
www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

Over 20 practical, hands-on recipes to encode and
display videos in the HTML5 video standard

Alex Libby

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2012

Production Reference: 1260912

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-364-6

www.packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Alex Libby

Reviewers
Laurentiu Nicolae

Paul Kinlan

Acquisition Editor
Kartikey Pandey

Commissioning and Content Editor
Meeta Rajani

Technical Editors
Ajay Shankar

Ameya Sawant

Project Coordinator
Michelle Quadros

Proofreader
Stephen Silk

Indexer
Hemangini Bari

Graphics
Aditi Gajjar

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

Cover Image
Conidon Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Alex Libby holds a Master's degree in e-commerce from Coventry University, and currently
works as a SharePoint Technical Analyst for a well-known parts distributor based in the UK.
Prior to this, he spent a number of years in IT Support, working in the banking, health, and
defense publishing industries.

Alex has been working with video hosting over the last 2-3 years, and currently maintains a
video communications channel as part of his work in SharePoint, which is used to convey
information to 5000 colleagues, in 26 different countries around the world. He enjoys the
challenge of video hosting, to ensure content is made accessible across a number of different
platforms, while managing the technical constraints of hosting on a corporate network. Alex
has also written a separate book for Packt on the jQuery Tools UI Library—this is (indirectly)
used within this book.

I would like to thank my family, friends, and work colleagues Paul McAuliffe
and Linda Mathers for their help and support over the last few years. In
particular, I would like to thank Ken Coggin for his help in setting up the
video comms channel, and Sarah Loomes for her help in maintaining it over
the last couple of years; this book would certainly have remained a pipe
dream if it weren't for their help!

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewer

Laurentiu Nicolae is a Senior Web Developer with over six years of experience. He has
been working as a freelancer for different clients from all over the world. He is a "native writer"
in web languages such as PHP, HTML, CSS, and JavaScript. He lives in Bucharest, Romania
with his wife, Georgiana, and their son Matei.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
HTML5 Video How-To 7

Transcoding a video into HTML5 format (must know) 9
Installing playback support (must know) 12
Publishing videos (should know) 15
Embedding videos—the old school way (must know) 21
Embedding a video using HTML5 (become an expert) 23
Extending the video code (should know) 25
Adding mime types (must know) 27
Adding cross-browser support (should know) 28
Adding codec definitions (must know) 30
Providing fallback support (should know) 32
Adapting for iPads/iPhones/Android (should know) 34
Setting up VideoJS—an example player (become an expert) 36
Setting up Kaltura video—an example player (become an expert) 38
Building the video player—the framework (must know) 41
Adding controls to your player (must know) 43
Styling your video player (should know) 44
Adding the jQuery functionality (must know) 51
Adding an overlay button (should know) 56
Inserting subtitles (should know) 58
Providing fall-back support using a polyfill (should know) 62
Displaying video through an Overlay (should know) 65

Bonus chapter - HTML5 Audio How-To
This chapter is not present in the book but is available as a free download from:
http://www.packtpub.com/sites/default/files/downloads/HTML5 Audio

How-To.pdf

Index 69

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Are you looking to host the next mini blockbuster video from your website? Do you want it to be
accessible in most modern browsers, without the need for lots of extra plugins, or extra code?

If the answer to the above two questions is yes, then enter HTML5 Video—created as the new
way to show video online in most modern browsers without the need for extra plugins.

HTML5 Video is used by a number of high-profile companies—one of the most notable will
be YouTube, started in 2005 by some ex-PayPal employees. Today, it has 800 million unique
visitors each month, who watch in excess of three billion hours of video each month—some of
which will be in HTML5 format.

This book will take you through the beginnings of HTML5 Video, and also how to get rid of the
confusion that surrounds its usage. We will take a look at how to style elements of the video
tag, as well as use jQuery to build a basic plugin that can be used in your website or content
management system. Finally, we will have a look at how you can package up your plugin for
use on the Internet in applications such as WordPress.

If you're new to the world of HTML5 Video, and want to explore the functionality available, then
this book is for you. With easy to follow step-by-step instructions, you'll find what you need
to get you going with using this library, and discover how you can implement some complex
functionality with just a few lines of code.

So what are we waiting for? Let's get started….

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

What this book covers
Throughout this book, we're going to look at a variety of exercises that are designed to help
you get accustomed to working with the basics of the new HTML5 <video> tags. You're
probably wondering what we're going to cover, right? No problem! Let me reveal all:

 f Transcoding a video into HTML5 format: You've been given a video, but it's not in the
right format? No problem! Here's where I show you how to convert it into any of the
formats needed for HTML5 Video playback.

 f Installing playback support: Playback support? You're probably thinking that you
would play these videos in Windows Media Player, right? Ah, no such luck! Windows
Media Player doesn't support these formats! Don't worry! I'll show you how to fix this
and get them playing.

 f Publishing videos on Youtube or on VideoBin.org: In these two recipes, I'll show you
how you can host your videos using YouTube or Videobin.org—there are a multitude of
options available, so you can choose whichever suits you the most; these are just two
of them.

 f Embedding videos, the old school way: The old school way? Surely embedding
videos is one simple way, right? Yes…and no! Embedding them the old school way
isn't simple.

 f Embedding videos using HTML5: I'll show you how, with the new tags, it becomes a
cinch to embed videos with as little as two to three lines of code.

 f Extending the video code: Now that we've embedded the video, we'll look at how we
can extend the functionality, to include background images, the ability to preload, and
why autoplay isn't all it's cracked up to be!

 f Adding mime types: Mime types? Surely the operating system handles these, right?
Well, yes, it can…usually. Occasionally, it doesn't get it right. This shows you how to
ensure it knows what to do.

 f Adding cross-browser support: One headache most designers must face is providing
cross-browser support for any websites they design—the HTML5 <video> tag is no
different! While the video tag is still in a state of flux in terms of supported formats,
you will find that you need to allow for different formats—here's where I show you how
to include those formats.

 f Adding codec definitions: Setting up mime types isn't always enough; you may also
find that you have to specify particular codecs that should be used to ensure optimal
playback of your chosen video. There are three codecs you need to be aware of; here
we show you what they are, and how to add them into your code.

 f Providing fall-back support: One drawback of the new <video> tag is that videos
won't play on older browsers, such as IE 6 or 7. In this task, I'll show you how you can
provide support for these browsers as part of using the new tags.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

3

 f Adapting for iPads/iPhones/Android: In this age of mobile browsers, smartphones,
and PCs, visitors will expect your videos to work on a number of different platforms.
While videos will normally play, there are some quirks you need to be aware of to
ensure maximum compatibility is maintained.

 f Setting up VideoJS player, and Kaltura Video: In these two recipes, we take a
break from delving into the intricacies of setting up video and focus on how to
install a pre-built video library using two well-known examples in the form of
VideoJS and Kaltura Video.

 f Building the video player—the framework: It's time now to focus on the real code
required to build a video player—in this task, and over the next four, we look at the
code required to build your own player.

 f Adding controls to your video player: The first part of building the video player
provides the basics, but we need some form of ability to control the video, such
as sound levels—in this recipe, we add the necessary HTML controls code, as a
precursor to providing the jQuery functionality.

 f Styling your video player: The video player by now will work, but it won't win any
awards for style—in this recipe, I'll show you how to style it, as a starting point to
creating your own design.

 f Adding jQuery functionality: It's time now to provide the "glue" that makes it all
work—here's where we add in the necessary jQuery code to control your video,
and make the buttons work.

 f Providing a custom theme: By this point, we'll have a working player, although the
style will be a little functional—in this exercise, we'll add in something that will make
the video player more aesthetically pleasing to use.

 f Adding an overlay button: Most video players you see, such as YouTube, usually
have a button in the middle that appears, when video playback hasn't started yet,
or if it has been paused—in this recipe, I'll show you how you can add such a button.

 f Inserting subtitles: Subtitles…for a video? Well yes! For accessibility purposes, this is
critical. You'll see examples of this on YouTube, when people have added comments
to videos that they have uploaded. In this recipe, I'll show you how you can do this
using a pre-built subtitle library.

 f Providing fall-back support using a jQuery polyfill: Polyfill? This sounds like
something you would use to repair cracks, right? Not in this instance! A polyfill helps
provide backward compatibility. I'll be using MediaElementJS to show you how you
can cater for old browsers that should really be put out to pasture.

 f Displaying video through an Overlay: By this time we will have covered a lot of
functionality, so let's relax a little, and look at how you can add a little extra sparkle
to your video play back, by adding a lightbox effect.

 f Bonus chapter on HTML5 Audio How-To is available for download at
http://www.packtpub.com/sites/default/files/downloads/HTML5
Audio How-To.pdf

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

4

What you need for this book
There will be various pieces of software you will need to install in each chapter—we will go
through the specifics of each piece of software ahead of any task. In the meantime, you will
need the following:

 f An Internet connection for downloading various pieces of software for each chapter.
 f A modern browser—it must be one capable of running CSS3; ideal examples would

be the latest versions of Firefox, Safari, Chrome, or IE. We will look at backward
compatibility in older browsers, but the effect will not be the same!

 f A text editor—there are hundreds available for free or low cost; alternatively, you
can use something such as Notepad. My personal preference is Textpad, which is
available from http://www.textpad.com.

Who is this book for
This book is great for those new to HTML5 Video—you may already have some prior experience
of jQuery or using video (or both); this book will take you through the development of HTML5
Video, attempt to explain some of the confusion that surrounds using it, and present some
examples of how to include it in your own web pages.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

<video src=turkish.ogv width=320 height=240 poster=turkish.jpg>
 Download the Turkish dancing masterclass video
</video>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<video width=320 height=240 controls poster=turkish.jpg>
 <source src=turkish.ogv type=video/ogg>
 <source src=turkish.mp4 type=video/mp4>
 Download the Turkish dancing masterclass video
</video>

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

5

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text such as "clicking on the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

6

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To
Welcome to HTML5 Video How-To, where we take you on a journey through using videos with
the new HTML5 standard tags now available in most modern browsers.

In the beginning…
Back in the early years of the Internet, multimedia was limited to tinkering with MIDI files and
animated GIFs—while these were considered very advanced at the time, some of us probably
wonder why we ever used them, given the advanced state of web technologies available today!

If you wanted to include any multimedia file(s), you would be forced to include a cryptic block
of code similar to the following code snippet:

<object width="425" height="344">
 <param name="movie"
value="http://www.youtube.com/v/9sEI1AUFJKw&hl=en_GB&fs=1&"></para
 m>
 <param name="allowFullScreen"
 value="true"></param>
 <param name="allowscriptaccess"
 value="always"></param>
 <embed src="http://www.youtube.com/v/9sEI1AUFJKw&hl=en_GB&fs=1&"
 type="application/x-shockwave-flash" allowscriptaccess="always"
 allowfullscreen="true" width="425"
 height="344"></embed>
</object>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

8

Most of the preceding code snippet has now become redundant, at least for modern
browsers, due to advances in HTML technology since 2005. As you will see later in this book,
this code has been reduced down to three to four lines (although you can add more options
later if you wish).

The downside of this is that while the HTML5 standard code has shrunk, browser support has
unfortunately not kept up—developers using the HTML5 <video> and <audio> tags must
make allowances for different formats, as you will see throughout this chapter.

Browser inconsistencies
To accommodate for some of the confusion still surrounding HTML5 video formats you, as
a developer, will need to allow for a number of different platforms in order to ensure that
support is kept as wide as possible, as shown in the following table:

Data is correct as at April 2012 with http://www.longtailvideo.com/html5
as the source.

The net result is that you will need to cater for several formats for video—the main ones now
are WebM and MP4; you can also convert to Ogg Vorbis format, although this format is not so
widely used.

Please note that all of the tasks in this book are based on using Windows
as the author's preferred platform—wherever possible, suggestions for
equivalents on the Apple Mac platform are provided.

In this chapter, we're going to begin with converting your video masterpiece into a format
suitable for use with HTML5 video.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

9

Transcoding a video into HTML5 format
(must know)

The following task will take you through the transcoding of a video into HTML5 format using
a shareware application called Easy HTML5 Video Convertor, which is available at http://
www.easyhtml5video.com. It's available free for non-commercial use. To remove the logo
or use it for commercial purposes, you will need to purchase a license (which is $49 for a
single website and $69 for multiple sites at the time of writing).

Getting ready
Before we can convert the videos, you need to download a copy of Easy HTML5 Video
Convertor for your platform—it is available for Windows as well as Apple Macs. Make sure you
also have a copy of your raw video at hand, ready for conversion. For the purposes of this task,
I will assume it is in the .mov format.

How to do it...
1. The first step is to install the software; so let's go ahead and run the

easyhtml5video-setup.exe program, accepting all defaults.

2. Double-click on it to open up EasyHTML5Video 1.3.4 – Free version and click on
Select new video…, then drag and drop your video onto the screen that looks similar
to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

10

3. The screen will change to show the selected video and its properties, as shown in the
following screenshot:

4. For the purposes of this task, we need Easy HTML5 Video to export copies of the
videos into all of the required formats—this includes Flash as the fallback format. The
only change you need to make is to the poster image that you want to use—change
the slider to an appropriate frame as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

11

This will act as the image displayed before the video is started. We will take a look at
poster images in more detail in the next chapter.

5. We're going to keep the same filename as before, which will help with setting up the
<video> code later. So, go ahead and click on Start to begin the conversion process.
At this point, you may want to go make a cup of coffee as the process will take quite a
few minutes depending on the size of your video!

6. The final stage of the conversion process is to select where the content will be
published. By default, the files will be placed into a folder called EasyHTML5Video
within your Documents folder (as shown in the following screenshot); you can store
the files elsewhere if you wish to:

7. Click on Publish. The file conversion process is now complete and an example of the
video will start playing in your default browser. Also produced is a folder with some
standard HTML5 video code that pulls in the appropriate video to play depending on
which browser you use. We will take a look at that code later in this book.

How it works...
Here we looked at how to simultaneously convert your video into formats suitable for playing
using the new HTML5 <video> tags. EasyHTML5Video saves you a lot of hard work in
the conversion process—it makes it a snap to convert the file into the right format, and
automatically creates the basic code to allow basic playback in a browser.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

12

There's more...
In this example, we kept most of the settings at the defaults, which is perfectly acceptable for
converting video files. You could also alter the size of the converted video if desired, or set it
to automatically play when first shown (though this is not recommended as we will see in the
next chapter).

Installing playback support (must know)
Now that we have converted our videos, ready for playback, it's time to ensure that we can
actually play them back on our PCs as well as in our browsers. Most of the latest browsers
will play at least one of the formats we've created in the previous task, but it is likely that you
won't be able to play them outside of the browser. Let's take a look at how we can fix this by
updating the codecs installed in your PC.

For those of you not familiar with codecs, they are designed to help
encode assets when the video is created and decode them as part of
the playback. Software and hardware makers will decide the makeup
of each codec based on which containers and technologies they should
support; a number of factors such as file size, quality, and bandwidth
all play a part in their decisions.

Let's take a look at how we can update our PCs to allow for proper playback of HTML5 video.

Getting ready
There are many individuals or companies who have produced different codecs with differing
results. We will take a look at one package that seems to work very well for Windows,
which is the K-Lite Codec Pack. You will need to download a copy of the pack, which is
available from http://fileforum.betanews.com/detail/KLite-Codec-Pack-
Basic/1094057842/1—use the blue Download Now link on the right-hand side of the page.
This will download the basic version, which is more than sufficient for our needs at this stage.

How to do it...
Let's go ahead and install the software! This task assumes you will be using Windows Media
Player on a Windows PC platform.

1. Go ahead and double-click on the K-Lite_Codec_Pack_860_Basic.exe setup file.
Click on Next, and then accept all defaults until you reach the File associations
for Windows Media Player screen (as shown in the following screenshot); when
prompted for the Installation mode on screen 2, choose Advanced.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

13

2. When you reach the File Associations for Windows Media Player screen, select
the Select all video option to enable support for all video formats as shown in the
following screenshot:

3. On the next screen, select Select all as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

14

4. On the Speaker configuration screen (as shown in the following screenshot), select
the 2.0 (stereo) option—while you can adjust this later, it is sufficient for the purposes
of this task.

5. Click on Install and then Finish. The codecs have now been installed!

How it works...
In order to play back HTML5 format videos in Windows Media Player, you need to ensure you
have the correct support in place; Windows Media Player doesn't understand the encoding
format of HTML5 videos by default. In order to overcome this, we need to install additional
support for the playback of these videos using codecs designed for the various formats
available—the K-Lite package aims to remove some of the pain of this process.

There's more...
The package we've looked at in this task is only available for Windows; if you are a Mac
user, you will need to use an alternative method. There are many options available: you can
try using Perian, which will add MP4 and WebM formats to QuickTime and is available at
http://www.perian.org. The OGG format is not supported natively on Apple Macs, so if
you want to add support, you can do so using a third-party application such as the Quick Time
Components from Xiph.org at http://www.xiph.org.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

15

Publishing videos (should know)
Now that we have our video in an HTML5 compatible format, and we can play it on our PC,
we need to make it available for others to view. There are several options available to achieve
this. In this task, we will look at two options, beginning with uploading to YouTube. In the
second part of this task, we will focus on uploading videos to VideoBin.org.

Getting ready
For the purposes of this task, we're going to use one of the videos we converted from Task 1,
so make sure you have this available.

In order to get the best results in the task to follow, you need to ensure that you use an HTML5
compatible browser. Also, you need to have a registered free account at YouTube and should
have enrolled yourself in YouTube's HTML5 video trial at http://www.youtube.com/html5.

For the second part of this task, the only prerequisite to ensure optimal playback is that the
video should be encoded to Ogg Theora format. This is to save bandwidth, although other
formats can be used—VideoBin will automatically convert (or transcode) the videos on the
fly. For the purposes of this task, I will assume you have used the video you converted in the
previous task.

How to do it...
1. Browse to http://www.youtube.com and sign in to your account, then click on

Upload to begin the process, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

16

2. We're going to upload one of the video files created from Task 1, so go ahead
and click on Select files from your computer to choose a video, as shown in the
following screenshot:

3. YouTube will upload your video (as shown in the following screenshot)—the video can
be up to a maximum of 15 minutes in length:

4. YouTube will show a confirmation once the video has been uploaded. At this stage,
you can set the visibility (or who will be able to see this video) as well as the title,
description, and tags for your video, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

17

5. You will notice a link under the name of the uploaded video—you can click on this link
to see how your video will appear in YouTube as seen by other users:

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

18

An alternative to using YouTube is to use another service, where licensing is not so restrictive;
one such service is VideoBin, hosted at http://www.videobin.org. In this part of the
task, we will look at how to upload and access content from this service.

1. Browse to http://www.videobin.org and click on Select File.. to browse to
your video and then click on Upload, as shown in the following screenshot:

2. VideoBin.org will display a running total for the conversion process:

3. Once converted, the video will be displayed on screen along with details regarding its
site, location, and time so that you can then embed the URL into your site at will, as
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

19

How it works...
YouTube has designed its upload process to be flexible and very easy to use. You can upload
any of the HTML5 format videos (such as the ones we created from Task 1) as well as AVI,
MPEG-PS, WMV, and FLV formats. When the file is uploaded, it is automatically transcoded
into WebM format—this is effectively a free version of the VP8 format developed by On2
Technologies, which was subsequently bought out by Google in 2010.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

20

There's more...
At this stage, you will have a perfectly working video hosted on YouTube that is available for
you to embed into your site in the normal manner.

However, if you go to Video Manager from within YouTube, you can edit the settings assigned
to this video such as Privacy, Video thumbnail, allowing Comments and ratings, depending
on your own preferences, as shown in the following screenshot. You can even set Google
Maps to show where you recorded your video!

In the second part of this task, we looked at using VideoBin.org—a free hosting service with
a less restrictive licensing arrangement than YouTube. Written using Python and Django,
converting videos through VideoBin.org has been designed to be kept simple, so that you
can concentrate on hosting your main content without the worry of the additional demand or
overheads of running a video on your own server. You will then be able to style your video player
as you wish, using styles that fit in with your site; we will see how to do this later in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

21

The key thing to bear in mind is the format used—while the upload process is deliberately
kept simple, you will notice a delay if the chosen video is not already using the Ogg Vorbis
format. All uploaded videos are transcoded from their original format to Ogg Vorbis using
ffmpeg2theora as part of the process.

In the next section, we will take a look at how to style your own video player, so that you can
use your own styles that will fit in with your site's appearance.

Up until now, we've concentrated on preparing our video for use with the HTML5 video tags.
Let us now turn our attention to how you can embed videos into your pages looking at the
following sections:

 f Comparing HTML5 video code with Flash

 f Embedding videos using HTML5

 f Adding more options to HTML5 video code

 f Adding support for videos using mime types and codecs

 f Support for cross-browser playback

 f Some examples of prebuilt video players

 f Adapting for iPads/iPhones/Android

All the screenshots, throughout this section (unless stated otherwise),
are taken from "Big Buck Bunny", movie available from the Peach Open
Movie Project; the video is (c) copyright 2008, Blender Foundation at
www.bigbuckbunny.org.

Embedding videos—the old school way
(must know)

We will begin this section with a timely reminder of how to embed videos into web pages using
the classic <embed> and <object> tags.

Getting ready
For this task, you will need to avail yourself of two videos—one in SWF format and the other
in WMV format. If you don't have any available at hand, there might be examples available
on the Internet. One such example is the trailer for "Big Buck Bunny", available from the
Peach Open Movie Project at http://www.bigbuckbunny.org/index.php/trailer-
page/. You might have to convert it to the proper formats required for this demo—a good
program to use for this is XMedia Recode, which is available at http://www.xmedia-
recode.de (German language).

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

22

How to do it...
1. Open up your favourite text editor and add the following code snippet—save this as

videotemplate.html; we will be reusing this in later tasks:
<!doctype html>
<html>
<head>
<title>Embedding a video using <embed> and <object> tags</title>
</head>
<body>
</body>
</html>

2. Add the following code snippet in between the <body></body> tags, replacing
example.swf and videofilename.wmv with the filenames of your chosen videos:
<!-- code for embedding windows media player -->
<object id="mediaplayer" width="192" height="190"
classid="clsid:22d6f312-b0f6-11d0-94ab-0080c74c7e95"
standby="Loading Windows Media Player components..."
type="application/x-oleobject">
<param name="filename" value="videofilename.wmv">
<param name="autostart" value="false">
<param name="showcontrols" value="true">
<param name="showstatusbar" value="false">
<param name="showdisplay" value="false">
<embed type="application/x-mplayer2" src="videofilename.wmv"
name="mediaplayer"
width="192" height="190" showcontrols="1" showstatusbar="0"
showdisplay="0" autostart="0"></embed>
</object>
<!-- code for embedding adobe quicktime -->
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/
cabs/flash/swflash.cab#version=6,0,40,0" width="468" height="60"
id="mymoviename">
<param name="movie" value="example.swf" />
<param name="quality" value="high" />
<param name="bgcolor" value="#ffffff" />
<embed src="example.swf" quality="high" bgcolor="#ffffff"
 width="468" height="60" name="mymoviename" align=""
 type="application/x-shockwave-flash"
pluginspage="http://www.macromedia.com/go/getflashplayer">
</embed>
</object>

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

23

This is an example of what you will see when using the Windows Media player code—I'm using
a copy of the "One Big Rabbit" video, available from the Peach Open Movie Project, as shown
in the following screenshot:

How it works...
The code embeds an instance of each of the Windows Media Player and Adobe QuickTime
plugins within the webpage; it uses the codebase attribute to reference the relevant plugin.
If a hash value is included in the URL provided for this attribute, then the browser will
compare this version with the one currently installed and either use it or download a more
recent version.

There's more...
The preceding code snippet highlights a couple of major drawbacks: the embed code doesn't
work in all browsers despite using the <embed> and <object> tags within the code block; it
also requires the use of external plugins in order to operate correctly.

In the next task, we will be looking at how the preceding code snippet can be simplified using
HTML5's <video> tag.

Embedding a video using HTML5 (become
an expert)

In the previous task, we had a look at how you would have had to embed videos before the
advent of HTML5. In this task, we will update the code to use the HTML5 equivalent version.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

24

Getting ready
For this task, you will need a copy of one of the videos we converted in Task 1 of the previous
section. For the purposes of this task, I'm going to use the WebM format version. You will also
need a copy of the videotemplate.html file saved from the previous task.

How to do it...
Crack open your usual text editor, load up a copy of the videotemplate.html file, and
then make the changes shown in the following code snippet:

<!doctype html>
<html>
<head>
<title>HTML5 Video Test</title>
</head>
<body>
<video>
 <source src="trailer_480p.webm" />
</video>
</body>
</html>

That's all you need to embed video—this will work perfectly in Firefox as shown in the
following screenshot:

But as we will see later in this section, it won't work in all browsers!

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

25

How it works...
The <video> attribute was designed as an attempt to standardize the HTML code required to
embed videos within browsers; the source tags act as a form of browser sniffing, selecting the
appropriate video format to play in the browser being used. In this instance, it will only display
in Google Chrome, Opera, and Firefox. Other browsers will show nothing—although IE9 and
Safari will play WebM format videos if third-party support has been added.

There's more...
If desired, you can reduce the code even further to its bare minimum—the following code will
have the same effect as that in the main task:

<!doctype html>
<html>
<head>
<title>HTML5 Video Test</title>
</head>
<body>
<video src="trailer_480p.webm" />
</body>
</html>

Extending the video code (should know)
The previous task took us through the basics of how to embed video into a web page using
the HTML5 <video> tag. However, there is a lot more functionality available with this tag,
such as providing controls, controlling the height or width, and adding a "poster" image. In this
task, we will take a look at some of this functionality.

Getting ready
For this task, you will need a copy of the code from the previous demo—we are going to alter it
to provide a more functional player.

How to do it ...
1. Open up a copy of the code from the previous demo in your usual text editor:

<!doctype html>
<html>
<head>
<title>HTML5 Video Test</title>
</head>

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

26

<body>
<video>
 <source src="trailer_480p.webm" />
</video>
</body>
</html>

2. The first change we're going to make is to specify a height and width for the video.
So, make the following change to the code to set up a defined area for the video:
<video width="720" height="400" >
 <source src="trailer_480p.webm" />
</video>

3. The next change concerns the lack of controls, which is easy to fix:
<video width="720" height="400" controls="controls" >
 <source src="trailer_480p.webm" />
</video>

4. Another change we can make, which makes for a more rounded experience, is to add
a poster image that will show whether the video is loading or the user has yet to click
on play:

<video width="720" height="400" controls="controls"
 poster="trailer_480p.jpg">
 <source src="trailer_480p.webm" />
</video>

How it works...
The code will work in a similar fashion to that of the previous task, but this time we've added
a request to show the standard browser controls for the <video> tag as well as asking it to
load an image as a "placeholder" before the video is played.

There's more...
There are some more tags that can be used when embedding HTML5 video as shown in the
following table:

Name of attribute Value Description of attribute
autoplay autoplay Specifies that the video will start playing as soon

as it is ready

loop loop Specifies that the video will start over again
every time it finishes playing

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

27

Name of attribute Value Description of attribute
muted muted Specifies that the audio output of the video

should be muted

preload auto

metadata

none

Specifies if and how the author thinks the video
should be loaded when the page loads

It is worth noting that these are available for use, although it is unlikely that you will want
to use them by default; a good example is the autoplay option, which can place an
unnecessary drain on bandwidth if not used carefully! (This is particularly true on iPhones,
which will ignore autoplay by default.)

You will also notice that although we've only added one command to display the controls,
the colors and design used will differ between browsers:

From top to bottom of the preceding screenshot, we have Internet Explorer, Safari, Google
Chrome, and Firefox.

Adding mime types (must know)
Now that we have set up the basic video code, it is time to try playing the video—in some
circumstances, you may find that browsers will not play videos correctly if it can't determine
the mime type to use. In this task, we implement an easy change to rectify this and allow
videos to play correctly.

Multi-Purpose Mail Extension (MIME) types are made up of two parts—a
type and a subtype—and are means to help define file types so that a
client PC can correctly interpret how to treat a file received from a server
via the Internet. For example, the HTML5 video formats used in this book
have the type of video, but the subtypes could be .ogg, .mp4, or .webm.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

28

Getting ready
For this task, we don't need anything except your text editor.

How to do it...
1. Crank up your favourite text editor and create a new text document. Save it as

.htaccess into the root folder of your website.

You may want to use quotes around the filename when saving it;
this forces your text editor to save it as that filename.

2. Add the following text and save the file:
AddType video/ogg .ogv
AddType video/mp4 .mp4
AddType video/webm .webm

3. Try playing the video now—hopefully, you may find nothing has changed, and that
the video still continues to play. The change you've made now ensures that anyone
playing the video will be able to play it properly depending on which browser they use.

How it works...
In most instances, browsers will usually play the right video. However, the HTTP protocol
doesn't know the concept of file extensions—this means you cannot rely on a browser
being able to play the right video all of the time. To get around this, we add in this small
configuration change, so that the browser is able to correctly determine the file format from
the extension and play the video.

There's more...
As you will see later in this section, when we adapt the video code for use with other platforms,
some platforms don't like the use of the type command within the video code. Using an
.htaccess file may not appeal to some, but is a useful way to get around this issue.

Adding cross-browser support (should know)
In all of the tasks so far, we've looked at support for one video using the WebM format. While
this is arguably one of the better formats that is unencumbered with patents (being open
source), it means that playback will be limited by default to Opera and Chrome as the other
browsers don't support this format by default. In this task, we will take a look at modifying our
code to make it work across multiple platforms.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

29

Getting ready
For this task, you need to avail yourself of a copy of the code from the Extending the video
code task as we are going to make some changes to this code. Other than this, make sure
you have copies of your video in MP4 and OGG formats (while the latter format is not used
as much, we will still include it in our code).

How to do it...
1. The first step is to crack open your text editor of choice and load up a copy of the

code from the Extending the video code task:
<!doctype html>
<html>
<head>
<title>HTML5 Video Test</title>
</head>
<body>
<video width="720" height="400" controls="controls"
 poster="trailer_480p.jpg">
 <source src="trailer_480p.webm" />
</video>
</body>
</html>

2. The first step is to add support for the MP4 format (used by all browsers except
Firefox and Opera), so alter your code as follows:
<video width="720" height="400" controls="controls"
 poster="trailer_480p.jpg">
 <source src="trailer_480p.webm" />
 <source src="trailer_480p.mp4"; type="video/mp4" />
</video>

3. We're also going to add in support for OGG format videos:
<video width="720" height="400" controls="controls"
 poster="trailer_480p.jpg">
 <source src="trailer_480p.webm" />
 <source src="trailer_480p.mp4" />
 <source src="trailer_480p.ogv" type="video/ogg" />
</video>

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

30

4. The eagle-eyed amongst you will spot that the type and codec settings for the WebM
format are not present, so let's correct that now:
<video width="720" height="400" controls="controls"
 poster="trailer_480p.jpg">
 <source src="trailer_480p.webm" type="video/webm" />
 <source src="trailer_480p.mp4" type="video/mp4" />
 <source src="trailer_480p.ogv" type="video/ogg" />
</video>

How it works...
The reason for specifying a number of different sources is to allow the browser to pick the
right video to play; not all formats are compatible with all browsers. You will see that we've
also specified the MIME types for each video format; this is to help the browser to decide
whether it can play that video and also which format the video should be played in. If a MIME
type is not specified, then the browser has to start downloading it in order to find out whether
it can play the video; this can be wasteful of bandwidth.

Adding codec definitions (must know)
Throughout most of this section, we've looked at code that will allow you to play a number of
different videos. In most cases, the browser will work out automatically which video to play; in
some instances, it may not get it right or refuse to play any of the videos listed in the code. In
this task, we take a look at how to specify a codec for each video, which will help the browser
determine how to play the chosen video properly.

Getting ready
All we need for this is a copy of the code from the previous task—the codecs should already
be present on your PC if you installed them in the first section of this book.

How to do it...
1. The first step is to crack open your text editor of choice and load up a copy of the

code from the Adding cross-browser support task:
<!doctype html>
<html>
<head>
<title>HTML5 Video Test</title>
</head>

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

31

<body>
<video width="720" height="400" controls="controls"
 poster="trailer_480p.jpg">
 <source src="trailer_480p.webm" type="video/webm" />
 <source src="trailer_480p.mp4" type="video/mp4" />
 <source src="trailer_480p.ogv" type="video/ogg" />
</video>
</body>
</html>

2. The next step is to add support for the MP4 format (used by all browsers except
Firefox and Opera), so alter your code as follows:
<video width="720" height="400" controls="controls"
 poster="trailer_480p.jpg">
 <source src="trailer_480p.webm" />
 <source src="trailer_480p.mp4" type="video/mp4;
 codecs='avc1.42E01E, mp4a.40.2'" />
</video>

3. We're also going to add in support for OGG format videos as follows:
<video width="720" height="400" controls="controls"
 poster="trailer_480p.jpg">
 <source src="trailer_480p.webm" />
 <source src="trailer_480p.mp4" type='video/mp4;
 codecs="avc1.42E01E, mp4a.40.2"' />
 <source src="trailer_480p.ogv" type='video/ogg;
 codecs="theora, vorbis"' />
</video>

4. The eagle-eyed amongst you will spot that the type and codec settings for the WebM
format are not present, so let's correct that now:
<video width="720" height="400" controls="controls"
 poster="trailer_480p.jpg">
 <source src="trailer_480p.webm" type='video/webm;
 codecs="vp8, vorbis"' />
 <source src='trailer_480p.mp4; type='video/mp4;
 codecs="avc1.42E01E, mp4a.40.2"' />
 <source src='trailer_480p.ogv; type='video/ogg;
 codecs="theora, vorbis"' />
</video>

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

32

How it works...
Working with codecs, particularly within the HTML5 arena, can open up a real minefield of
confusion. The key to understanding it is that enabling codec support increases the likelihood
that a browser will be able to correctly determine whether it is able to play that particular
video correctly.

In the previous code, I've specified some typical codecs that can be used—while the codecs
for WebM and Ogg are straightforward, the one for MP4 (or MPEG-4) is less so; the codec
used here represents the Baseline profile for H.264 and the Low-complexity profile for AAC.

You can use other higher-level profiles but these will demand more CPU
processing power to decode, although they will be better compressed.

There's more...
It is perfectly possible to use a number of different codecs with particular video types—one
good example is the MP4 format. Care should be exercised when choosing an appropriate
codec. If one is chosen that is not a popular codec, then it is possible that the video may
not play. The reason for this is that if the browser recognizes the file type (either inline in the
code or via the .htaccess file), but doesn't "see" the appropriate codec installed, it will then
refuse to play the video.

Providing fallback support (should know)
A key part of using the HTML5 <video> tag is that while the format is still evolving as a
standard, it is still necessary to provide some form of fallback support for older browsers that
cannot support the tag. In this task, we will look at providing that support.

Getting ready
In order to get the best out of this task, you will need to avail yourself of some means to be
able to view your video pages within an older browser. There are several ways to achieve this,
depending on which browser you choose:

 f Adobe BrowserLab: This will allow testing in various versions of IE, Chrome, Safari,
and Firefox.

 f Firefox Portable (http://portableapps.com/apps/internet/firefox_
portable): This will allow you to install a standalone version of Firefox, which
won't affect any existing profiles on your PC. Legacy versions are available for
older browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

33

 f For Internet Explorer: The best option here is to try using IETester; this has versions
of IE built in all the way from 5.5 up to version 9. This is available for download from
http://www.my-debugbar.com/wiki/IETester/HomePage.

 f Lunascape 6 (from http://www.lunascape.tv/): This is a triple-engined
browser with support for Trident (IE), Gecko (Firefox), and Webkit (Chrome and
Safari)-based browsers.

How to do it...
1. To begin, open up your favourite text editor and copy in the following code snippet:

<!doctype html>
<html>
<head>
<title>HTML5 Video Test</title>
</head>
<body>
<video width="720" height="400" controls="controls"
 poster="trailer_480p.jpg">
 <source src="trailer_480p.webm" type="video/webm" />
 <source src="trailer_480p.mp4" type="video/mp4" />
 <source src="trailer_480p.ogv" type="video/ogg" />
</video>
</body>
</html>

2. Over the following three steps, we will create a fair amount of code beginning with the
embedding of the <object> tag. Add in the following section of code immediately
below the last <source> tag:
<object type="application/x-shockwave-flash"
 data=flashfox.swf" width="720" height="400"
 style="position:relative;">
 <param name="movie" value="flashfox.swf" />
 <param name="allowFullScreen" value="true" />
 <param name="flashVars" value="autoplay=true&controls=true&a
mp;loop=true&src=trail
 er_480p.mp4" />

3. We also need to add in the equivalent using the <embed> tag immediately afterwards:
<embed src="flashfox.swf" width="720" height="400"
 style="position:relative;"
 flashVars="autoplay=true&controls=true&
 loop=true&poster=trailer_480p.jpg&src=trailer_480p.mp4"
 allowFullScreen="true" wmode="transparent"
 type="application/x-shockwave-flash"
 pluginspage="http://www.adobe.com/go/
getflashplayer_en" />

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

34

4. The last stage is to add in a background image, and fall-back text; we then finish with
the closing </object> tag:

<img alt="trailer_480p" src="trailer_480p.jpg"
 style="position:absolute;left:0;" width="720"
 height="400" title="Video playback is not supported
 by your browser" />
</object>

How it works...
The aim of the code is to provide fallback support for displaying a Flash-equivalent movie;
this is achieved by using a SWF-based container from which we run the MP4 file that would
otherwise be run from within the <video> source tags. We also include a plain image and set
a title attribute for it—this will be the "last-call" route that the browser will take if it is unable to
play any of the videos listed within the code.

There's more...
While the previous code will work as a fall-back for the HTML5 video, there are some points
to note:

1. The <embed> tag is actually not a valid tag—it was designed to provide support for
Netscape browsers in the early days, but more modern versions do support the
<object> tag. The <object> tag was designed to provide support for IE browsers.

2. The <object> tag is valid within HTML5—as a minimum, this should be used when
providing fall-back support; I have provided an example for using the <embed> tag as
well, although this is optional.

If you are unfamiliar with any of the options for the <object> and <embed> tags, have a look
at http://helpx.adobe.com/flash/kb/flash-object-embed-tag-attributes.
html, which has a handy list of the attributes for each tag.

Adapting for iPads/iPhones/Android
(should know)

Throughout this chapter, we've looked at the various elements required to play back HTML5
video in your pages. Whilst the code will work in modern desktop browsers, it will likely fail on
handheld devices—we are going to rectify this in our next task.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

35

Getting ready
For this task, you will need to ensure that you have videos that are of a suitable size for playback
on mobile devices; you can try using a free conversion service such as Online-Convert.com at
http://www.online-convert.com to convert the videos down to a preset size depending
on which platform(s) you want to support.

How to do it...
1. Open up your text editor of choice and add in the following lines replacing

trailer_480p with the name of your video:
<!doctype html>
<html>
<head>
<title>HTML5 Video Test</title>
</head>
<body>
<video width="720" height="400" controls="controls"
poster="trailer_480p.jpg">
 <source src="trailer_480p.webm" type="video/webm" />
 <source src="trailer_480p.mp4" type="video/mp4" />
 <source src="trailer_480p.ogv" type="video/ogg" />
</video>
</body>
</html>

2. The first change we need to make is to the poster—iOS 3.x doesn't like the poster
attribute, so unfortunately this needs to be removed:
<video width="720" height="400" controls="controls">

3. iOS 3.x is fussy about the order in which the videos appear—as it (and other
handheld devices) can only play back MP4 format videos, this needs to appear
as the first video source:
<video width="720" height="400" controls="controls">
 <source src="trailer_480p.mp4" type="video/mp4" />
 <source src="trailer_480p.webm" type="video/webm" />
 <source src="trailer_480p.ogv" type="video/ogg" />
</video>

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

36

4. Android < 2.3 doesn't like the type attribute, so we need to remove it from the MP4
source tag (the only container Android currently supports). Here, the type attribute
has been removed and the relevant codecs for the other two video source tags have
also been added:

<video width="320" height="240" controls>
 <source src="vid.mp4">
 <source src="trailer_480p.webm" type='video/webm;
 codecs="vp8, vorbis"'>
 <source src="trailer_480p.ogv" type='video/ogg;
 codecs="theora, vorbis"'>
</video>

How it works...
The changes made in this task are designed to get around some browser or OS quirks that
still exist as well as the (still) limited support for video formats on the mobile platform. This
task highlights one of the reasons HTML5 video can still be confusing for some—this is still
largely due to HTML5 being an emerging technology for which support is still evolving.

The key to this task is that while the changes required are simple to make, you should expect
to have to make changes in the future, until HTML5 for the mobile platform has matured. For
example, as you will have seen from this task, support only exists for the MP4 format for most
mobile platforms—this is likely to remain until mobile devices appear with hardware decoders
for the WebM format built in. When this happens, it would mean that there would be no need
to have to include the MP4 format as the first source; it is likely that the order would then not
matter, although that is up to the mobile device manufacturers!

If you are interested in the state of developments for the WebM project
and particularly in respect of hardware support, then it is worth reading
the WebM blog at http://blog.webmproject.org.

Setting up VideoJS—an example player
(become an expert)

Throughout this section, we've had a look at the code required to produce a basic HTML5
video player on a web page as well as the options available for configuring the player. For this
task and the next, we are going to look at a couple of examples of pre-built players that are
available for download from the Internet - namely VideoJS and Kaltura. Both are open-source
applications, and are available at no cost.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

37

Getting ready
For this, we don't actually need to download any files—VideoJS is one of those rare players
that is available on a Content Delivery Network (CDN); it is enough to link to the files for the
purpose of this task.

How to do it...
1. Crank up your text editor and add the following code snippet:

<!doctype html>
<html>
<head>
<title>HTML5 Video Test</title>
</head>
<body>
</body>
</html>

2. Let's begin adding in the JavaScript library and CSS calls in your <head> tags:
<link href="http://vjs.zencdn.net/c/video-js.css"
rel="stylesheet">
<script src="http://vjs.zencdn.net/c/video.js"></script>

3. The bulk of the code required to run the player is very similar to the code we've
used throughout this section—the differences have been highlighted:
<video id="my_video_1" class="video-js vjs-default-skin"
 controls preload="auto" width="720" height="400"
 poster="trailer_480p.jpg" data-setup="{}">
 <source src="trailer_480p.mp4" type='video/mp4'>
 <source src="trailer_480p.webm" type='video/webm'>
</video>

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

38

If all is well, you will have a video playing similar to the following screenshot:

How it works...
The player uses very similar code to that we've used throughout this section—the styling
however has been customized using additional CSS and JavaScript (similar to what we will
see in the next section). This means that a consistent style can be used throughout most (if
not all) platforms, which is infinitely preferable to the mix of styles you will otherwise see if you
are not using the same styles on all platforms! The added benefit here is that because the JS
and CSS files are hosted on a CDN, you don't need to worry about updating the code as this is
done for you automatically. The code can also be downloaded separately if you prefer to host
it locally.

If you want to try out a few designs, visit http://www.kaltura.org/
apis/html5lib/kplayer-examples/Player_Themable.html—this
has a standalone player linked to jQuery UI's ThemeRoller, where you can
choose different styles. Note: if you change to a different theme in the gallery,
give it about five seconds to refresh the screen before continuing

Setting up Kaltura video—an example player
(become an expert)

In this task, we're going to take a look at the second of two example video players, which is
the Kaltura open-source video player. The software is available at http://www.kaltura.
org/project/HTML5_Video_Player, and can be used from a CDN link or a version
downloaded locally.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

39

Getting ready
Kaltura's Video Player is available from a CDN link—we'll be using this as part of the task,
so we don't need anything extra for this task.

How to do it...
1. Open up your text editor of choice and insert the following code snippet:

<!DOCTYPE HTML>
<html>
<head>
 <title> Sample Fallback Player </title>
</head>
<body>
<div></div>
</body>
</html>

2. We start by adding in the call to jQuery and the Kaltura library:
<head>
 <title> Sample Fallback Player </title>
 <script type="text/javascript"
 src="http://html5.kaltura.org/js"></script>
</head>

3. We need a container within which we hold the video, so go ahead and alter the
<div> tag as follows:
<body>
<div id="videoContainer" style="width:500px;height:300px;">
</div>

4. The final stage is to add in the code that calls the videos:

<div id="videoContainer" style="width:500px;height:300px;">
<video id="vid1" width="480" height="267" durationHint="33"
poster="trailer_480p.jpg">
 <source type="video/webm" src="trailer_480p.webm" />
 <source src="trailer_480p.mp4"/>
 <source src="trailer_480p.ogv" />
 </video>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

40

If all is well, you will see something similar to the following screenshot:

How it works...
The video player works by reusing the standard format code for <video>, but deploying CSS
and some JavaScript to redesign the controls using progressive enhancement principles.
Using jQuery UI, this gives the player a consistent theme across all browsers; the theme used
can be altered at will using the Theme Roller applet as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

41

Unlike some players that rely on JavaScript to specify the video to play, Kaltura's video will
still play if JavaScript is disabled as it will use the standard browser controls—this is known
as progressive enhancement.

If you would like to learn more about jQuery UI Theme development, it
is worth having a look at jQuery UI Theme Development—A Beginner's
Guide, by Adam Boduch.

So far, we've looked at how you can embed video using the <video> tags, as well as adapting
your web pages to cater for video playback through a number of different browsers. In this
section, we will focus on how you can write your own video player by looking at the following:

 f Building and packaging your own video player using jQuery

 f Adding controls to your video player

 f Styling your video player and providing a color theme

 f Inserting subtitles

 f Providing fall-back support using a jQuery polyfill

 f Displaying video through an Overlay

For the purposes of each task, we're using the trailer videos for the
open-source movie, "The Big Bunny", available from the Peach Open
Movie Project at http://www.bigbuckbunny.org/index.
php/trailer-page/. The videos are © copyright 2008, Blender
Foundation/www.bigbuckbunny.org, unless otherwise indicated.

Building the video player—the framework
(must know)

In the previous section, we took a look at the basic HTML code required to play videos using
the <video> tag, and how it was crucial to include multiple sources to allow play back
through a number of different platforms. In this task, we are going to take a copy of that code
and extend it, in preparation for developing our own player.

Getting ready
All you need for this task is your favorite text editor, and copies of the videos we converted
earlier in this book—the rest will be added during the task.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

42

How to do it...
1. Create a new folder for storing your demo—call it video demo. Open up the folder,

and create the following new folders: js, css, media, and images.

2. Crack open the text editor of your choice, and add in the following lines:
<!doctype html>
<html>
<head>
<title>HTML5 Video Plugin Test</title>
</head>
<body>
<video controls="controls" poster="trailer_480p.jpg">
 <source src="media/trailer_480p.ogv" type="video/ogv" />
 <source src="media/trailer_480p.mp4" type="video/mp4" />
 <source src="media/trailer_480p.webm" type="video/webm" />
</video>
</body>
</html>

3. Save this as videoplayer.html in the root of the video demo folder—we now
need to set up the basic framework ready for the jQuery plugin, so create a new blank
document, add in the following lines, and save that document as videoplayer.js.
This will be used later in this section:
(function($) {
 $.fn.oPlayer = function(options) {
 return this.each(function() {
 });
 };
})(jQuery);

4. We also need to alter the HTML structure to add in the framework for customizing the
controls—first, add in this (noting the addition of an ID for the video control):
<body>
 <div class="video_player">
 <video controls="controls" id="mainvideo"
 poster="media/trailer_480p.jpg" >
then alter the code accordingly:
 </video>
 <div class="custom_controls"></div>
 </div>
</body>

If all is well, the browser will play the video when viewed in a browser using the inbuilt context
menu controls.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

43

How it works...
We've taken a copy of the original HTML required to display videos using the HTML5 <video>
tag and set it up with the names of the videos we will use, depending on which browser the
page is viewed in. We've also created a blank template for the jQuery plugin that we will start
to develop over this section. We've altered the code to allow for some changes that will be
required for later tasks such as adding in the custom controls. You may also notice that there
are no controls showing by default—this is because we've added in our own custom controls
placeholder, but as there is nothing included within them, nothing will show!

Adding controls to your player (must know)
The first task of this section was quite a lengthy one, which was necessary so that we could
add in the base framework required to display the video using our custom player. It's now time
to add in the code for the custom controls—this will provide the framework for the play and
pause buttons, as well as a slider for seeking, and a button for controlling the volume.

Getting ready
For this task, as we are only adding code, all we need is our text editor.

How to do it...
1. Open up the videoplayer.html file saved from the previous task, and add in the

following code below the </video> closing tag. We start with the play, pause, and
time slider placeholder elements:
<div class="custom_controls">

<div class="time_slider"></div>

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

44

2. We then continue with the time placeholder elements:
<div id="time">
 00:00:00 /
 00:00:00
</div>

3. We finish with the volume control element:

<div class="volume">
 <div class="volume_slider"></div>

 </div>
</div>

How it works...
If we are using the <video> tags in HTML, then the browser will provide its own set of
controls. However, as seen in the previous section, these controls will differ depending on
which browser is used—they will not all be the same. The purpose of this section is to begin
to create our own controls, so that we can provide a consistent appearance, no matter which
browser you use to view the videos. There will be scope for you to add additional ones once
you get more familiar with building players. A good example is the ability to show an icon that
changes depending on what position the volume control has been set.

Styling your video player (should know)
If you've tried to play your video at any stage during the first two tasks in this section, you will
note that it doesn't look that professional, and also requires you to control it using the context
menu—this isn't really user-friendly, is it? We're going to change that in this task by adding in
some basic styles.

Getting ready
Before we can add any code, you need to avail yourself of some icons—there are some
included with the code download for this book, or you can try looking on the Internet. You
can try something like the icons created by Kevin Andersson, available from http://www.
tabsicons.com/classic/#tabs_free. You will also notice from the CSS style code in
this task that I've used sprites, along with CSS to position them—this results in a smoother
result as the image is already cached. To create your sprite, you can use the free online
service at http://www.csssprite.com; you will need to rename your resulting file
accordingly—the site gives you the CSS required once the images have been converted.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

45

We also need to add in images for the volume background as well as the playback seeker
handle—again, you will need to look for suitable images on the Internet or you can use the
ones included in the code download for this book.

Note that I've split this recipe into two parts for the sake of clarity—this will
help show you which parts are obligatory and which can be styled as desired.

How to do it...
1. Open up your text editor and load up the result from the previous task—you should

have this in your editor:
<!DOCTYPE html>
<html>
 <head>
 <title>HTML5 Video Plugin Test</title>
 </head>
 <body>
 <div class="video_player">
 <video controls="controls" id="mainvideo"
 poster="media/trailer_480p.jpg" >
 <source src="media/trailer_480p.ogv"
 type="video/ogg" />
 <source src="media/trailer_480p.mp4"
 type="video/mp4" />
 <source src="media/trailer_480p.webm"
 type="video/webm" />
 </video>
 </div>
 <div class="custom_controls">

 <div class="time_slider"></div>
 <div id="time">
 00:00:00 /
 00:00:00
 </div>
 <div class="volume">
 <div class="volume_slider"></div>

 </div>
 </div>
 </body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

46

2. Create a new blank file and save it as videoplayer.css into the css folder (from
the first task). Add the following into your header area:
<link href="css/videoplayer.css" rel="stylesheet" type="text/
css" />

3. We now need to add in the CSS styles to the videoplayer.css file—there are
a fair few required, so we will look at each section in turn, beginning with the
basic containers:
#mainvideo { width: 800px; }
.video_player { width: 800px; }
.video_player .custom_controls { background-color: #fcfcfc;
 clear: both; height: 23px; left: 20px; padding: 5px;
 position: relative; top: -50px; width: 90%; }

4. We now focus on providing the play and pause buttons, so add in the following:
.play, .pause, .volume, .time_slider, .timer {float: left; }
.play, .pause, .mute, .unmute { cursor: pointer; }
.play, .pause { display: block; height: 24px; margin-left: 5px;
margin-right: 15px; opacity: 0.8; width: 33px;
 background: url(../images/playpause-icon.png) no-repeat;

 transition: all 0.2s ease-in-out;
 -moz-transition: all 0.2s ease-in-out;
 -webkit-transition: all 0.2s ease-in-out;
 -o-transition: all 0.2s ease-in-out;
}
.play { background-position: 0 0; }
.pause { background-position: 0px -32px; display: none; }
.play:hover, .pause:hover { opacity: 1; }

5. The next item to add is a slider and handle for controlling our position in the video:
.ui-slider-handle { display: block; margin-left: -9px;
 position: absolute; z-index: 2; }
.ui-slider-range { bottom: 0; display: block; height: 100%;
 left: 0; position: absolute; width: 100%; z-index: 1; }
.time_slider { border: 1px solid #444; height: 10px; width:
 470px; margin-top: 5px; position: relative;
 border-radius: 15px 15px 15px 15px;
 -webkit-border-radius: 15px 15px 15px 15px;
 -moz-border-radius: 15px 15px 15px 15px;
 box-shadow: 0 -3px 3px #333 inset;
 -webkit-box-shadow: 0 -3px 3px #333 inset;
 background: -moz-linear-gradient(center top , #555, #333)
 repeat scroll 0 0 #555;
 background: -webkit-linear-gradient(center top , #555,

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

47

#333) repeat scroll 0 0 #555;
 background: -o-linear-gradient(center top , #555, #333)
 repeat scroll 0 0 #555;
 background: -ms-linear-gradient(center top , #555, #333)
 repeat scroll 0 0 #555;
}
.time_slider .ui-slider-handle { cursor: pointer; top: -2px;
 background: url(../images/handler.png) no-repeat;
 height: 16px; opacity: 0.8; width: 16px; }
.time_slider .ui-slider-handle.ui-state-hover { opacity: 1; }
.time_slider .ui-slider-range { border-radius: 5px; -moz-
 border-radius: 5px; -webkit-border-radius: 5px; }

6. We now need to adjust the styles used for the total playback time and time elapsed,
so go ahead and add in this:
#time { color: #999999; font-weight: bold; margin-top: 5px;
 font-size: 0.7em; }
.timer { margin-left: 10px; margin-right: 5px; }

7. Unless we want to become prematurely deaf, we need some means to control the
volume, so let's fix that now:
.volume { bottom: 0; color: #fff; height: 35px; overflow:
 hidden; padding: 5px 10px 0; position: absolute; right: 0;
 width: 33px; }
.volume:hover { background: url(../images/volume.png) no-
 repeat scroll 8px 0 transparent; height: 161px; }
.volume_slider { height: 105px; left: -1px; opacity: 0;
 position: relative; width: 33px; }
.volume:hover .volume_slider { opacity: 1; }
.volume_slider .ui-slider-handle { opacity: 0.8; width: 14px;
 background: url(../images/handler.png) no-repeat;
 height: 15px; left: 9px; margin-bottom: -15px; margin-left:
 0; }
.volume_slider .ui-slider-handle.ui-state-hover { opacity: 1; }

8. We need some means to automatically mute or un-mute our video, so go ahead and
add in the following, which will take care of this:
.mute, .unmute { bottom: 7px; display: block; height: 23px;
 opacity: 0.8; position: absolute; text-indent: -999px;
 width: 33px; background: url(../images/volumefullmute-
 icon.png) no-repeat; }
.mute:hover, .unmute:hover { opacity: 1; }
.mute { background-position: 0px 0px; }
.unmute { background-position: 0px -32px; display: none; }

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

48

9. The last stage is to add a button that allows us to control the stopping and starting
of the video by simply clicking on the video itself. We will be adding in jQuery code
later to enable this functionality, but for now, add in the following:
.video-overlay { background: url("../images/button.png")
 no-repeat scroll 50% 50% rgba(0, 0, 0, 0.4); cursor:
 pointer; display: block; height: 100%; left: 0; position:
 absolute; top: 0; width: 100%; }

10. If all is well, we will end up with something like this, although the functionality won't
work until we've added in the jQuery code:

A recap…
In the previous tasks, we've focused on providing a basic style to the video controls as well as
adding the requisite functionality for controlling the video through jQuery. A big drawback with
the styles that we've looked at is that they are not terribly attractive; this is something we can
easily fix by adding in the final styling code, which we will do now.

1. Create a blank file called videoplayerstyles.css and store this file in a
subfolder called css, to which we will put a reference in our code using this line:
<link href="css/videoplayerstyles.css" rel="stylesheet"
type="text/css" />

2. We begin by adding in a short block of CSS, which will act as a reset on the
base styles:
.video_player .custom_controls { background-color: #000;
 left: -5px; top: 0px; clear: both; height: 30px;
 padding-top: 8px; position: relative; width: 100%; }

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

49

3. We can now begin to style the main video container:
.video_player { border: 5px solid #61625D; float: left;
 font-family: Arial,Helvetica,sans-serif; padding: 10px;
 position: relative;
 border-radius: 5px 5px 5px 5px;
 -webkit-border-radius: 5px 5px 5px 5px;
 -moz-border-radius: 5px 5px 5px 5px;
 box-shadow: 0 15px 35px #535353 inset;
 -webkit-box-shadow: 0 15px 35px #535353 inset;
 background: -moz-linear-gradient(center top , #333, #000)
 repeat scroll 0 0 #000;
 background: -webkit-linear-gradient(center top , #333,
 #000) repeat scroll 0 0 #000;
 background: -ms-linear-gradient(center top , #333, #000)
 repeat scroll 0 0 #000;
 background: -o-linear-gradient(center top , #333, #000)
 repeat scroll 0 0 #000;
}

4. We need to provide a visual means to control the sliders by using a handle icon:
.time_slider .ui-slider-handle { opacity: 0.8; width: 16px;
 background: url("../images/handler.png") no-repeat scroll
 0 0 transparent; cursor: pointer; height: 16px; top: -
2px; }

5. It's time now to add some color and style to the seeker control that allows you to
control where you are in the video playback:
.time_slider .ui-slider-range {
 border-radius: 5px 5px 5px 5px;
 -webkit-border-radius: 5px 5px 5px 5px;
 -moz-border-radius: 5px 5px 5px 5px;
 background: -moz-linear-gradient(center top , #434, #778)
 repeat scroll 0 0 #434;
 background: -moz-linear-gradient(center top , #434, #778)
 repeat scroll 0 0 #434;
 background: -moz-linear-gradient(center top , #434, #778)
 repeat scroll 0 0 #434;
 background: -moz-linear-gradient(center top , #434, #778)
 repeat scroll 0 0 #434;
}

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

50

6. If all is well, we should now have a more stylish player, albeit one that won't fully work
(just yet)—here's a screenshot of one I prepared earlier:

How it works...
Phew! That was a mammoth task! We've looked at a number of different styles in this task,
with the key aim of designing something that displays a basic set of controls, and which can
be customized at a later date. You will note also from the first screenshot in this recipe that
there appears to be two sets of controls—the top one is the set of controls being styled by the
code from this section; the bottom one (partially hidden), is the default set of controls shown
by the browser.

The first part of this code overrides the original .video_player .custom_controls
CSS style; this is designed on the principle of progressive enhancement, where removing
the new theme file will still allow the base style to be used. We've added some additional
styles to give some color to the background container as well as the volume slider and
volume handle.

We've also delved into the CSS required to set up styles for each element, such as volume
control, a playback button, a pause button (not shown yet), and others—while you will find that
these are yet to done, we've laid down the groundwork for the next task, which is to add in the
jQuery functionality!

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

51

There's more...
Now that we have split the CSS styles into two separate files (one for the base appearance
and one for the theme), we can play with the colors used on the seeker controls. You can
replace the .time_slider .ui-slider-range style with any number of different
colors—the choice is entirely up to you. A good source of color choices is in the themes
offered as part of jQuery UI—try this blue-green color code as an example:

.time_slider .ui-slider-range {
 background: -moz-linear-gradient(center top , #2C4359,
 #E1E463) repeat scroll 0 0 #2C4359;
 background: -webkit-linear-gradient(center top , #2C4359,
 #E1E463) repeat scroll 0 0 #2C4359;
 background: linear-gradient(center top , #2C4359, #E1E463)
 repeat scroll 0 0 #2C4359;
 background: -o-linear-gradient(center top , #2C4359,
 #E1E463) repeat scroll 0 0 #2C4359;
 border-radius: 5px 5px 5px 5px;
 -webkit-border-radius: 5px 5px 5px 5px;
 -moz-border-radius: 5px 5px 5px 5px;
}

Adding the jQuery functionality (must know)
So far, we've focused on providing some basic controls, and have added a set of rudimentary
styles—as you've already seen from the screenshot, it doesn't look pretty, but it serves a
functional purpose. We will develop this into a basic theme, but before doing this, we need to
finish adding the jQuery functionality that will make the player work—this is the subject of this
next task.

Getting ready
We need to retrieve a copy of the videoplayer.js file that we created earlier, so go
ahead and load this into your normal text editor. Other than this, there isn't anything else
required—we will add the necessary code as part of the task. I will assume that you're still
using the files from previous demos—if this is not the case then please alter this accordingly.

Throughout this section, it is assumed you have some familiarity with
creating jQuery plugins—if you want to delve into this more, then you may
like to take a look at another Packt book, jQuery Plugin Development
Beginner's Guide, by Giulio Bai.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

52

How to do it...
1. The first change you need to make is in the <header> section of videoplayer.

html—go ahead and add in this:
<script type="text/javascript"
 src=" http://code.jquery.com/jquery-1.7.2.min.js"></script>
<script type="text/javascript"
 src="https://ajax.googleapis.com/ajax/libs/jqueryui/1.8.18/
 jquery-ui.min.js"></script>

2. In our plugin file, videoplayer.js, we need to add in a number of variables that
are required for controlling various different elements of the player, so go and add
in the following code:
(function($) {
 $.fn.oPlayer = function(options) {
 return this.each(function() {
 // variables
 var $oMain = $(this);
 var $oVideo = $('video', $oMain);
 var $oPlay = $('.play', $oMain);
 var $oPause = $('.pause', $oMain);
 var $oTimeSlider = $('.time_slider', $oMain);
 var $oTimer = $('.timer', $oMain);
 var $oVolSlider = $('.volume_slider', $oMain);
 var $oMute = $('.mute', $oMain);
 var $oUnmute = $('.unmute', $oMain);
 var $oOverlay = $('.video-overlay', $oMain);
 var bTimeSlide = false;
 var iVolume = 1;
 var $oDuration = $('.duration', $oMain);
 });
 };
})(jQuery);

3. We now need to add in a function that will prepare the volume control, ready to
display it on screen, so add in the following code snippet immediately below the
last variable from the previous step:
var prepareTimeSlider = function() {
 if (! $oVideo[0].readyState) {
 setTimeout(prepareTimeSlider, 1000);
 } else {
 $oTimeSlider.slider({
 value: 0,
 step: 0.01,

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

53

 orientation: 'horizontal',
 range: 'min',
 max: $oVideo[0].duration,
 animate: true,
 slide: function() {
 bTimeSlide = true;
 },
 stop:function(e, ui) {
 bTimeSlide = false;
 $oVideo[0].currentTime = ui.value;
 }
 });
 };
};

4. Now that the basics are in place, let's turn our focus to making the controls work.
We'll start with the most important, which are the play and pause buttons, so go
ahead and add in this code:
$oPlay.click(function () {
 $oVideo[0].play();
 $oPlay.hide();
 $oPause.css('display', 'block');
 $oOverlay.fadeOut();
});
$oPause.click(function () {
 $oVideo[0].pause();
 $oPause.hide();
 $oPlay.css('display', 'block');
 $oOverlay.fadeIn();
});

5. The next two options will control the sound—here's the code for muting and
un-muting the video:
$oMute.click(function () {
 $oVideo[0].muted = true;
 $oVolSlider.slider('value', '0');
 $oMute.hide();
 $oUnmute.css('display', 'block');
});
$oUnmute.click(function () {
 $oVideo[0].muted = false;
 $oVolSlider.slider('value', iVolume);
 $oUnmute.hide();
 $oMute.css('display', 'block');
});

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

54

6. Your users will expect to be able to click on the video to pause and play it at will—let's
fix that by adding in a function to cover this:
$oVideo.click(function () {
 if($oVideo[0].paused) {
 $oPlay.click();
 } else {
 $oPause.click();
 }
 return false;
});

7. The basic player will now work perfectly OK, although there will be elements that
won't function at all—one of these will be the right-click context menu. Let's fix that
now, starting with the play option:
$oVideo.on("play", function() {
 $oPlay.click();
});

then continuing with the pause option:
$oVideo.on("pause", function() {
 $oPause.click();
});

8. This next function will rectify another element that is not quite right—when the video
finishes, we need to reset the controls back to play, so that the next person can start
the video:
$oVideo.bind('ended', function() {
 $oVideo[0].pause();
 $oPause.hide();
 $oPlay.css('display', 'block');
});

9. Our next function takes care of updating the time controls on the player:
$oVideo.bind('timeupdate', function() {
 var iNow = $oVideo[0].currentTime;
 $oTimer.text(rectime(iNow));
 if (! bTimeSlide)
 $oTimeSlider.slider('value', iNow);
});

10. We do need to know how long the video will be, so let's add in the code that will
display this on screen:
$oVideo.on("canplay", function() {
 $oDuration.text(rectime($oVideo[0].duration));
});

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

55

11. While we now have the ability to turn the volume on or off, it will make for a better
experience if we can provide finer control, so let's add that in now:
$oVolSlider.slider({
 value: 1,
 orientation: 'vertical',
 range: 'min',
 max: 1,
 step: 0.02,
 animate: true,
 slide: function(e, ui) {
 $oVideo[0].muted = false;
 iVolume = ui.value;
 $oVideo[0].volume = ui.value;
 }
});

12. Finally, we need to initialize the Time slider, and remove the default controls that show:
prepareTimeSlider();
$oVideo.removeAttr('controls');

Putting this all together should result in something similar to the following screenshot:

How it works...
Throughout this task, we've worked stage by stage on providing the jQuery-based functionality
required to operate the controls on the video; this is the functionality that would otherwise be
provided by the browser's default video controls, which we will be hiding in the next task.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

56

There's more...
You will notice that I've used the Google CDN links for jQuery and jQuery UI—while this
is perfectly acceptable (and in some cases preferable), you may prefer to use a custom
download at least for jQuery UI, which can reduce the size of the file to a more manageable
20KB. If you want to use this alternative, you will need to build a custom download, at
http://www.jqueryui.com/download, to include the Core, Widget, Mouse, and Slider
elements. The code will need to be altered as well—change the Google CDN link for this
(assuming you are following the structure outlined at the start of the task):

<script type="text/javascript" src="js/jquery.ui.min.js">
</script>

Adding an overlay button (should know)
So far in our video player, we've added support to play back videos via the play/pause button,
and through the right-click context menu. Although this results in a perfectly usable player, it
is missing one important function. Most people expect to be able to simply click the video to
play or pause it—this usually comes as part of an overlay that will slightly darken the picture,
or show it at normal strength, depending on its current state. We're going to add this missing
functionality to our video player as part of the next task.

Getting ready
For the purposes of this task, you will need to grab a suitable play icon that can be used
on the overlay—the size is not critical, as long as it is of a proportional size to your video
display. You will also need a copy of the videoplayer.css file that we've been working on
throughout this section.

How to do it...
1. Crack open your usual text editor; we need to add in a placeholder for our overlay,

so go ahead and modify the code as shown:
<div class="video_player">

 <video controls="controls" id="mainvideo" poster="media/
 trailer_480p.jpg">

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

57

2. The overlay isn't going to be of any use if it doesn't have any color. Add the following
into the videoplayer.css file from the previous exercise:
.video-overlay { background: url("../images/button.png")
 no-
 repeat scroll 50% 50% rgba(0, 0, 0, 0.4); cursor:
 pointer; display: block; height: 100%; left: 0; top: 0;
 position: absolute; width: 100%; }

3. We now start to add in the requisite jQuery functionality, beginning with a click
handler to allow us to fire off events that handle the playing and pausing of videos:
$oOverlay.click(function() {
 $oVideo.click();
});

4. The Play event needs to be adjusted:
// events section
$oPlay.click(function () {
 $oVideo[0].play();
 $oPlay.hide();
 $oPause.css('display', 'block');
 $oOverlay.fadeOut();
});

followed by the Pause method:
$oPause.click(function () {
 $oVideo[0].pause();
 $oPause.hide();
 $oPlay.css('display', 'block');
 $oOverlay.fadeIn();
});

5. We need the Overlay to reappear once the video has finished, so let's go ahead and
adjust the event handler for this:
// bind extra inner events
$oVideo.bind('ended', function() {
 $oOverlay.fadeIn();
 $oVideo[0].pause();
 $oPause.hide();
 $oPlay.css('display', 'block');
});

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

58

6. The last step is to add in a variable for Overlay, which we define as an instance of the
.video-overlay class—this is to make it easier when referencing it elsewhere in
the code:
var $oUnmute = $('.unmute', $oMain);
var $oOverlay = $('.video-overlay', $oMain);
var bTimeSlide = false;

Once all of the code has been updated, you should see something similar to the
following screenshot:

How it works...
The code in this task has been made very simple, as we took care in an earlier exercise, to
provide a common function in our code that handled the initiating of playback or pausing of
the video.

There are three key elements to this task: the CSS styling, the placeholder for the overlay,
and the jQuery functions to handle the playing or pausing of videos by clicking on the Overlay.
We altered some of the existing event handlers to allow for the addition of the overlay—this is
principally to fade it in or out, depending on the current state of the video. All of the code was
made possible though by the use of the variable created to store an instance of the class that
refers to the Overlay in the code.

Inserting subtitles (should know)
In this modern day, a key element of running video is allowance for "accessibility"—this is not
just being able to play videos in different browsers or on different platforms, but also providing
support for those with disabilities. In this task, we're going to have a look at one element of
this by providing subtitle support using a library called Cuepoint JS, which is available from
http://www.cuepoint.org.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

59

Getting ready
For this task, you need to avail yourself of a copy of Cuepoint JS, and copies of your videos
from earlier tasks—ideally these should be in MP4, WebM, and Ogg formats. You will also
need a copy of the subtitle background image used by the code—this is available in the code
download that accompanies this book. Finally, you will also need a number of thumbnail
images that can be used as jump links to specific sections of the video. In our task, we will
use a video that is 768px wide; for the jump link images to fit in underneath nicely, we will
use four images of 182px wide. You may need to alter your image sizes if you are using
something different.

How to do it...
1. Open up the text editor of your choice and copy in the following code snippet:

<!DOCTYPE html>
<html lang="en" class="no-js">
<head>
<title>A Subtitles Test using Cuepoint JS</title>
</head>
<body>
 <div id="container">
 </div>
</body>
</html>

2. We need to add a reference to the Cuepoint library and jQuery, along with some
styling, into the <head> section of your code:
<link rel="stylesheet" href="css/style.css" type="text/css" />
<script src="http://code.jquery.com/jquery-1.7.2.min.js">
 </script>
<script src='js/cuepoint.js'></script>

3. Cuepoint needs to be configured, so add the following to a new document in your text
editor, and save it as cuepointscript.js:
$(document).ready(function(){
//Slides object with a time (integer) and a html string
var slides = {
 0: "This is the first subtitle. You can put html in here if you
like",
 4: "The home of Big Buck Bunny",
 12: "Let's meet the cast of Big Buck Bunny...",
 23: "Watch out - here they come!"
}

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

60

cuepoint.init(slides);
$('#1').click(function(){ cuepoint.setTime(5)});
$('#2').click(function(){ cuepoint.setTime(10)});
$('#3').click(function(){ cuepoint.setTime(15)});
$('#4').click(function(){ cuepoint.setTime(25)});
});

4. Add a reference to the cuepointscript.js file, immediately below the code
from step 2:
<script src="js/cuepointscript.js"></script>

5. We now need to add in our video, so go ahead and add in the following code
snippet:
<container>
 <section id='cuePlayer'>
 <video id='video' width="768" preload="auto" controls
 poster="images/poster.jpg">
 <source src='media/bbb400p.mp4' />
 <source src='media/bbb400p.webm' />
 <source src='media/bbb400p.ogv' />
 </video>
 <div id='subtitles'></div>
 </section>

6. We also need to add in the thumbnails that will add as jump links, immediately
below the closing </section> tag:
<div id='thumbs'>
 <img id='1' src='images/thumb1b.jpg' alt='cuepoint image'
 class='thumbnail' />
 <img id='2' src='images/thumb2b.jpg' alt='cuepoint image'
 class='thumbnail' />
 <img id='3' src='images/thumb3b.jpg' alt='cuepoint image'
 class='thumbnail' />
 <img id='4' src='images/thumb4b.jpg' alt='cuepoint image'
 class='thumbnail' />
</div>

7. Finally, let's add in the requisite styling—go ahead and create a file called style.css
and add the following:
body { background: #eee;margin:20px;color:#999; font-family:
Helvetica, Arial, sans-serif; }

#container { width: 768px; margin: 0 auto; padding: 20px 0;
 overflow: hidden; }
section { margin-bottom: 20px -5; overflow: hidden; }

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

61

#cuePlayer { overflow: hidden; width: 768px; position:
relative; }
#video { width: 768px; margin: 0 auto 10px auto; background:
 #555; }
#thumbs { width: 100%; overflow: hidden; clear: both; margin:
0 0 20px 0; }
#thumbs .thumbnail { width: 182px; height: 182px; float: left;
 background: #333; display: block; margin-right: 13px;
 cursor: pointer; }
#thumbs .thumbnail:last-child { margin-right: 0; }
#subtitles { position:absolute; top:0;width:100%; color:#FFF;
 background:url(../images/subtitle.png) repeat; opacity: 1;
 height:40px; line-height:40px; padding:0 20px; }

If all is well, you should see something similar to the following screenshot:

How it works...
Here, Cuepoint collects together a number of statements into an array; these are displayed on
screen according to the second count that must be provided as part of the array. The second
part creates a number of calls to cuepoint.setTime() as individual functions, so that if
you click on each in turn, it will advance the video to that time. Cuepoint is one of a number
of libraries that aim to provide similar functionality albeit using its own method, and not
WebVTT files.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

62

There's more...
Whilst CuepointJS serves a purpose, it was only designed to be a simple implementation—if
you want to learn more, it is worth getting to grips with the WebVTT format and files. Support
for the format is still in a state of flux, and has yet to be included in all browsers; once this
happens, it looks to become the standard format that can provide some consistency across
a number of platforms.

There are a number of articles on the Internet about the format—have a
look at http://html5doctor.com/video-subtitling-and-
webvtt/, which will give you a good grounding in it.

Providing fall-back support using a polyfill
(should know)

So far, we've concentrated on how to use the HTML5 video tags—this works well in current
browsers, but what about older ones? In this age of responsive design, visitors to a website
will be using any one of a number of different platforms to view content, and it is not
necessarily going to be the same platform from one day to the next. To get around this, we
have to provide some form of fall-back support, which will be the subject of our next task.

Getting ready
For this task, you will need to download a copy of mediaElement.js, which is available from
http://www.mediaelementjs.com. You will also need copies of your videos; you can
reuse the ones created earlier, as long as you have copies in WebM, MP4, and Ogg format.
The download contains a number of files, of which you only need a few—you need to extract
copies of the following files into a separate folder that we will call mediaelement demo:

 f mediaelement-and-player.js and jquery.js – store in a folder called js

 f flashmediaelement.swf – store in a folder called media; put your video files in
the same folder

 f mediaelementplayer.css, background.png, bigplay.png, controls.png –
store in the top level media element demo folder

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

63

How to do it...
1. Let's begin with the basic framework, so open up your text editor, and save the

following lines into a file named mediaelementdemo.js:
<!DOCType html>
<html>
 <head>
 <code>
 <script src="js/jquery.js"></script>
 <script src="js/mediaelement-and-player.min.js">
 </script>
 <link rel="stylesheet" href="mediaelementplayer.css" />
 </code>
 </head>
 <body>
 </body>
</html>

2. Let's go ahead and add in the video links, beginning with the HTML5 video tag as
shown in the following code snippet:
<video width="700" height="400" controls="controls
 poster="media/trailer_480p.jpg" " preload="none">
 <!-- MP4 for Safari, IE9, iPhone, iPad, Android, and
 Windows Phone 7 -->
 <source type="video/mp4" src="media/trailer_480p.mp4" />
 <!-- WebM/VP8 for Firefox4, Opera, and Chrome -->
 <source type="video/webm" src="media/trailer_480p.webm" />
 <!-- Ogg/Vorbis for older Firefox and Opera versions -->
 <source type="video/ogg" src="media/trailer_480p.ogv" />
 <!-- Flash fallback for non-HTML5 browsers without
 JavaScript -->

3. The second part of this is the fall-back video code—add in the following code
snippet immediately below the first one:
<object width="320" height="240" type="application/x-
 shockwave-flash" data="flashmediaelement.swf">
 <param name="movie" value="flashmediaelement.swf" />
 <param name="flashvars"
 value="controls=true&file=media/trailer_480p.mp4" />
 <!-- Image as a last resort -->
 <img src="media/trailer_480p.jpg" width="320"
 height="240" title="No video playback capabilities" />
</object>

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

64

4. The last step is to add in the script call to .mediaelementplayer():
</video>
<script>
 $('video').mediaelementplayer();
</script>

If all is well, you will end up with something similar to the following screenshot:

How it works...
The observant amongst you will have noticed something—you would be correct in thinking that
the preceding code snippet is very similar to the one we used in one of our earlier recipes. If
this is the case, then what's the reason for including it here?

The answer to this forms the key reason for this task: MediaElement.js acts as a polyfill, to
provide a form of compatibility with older browsers, while still using the <video> tags. It
works by not trying to retrofit backward compatibility to a HTML5 video player, but instead
providing forward compatibility and consistency; it starts with a baseline of using the MP4
format in the standard <object> tags, but switching this to the <video> tag if it can detect
that the browser being used is able to use this tag.

There's more...
One of the drawbacks of the <video> tags at present is the need to provide fall-back
support for older browsers, at least for the next few years. The problem with this is that while
development of the tags is still in something of a state of flux, there is no standard fall-back
method to use. It's for this reason that people have provided their own polyfills. Some notable
examples you can try include Modernizr (http://www.modernizr.com) or html5shiv
(http://code.google.com/p/html5shiv/).

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

65

Displaying video through an Overlay
(should know)

So far, we've concentrated on developing our basic video player, using jQuery. It's time now
to change track, and take a look at another useful feature that you can use with HTML5
videos—overlays. This can help to give emphasis to displaying a video, as you can provide
a mask to cover elements in the background, thereby removing some of the distraction.

Getting ready
For this task, you need to avail yourself of a copy of the shareware application
VideoLightbox—at the time of writing, the latest version is 2.1, which is available
from http://www.videolightbox.com. It is free for non-commercial use, so
if you need to use it commercially, you will need to purchase a license that is $49
at the time of writing. You will also need a copy of a video in MP4 format—one of the
ones you've converted, or used, from earlier will do fine.

VideoLightBox only accepts a limited number of formats—at the time
of writing, this includes SWF and MP4, but not WebM or OGG.

How to do it...
1. Double-click on the videolightbox-setup.zip file, and run the videolightbox-

setup.exe file, accepting all of the defaults.

2. Once in VideoLightbox, click on Videos, then Add video from file—select your file, then
click on Open. You will see your video listed, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

66

3. Click on the Customize thumbnails tab, and select your options—for the purposes of
this demo, I've chosen Polaroid as the Template format, followed by PNG - Portable
Network Graphics for the Thumbnail format and the Play button, as shown in the
following screenshot:

4. On the next tab, Customize video, you can select from a number of options,
including overlay template, resolution of video, and background color. For the
purposes of this task, we will leave the defaults of Standard template, and a
resolution of 640x480, unchanged.

5. Click on the Publish tab, then on the Publish button—this will by default publish
the video and code to a folder called VideoLightBox in your Documents folder.
VideoLightbox will generate the code for you, and display the results in your
default browser:

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

67

6. We can then edit a copy of the source, and adapt it to our needs—here's a
simplified example:
<!DOCTYPE html>
<html>
 <head>
 <title>VideoLightBox Test</title>
 <link type="text/css"rel="stylesheet"
 href="index_videolb/videolightbox.css" />
 <link rel="stylesheet" type="text/css"
 href="index_videolb/overlay-minimal.css"/>
 <script src="http://cdn.jquerytools.org/1.2.7/full/
 jquery.tools.min.js"></script>
 <script src="index_videolb/swfobject.js"
 type="text/javascript"></script>
 </head>
 <body bgcolor="#f0f0f0">
 <div class="videogallery">
 <a class="voverlay" href="index_videolb/player.swf?url=video/
bbb400p.mp4&volume=10
 0" title="bbb400p">
 <img src="index_videolb/thumbnails/bbb400p.png"
 alt="bbb400p" />

 </div>
 <script src="index_videolb/videolightbox.js"
 type="text/javascript"></script>
 </body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Video How-To

68

How it works...
VideoLightbox uses a combination of jQuery Tools (http://www.jquerytools.org) and
the SWFObject library (http://code.google.com/p/swfobject/)—the SWFObject acts
as a container, into which a base player file is stored, and from within which the MP4 video is
played. The jQuery Tools library is used to provide the overlay functionality. A call is made to
the player "container" (in this instance player.swf), which stores an instance of our video,
and is used to provide the stop/start controls for video playback.

If you want to learn more about jQuery Tools, then you may like to take a
look at another of my books, jQuery Tools UI Library, also available from
Packt Publishing.

Summary
We've taken a look at a number of recipes, to show you how you can embed HTML5
video—using the new <video> tag—within your pages. This is only just the start of what you
can achieve using the new tag—there is a whole world out there to explore. I hope you've
enjoyed working through the recipes, just as much as I have enjoyed writing this book!

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A
Adobe BrowserLab 32

C
codec definitions

adding 30, 31
Content Delivery Network (CDN) 37
controls

adding, to player 43, 44
cross-browser support

adding 28, 30
CSS style code 44
Cuepoint

about 61
working 61

Cuepoint JS
about 58
URL 58

E
Easy HTML5 Video Convertor

URL 9

F
fall-back support

providing 32, 33
providing, to video player 62-64

Firefox Portable 32

G
Google CDN links 56

H
html5shiv

URL 64
HTML5 Video

about 7
browser inconsistencies 8
codec definitions, adding 30, 31
controls, adding to player 43
cross-browser support, adding 28, 30
fall-back support, providing 32-34, 62
history 7
iPads/iPhones/Android, adapting for 34, 35
jQuery functionality, adding to player 51
Kaltura video, setting up 38-40
mime types, adding 27, 28
overlay button, adding to player 56
playback support, installing 12, 14
subtitles, inserting 58, 59
video code, extending 25, 26
video, displaying through Overlay 65
VideoJS, setting up 36, 37
video player, building 41
video player, styling 44
videos, embedding using HTML5 23-25
videos, embedding with <embed> and

<object> tags 21-23
videos, publishing 15-18
video, transcoding into HTML5 format 9-11

HTML5 video formats 8

I
IETester

about 33
URL 33

www.it-ebooks.info

http://www.it-ebooks.info/

70

J
jQuery functionality

adding, to player 51-54
working 55

jQuery Tools
URL 68

K
Kaltura video

about 38
download link 38
setting up 38, 39
working 40

K-Lite Codec Pack 12

L
Lunascape 6

about 33
URL 33

M
mediaElement.js

about 62
URL 62

mime types
adding 27, 28

Modernizr
URL 64

Multi-Purpose Mail Extension (MIME)
types 27

O
Ogg Theora format 15
Overlay

used, for displaying video 65, 66
overlay button

adding, to video player 56-58

P
playback support

installing 12, 14
polyfill

used, for providing fall-back support 62-64

progressive enhancement 41

Q
QuickTime

URL 14

S
sprite 44
subtitles

inserting, to video player 58-61
SWFObject library

about 68
URL 68

V
video

displaying, through Overlay 65-68
transcoding, into HTML5 format 9-11

VideoBin
URL 18

video code
extending 25-27

VideoJS
setting up 36-38

VideoLightbox
about 65
URL 65
working 68

video player
building 41-43
controls, adding 43, 44
jQuery functionality, adding 51-54
overlay button, adding 56, 57
rrecap 48, 50
styling 44-47
subtitles, inserting 58-61

videos
embedding, HTML5 used 23-25
embedding, using <embed> and

<object> tags 21-23

X
Xiph.org

URL 14

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
HTML5 Video How-To

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Canvas Cookbook
ISBN: 978-1-84969-136-9 Paperback: 348 pages

Over 80 recipes to revolutionize the web experience with
HTML5 Canvas

1. The quickest way to get up to speed with HTML5
Canvas application and game development

2. Create stunning 3D visualizations and games
without Flash

3. Written in a modern, unobtrusive, and objected
oriented JavaScript style so that the code can be
reused in your own applications.

4. Part of Packt's Cookbook series: Each recipe is
a carefully organized sequence of instructions to
complete the task as efficiently as possible

HTML5 Mobile Development
Cookbook
ISBN: 978-1-84969-196-3 Paperback: 254 pages

Over 60 recipes for building fast, responsive HTML5
mobile websites for iPhone 5, Android, Windows Phone,
and Blackberry

1. Solve your cross platform development issues
by implementing device and content adaptation
recipes.

2. Maximum action, minimum theory allowing
you to dive straight into HTML5 mobile web
development.

3. Incorporate HTML5-rich media and geo-location
into your mobile websites.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	HTML5 Video How-To
	Transcoding a video into HTML5 format (must know)
	Installing playback support (must know)
	Publishing videos (should know)
	Embedding videos—the old school way (must know)
	Embedding a video using HTML5 (become
an expert)
	Extending the video code (should know)
	Adding mime types (must know)
	Adding cross-browser support (should know)
	Adding codec definitions (must know)
	Providing fallback support (should know)
	Adapting for iPads/iPhones/Android
(should know)
	Setting up VideoJS—an example player (become an expert)
	Setting up Kaltura video—an example player (become an expert)
	Building the video player—the framework (must know)
	Adding controls to your player (must know)
	Styling your video player (should know)
	Adding the jQuery functionality (must know)
	Adding an overlay button (should know)
	Inserting subtitles (should know)
	Providing fall-back support using a polyfill (should know)
	Displaying video through an Overlay
(should know)

	Index

