-Start Guide for

iPhone Developers

Daniel H Steinberg and Eric T Freeman

(250 pages) ISBN: 978-19343565-7-9. $34.95

http://pragprog.com/titles/sfipad

http://pragprog.com/titles/amiphd
http://pragprog.com/titles/sfipad

More Productive

TextMate
If you’re coding Ruby or Rails on a Mac, then you

owe it to yourself to get the TextMate editor. And,

once you’re using TextMate, you owe it to yourself

to pick up this book. It’s packed with information

that will help you automate all your editing tasks,

saving you time to concentrate on the important

stuff. Use snippets to insert boilerplate code and

refactorings to move stuff around. Learn how to

write your own extensions to customize it to the

way you work.

TextMate: Power Editing for the Mac

James Edward Gray II

(200 pages) ISBN: 0-9787392-3-X. $29.95

http://pragprog.com/titles/textmate

Pomodoro Technique Illustrated
Do you ever look at the clock and wonder where the

day went? You spent all this time at work and

didn’t come close to getting everything done.

Tomorrow, try something new. In Pomodoro

Technique Illustrated, Staffan Nöteberg shows you

how to organize your work to accomplish more in

less time. There’s no need for expensive software or

fancy planners. You can get started with nothing

more than a piece of paper, a pencil, and a kitchen

timer.

Pomodoro Technique Illustrated: The Easy Way

to Do More in Less Time

Staffan Nöteberg

(144 pages) ISBN: 9781934356500. $24.95

http://pragprog.com/titles/snfocus

http://pragprog.com/titles/textmate
http://pragprog.com/titles/snfocus

More Techniques

Debug It!
Debug It! will equip you with the tools, techniques,

and approaches to help you tackle any bug with

confidence. These secrets of professional debugging

illuminate every stage of the bug life cycle, from

constructing software that makes debugging easy;

through bug detection, reproduction, and

diagnosis; to rolling out your eventual fix. Learn

better debugging whether you’re writing Java or

assembly language, targeting servers or embedded

micro-controllers, or using agile or traditional

approaches.

Debug It! Find, Repair, and Prevent Bugs in Your

Code

Paul Butcher

(232 pages) ISBN: 978-1-9343562-8-9. $34.95

http://pragprog.com/titles/pbdp

SQL Antipatterns
If you’re programming applications that store data,

then chances are you’re using SQL, either directly

or through a mapping layer. But most of the SQL

that gets used is inefficient, hard to maintain, and

sometimes just plain wrong. This book shows you

all the common mistakes, and then leads you

through the best fixes. What’s more, it shows you

what’s behind these fixes, so you’ll learn a lot about

relational databases along the way.

SQL Antipatterns: Avoiding the Pitfalls of

Database Programming

Bill Karwin

(300 pages) ISBN: 978-19343565-5-5. $34.95

http://pragprog.com/titles/bksqla

http://pragprog.com/titles/pbdp
http://pragprog.com/titles/bksqla

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Cocoa Programming

http://pragprog.com/titles/dscpq

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/dscpq.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/dscpq
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/dscpq
www.pragprog.com/catalog

	Contents
	Introduction
	Moving In
	Learning the Language
	Installing the Tools
	Exploring the Frameworks
	In This Book

	Using What's There
	Creating Your Project in Xcode
	Creating the Appearance with Interface Builder
	Testing the Interface with the Cocoa Simulator
	Finishing the Interface
	Wiring Up the Components
	Fixing the Build
	Sharing Your Browser
	Exercise: Rinse and Repeat
	The Nib File

	Methods and Parameters
	Sending Messages Without Arguments
	Reading the Docs
	Methods with Arguments
	Dynamic Binding
	Problems Sending Messages
	Links Back to Yourself
	Exercise: Multiple Connections

	Classes and Objects
	Creating ``Hello, World!''
	Logging Output to the Console
	Using an Existing Class
	Refactoring Code
	Creating a New Class
	Creating and Using a Class Method
	Creating a New Object
	Further Refactoring
	Initializing Your Objects
	Logging Objects
	Exercise: Other Initializations
	Solution: Other Initializations

	Instance Variables and Properties
	Pointers
	Working with Nonobject Types
	Getters and Setters
	Converting the Accessors to Properties
	Dot Notation
	Property Attributes
	Exercise: Adding Properties
	Solution: Adding Properties
	Removing Instance Variables

	Memory
	Reference Counting
	Finding Leaks with the Clang Static Analyzer
	Fixing the Memory Leak on Mac OS X
	Properties and Garbage Collection
	Creating a Flashlight
	Finding Leaks in Instruments
	Fixing the Memory Leak on the iPhone
	Using Zombies
	Cleaning Up in dealloc
	Retain and Release in a Setter
	The Autorelease Pool
	Using Convenience Constructors
	Exercise: Creating and Using a Convenience Constructor
	Solution: Creating and Using a Convenience Constructor

	Outlets and Actions
	The Big Picture
	Using an Outlet
	Exercise: Creating and Using an Outlet
	Solution: Creating and Using an Outlet
	Declaring an Action
	Connecting and Implementing the Action
	Exercise: Hiding the Button
	Solution: Hiding the Button
	Exercise: Toggling the Interface
	Solution: Toggling the Interface
	Introducing Another Outlet
	Creating Selectors from Strings

	Creating a Controller
	How We've Created Objects
	Creating Our Controller Class
	Creating an Instance of Our Controller in IB
	Declaring an Outlet and an Action
	Forward Declaration
	Wiring Up the Controller
	Implementing the Loading of the Previous Page
	Exercise: Finishing the Controller
	Solution: Finishing the Controller
	Awake from Nib
	Disabling and Enabling the Buttons
	Still Needs Work

	Customizing with Delegates
	Understanding Delegates
	The Default Window Behavior
	Turning the Background Red
	Exercise: Turning the Background Green
	Solution: Turning the Background Green
	Application Delegate
	Delegates for Your Web View
	Setting the Window Title
	Exercise: Updating the URL and Setting Buttons
	Solution: Updating the URL and Setting Buttons
	Cleaning Up
	Exercise: Adding a Progress Indicator
	Solution: Adding a Progress Indicator

	Adapting Our Browser to the iPhone
	Creating the iPhone Project
	Creating the Look of Our Browser
	The WebView's Limitations
	Loading a Web Page at Launch
	Tweaking the Text Field in IB
	Using the Text Field Delegate
	Using a Third Delegate to Implement the Buttons
	Exercise: Adding an Activity Indicator
	Solution: Adding an Activity Indicator
	Organizing with Pragma Marks

	Posting and Listening for Notifications
	Exercise: Creating a Model
	Solution: Creating a Model
	Registering for Notifications
	Responding to Workspace Activity
	Holding on to the Controller
	Exercise: Registering for Notifications
	Solution: Registering for Notifications
	Posting Notifications
	Exercise: Receiving the Custom Notifications
	Solution: Receiving the Custom Notifications

	Creating Protocols for Delegation
	Exercise: Creating and Setting the Delegate
	Solution: Creating and Setting the Delegate
	Creating and Using a Protocol
	Requiring Methods
	Responding to Selector
	Exercise: Calling the Delegate Methods
	Solution: Calling the Delegate Methods
	Exercise: Cleaning Up
	Solution: Cleaning Up

	Working with Dictionaries
	Looking at the User Info
	Reading from a Dictionary
	Exercise: Displaying the Name
	Solution: Displaying the Name
	Reducing Redundancy
	Using a Dictionary for Flow Control
	Adding and Removing Entries with a Mutable Dictionary
	Exercise: Adding an Icon
	Solution: Adding an Icon

	Multiple Nibs
	Methods, Objects, and Nibs
	Splitting Nibs
	Preparing to Split Out the View
	Creating the View Nib
	Integrating a Nib File
	The File's Owner
	Exercise: Loading the View
	Solution: Loading the View
	Creating the Window Nib
	Loading the Window Nib
	Presenting the Window
	Exercise: Connecting the View and the Model
	Solution: Connecting the View and the Model

	Creating Custom Views
	Creating a Custom View
	Drawing Shapes into a Custom View
	Exercise: Changing the Stroke Color
	Solution: Changing the Stroke Color
	Drawing Images
	Drawing Text

	Displaying Data in a Table
	Tables and Data Sources
	Exercise: Implementing a Basic Data Source
	Solution: Implementing a Basic Data Source
	Exercise: Introducing a Data Source
	Solution: Introducing a Data Source
	Filling Cells Based on Table Column Titles
	Table Column Identifiers as Keys
	Previews of Coming Attractions
	Exercise: Adding and Removing Rows
	Solution: Adding and Removing Rows
	Manually Removing Rows

	Saving Data to Disk
	Saving in Your Running Application
	Where to Put Application Support
	Saving to a Plist
	Reading a Plist
	Saving an Archive to Disk
	Reading and Using Preferences
	Setting the Factory Defaults
	Preparing to Set User Defaults
	The Preference Window Nib
	Enabling the Preferences Window

	Changing Views
	Working with Radio Buttons
	Adding Preferences for View at Launch
	Exercise: Launching with the Right View
	Solution: Launching with the Right View
	Eliminating Magic Numbers
	Customizing the Menu Bar
	Moving the Main Window
	Exercise: Switching Views (Mostly)
	Solution: Switching Views (Mostly)
	Lazy Initialization

	Key Value Coding
	Treating Objects Like Dictionaries
	Getting Variables Using KVC
	Undefined Keys
	Exercise: Setting Variables Using KVC
	Solution: Setting Variables Using KVC
	KVC and Dictionaries
	Keypaths for Navigating a Class Hierarchy
	Exercise: Filling Tables Using KVC
	Solution: Filling Tables Using KVC
	Arrays and KVC

	Key Value Observing
	Codeless Connections
	A Target-Action Counter
	Introducing an Observer
	Registering an Observer
	Making Changes Observable
	Observing the Changes
	Exercise: Adding a Second Observer
	Solution: Adding a Second Observer
	The Ugly Way to Observe More Than One Attribute
	Selecting Methods Using KVC
	Implementing an Observer Object
	Updating Dependent Variables

	Cocoa Bindings
	The Model and View for Our Counter with Bindings
	Creating and Connecting the NSObjectController
	Binding More Objects
	Number Formatters
	Exercise: Connecting Two Counters with Bindings
	Solution: Connecting Two Counters with Bindings
	The Model for Our Bookshelf Example
	Creating the View for the Bookshelf
	Binding with the NSArrayController
	The Big Finish

	Core Data
	Entities and Attributes
	Using the Core Data Widget
	The Managed Object Context
	The Persistence Layer
	Introducing Relationships
	Choosing a Relationship's Delete Rule
	Updating the View
	Managing Dependencies
	Exercise: Enabling Author Addition and Removal
	Sorting
	Filtering Items
	Coding the Sort Descriptor

	Categories
	Overcoming Limitations
	Creating a Category
	Category Cautions
	Private Methods in Class Extensions
	Exercise: Extending Properties with Class Extensions
	Solution: Extending Properties with Class Extensions
	Categories and Core Data
	Generated Classes in Core Data
	Accessing Properties
	Regenerating Class Files from Entities

	Blocks
	The Need for Blocks in Wrappers
	Declaring a Block
	Using Blocks in Wrappers
	Capturing Values
	Blocks and Collections
	Declaring, Defining, and Using Blocks
	Using __block
	Cleaning Up with typedef
	Exercise: Using Blocks in Callbacks
	Solution: Using Blocks in Callbacks

	Operations and Their Queues
	Making the Beach Ball Spin
	Invocation Operations
	Block Operations
	Interacting with the Queue and Operations
	Custom NSOperations
	From Operation Queues to Dispatch Queues

	Dispatch Queues
	When to Use Dispatch Queues
	Quick Queue Overview
	Drawing Our Fractal
	Working Without Dispatch Queues
	The Main Queue
	Global Concurrent Queues
	Synchronizing on the Main Queue
	Private Dispatch Queues
	Synchronous Tasks

	Up and Out
	But What About...
	What's Next
	Acknowledgments
	Dedication

	Bibliography
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

