www.it-ebooks.info

Learning Cocoa with Objective-C
By Apple Computer, Inc. , James Duncan Davidson
Publisher: O'Reilly
Pub Date: September 2002
ISBN: 0-596-00301-3

Pages: 382

* Reviews

Examples

Reader Reviews

e Errata

Copyright

Preface
Audience
About the Example Code
How This Book Is Organized
How to Use This Book
Conventions Used in This Book
How to Contact Us

Acknowledgments

Part I: Cocoa Overview and Foundation
Chapter 1. Introduction to Cocoa
Section 1.1. The Mac OS X Programming Environment
Section 1.2. Cocoa Defined
Section 1.3. The Cocoa Frameworks
Section 1.4. Languages
Section 1.5. The Foundation Framework

Section 1.6. The Application Kit Framework

Chapter 2. Cocoa Development Tools
Section 2.1. Installing the Developer Tools
Section 2.2. Interface Builder
Section 2.3. Other Tools

Section 2.4. Exercises

Chapter 3. Object-Oriented Programming with Objective-C
Section 3.1. Introducing Objects
Section 3.2. Creating and Using Objects
Section 3.3. Methods and Messages
Section 3.4. Objective-C-Defined Types

Section 3.5. Creating New Classes

http://www.oreilly.com/catalog/learncocoa2/reviews.html
http://examples.oreilly.com/learncocoa2/
http://www.oreilly.com/cgi-bin/reviews?bookident=learncocoa2
http://www.oreilly.com/catalog/learncocoa2/errata/
http://www.oreillynet.com/cs/catalog/view/au/629?x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/151?x-t=book.view
http://www.it-ebooks.info/

Section 3.6.
Section 3.7.

Section 3.8.

Overriding Methods
Other Concepts

Exercises

Chapter 4. The Cocoa Foundation Kit

Section 4.1.
Section 4.2.
Section 4.3.

Section 4.4.

Strings
Collections
Memory Management

Exercises

Part Il: Single-Window Applications

Chapter 5. Graphical User Interfaces

Section 5.1.
Section 5.2.
Section 5.3.
Section 5.4.
Section 5.5.
Section 5.6.
Section 5.7.
Section 5.8.

Section 5.9.

Graphical User Interfaces in Cocoa
Designing Applications Using MVC
Create the Currency Converter Project
Create the Interface

Define the Classes

Connect the Model, Controller, and View
Implement the Classes

Build and Run

Exercises

Chapter 6. Windows, Views, and Controls

Section 6.1.
Section 6.2.
Section 6.3.
Section 6.4.
Section 6.5.

Section 6.6.

Windows and the Window System
The View Hierarchy

Coordinate Systems

Controls, Cells, and Formatters
Targets and Actions

Exercises

Chapter 7. Custom Views

Section 7.1.
Section 7.2.
Section 7.3.
Section 7.4.
Section 7.5.

Section 7.6.

Custom View Creation Steps

Create a Custom View

Drawing into a View: Behind the Scenes
Draw Strings into a View

Draw Paths into a View

Exercises

Chapter 8. Event Handling

Section 8.1.

Events

www.it-ebooks.info

http://www.it-ebooks.info/

Section 8.2.
Section 8.3.
Section 8.4.

Section 8.5.

Dot View Application
Event Delegation
Notifications

Exercises

Chapter 9. Models and Data Functionality

Section 9.1.
Section 9.2.
Section 9.3.
Section 9.4.
Section 9.5.
Section 9.6.
Section 9.7.

Section 9.8.

Protocols

Key-Value Coding

Table Views

Table View Example

Saving Data: Coding and Archiving
Using Formatters

Sorting Tables

Exercises

Part 111: Document-Based Applications

Chapter 10. Multiple Document Architecture

Section 10.1.

Section 10.2. Building a Document-Based Application

Section 10.3.

Architectural Overview

Exercises

Chapter 11. Rich-Text Handling

Section 11.1.
Section 11.2.
Section 11.3.
Section 11.4.
Section 11.5.
Section 11.6.

Section 11.7.

Cocoa's Text System

Creating a Rich-Text Editor
Enabling the Font Menu

Text Storage and Attributed Text
Enabling the Text Menu

Handling Embedded Images

Exercises

Part IV: Miscellaneous Topics

Chapter 12. Printing

Section 12.1.
Section 12.2.
Section 12.3.

Section 12.4.

Printing a View
Using Print Operations
Setting Margins

Exercises

Chapter 13. Bundles and Resources

Section 13.1.

Section 13.2.

Peeking Inside Bundles

Using Bundles

www.it-ebooks.info

http://www.it-ebooks.info/

Section 13.3.

Exercises

Chapter 14. Localization

Section 14.1.
Section 14.2.
Section 14.3.
Section 14.4.

Section 14.5.

Mac OS X Language Preferences
Localizing Resources

Localizing Nib Files

Localizing Strings

Exercises

Chapter 15. Defaults and Preferences

Section 15.1.
Section 15.2.
Section 15.3.
Section 15.4.

Section 15.5.

How Preferences Work

Using Defaults

Command-Line Preferences Access
Using Unique Application ldentifiers

Exercises

Chapter 16. Accessory Windows

Section 16.1.
Section 16.2.

Section 16.3.

The Role of File's Owner
Making an Info Window

Exercises

Chapter 17. Finishing Touches

Section 17.1.
Section 17.2.
Section 17.3.
Section 17.4.
Section 17.5.
Section 17.6.
Section 17.7.

Section 17.8.

Tidying Up the User Interface
Providing an Icon

Providing Help

Customizing the About Box
Tweaking Compiler Settings
Packaging for Distribution
Closure

Exercises

Part V: Appendixes

Appendix A. Exercise Solutions

Section A.1.
Section A.2.
Section A.3.
Section A.4.
Section A.5.
Section A.6.

Section A.7.

Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

Section A.8. Chapter 9
Section A.9. Chapter 10
Section A.10. Chapter 11
Section A.11. Chapter 12
Section A.12. Chapter 13
Section A.13. Chapter 14
Section A.14. Chapter 15
Section A.15. Chapter 16

Section A.16. Chapter 17

Appendix B. Additional Resources
Section B.1. Documentation on Your Hard Drive
Section B.2. Printed Documentation
Section B.3. Getting Sample Code
Section B.4. Web Sites
Section B.5. Mailing Lists

Section B.6. Partnering with Apple
Appendix C. Using the Foundation and Application Kit APl References

Section C.1. Cocoa Browser

Colophon

Index

http://www.it-ebooks.info/

www.it-ebooks.info

Copyright © 2002, 2001 O'Rellly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Rellly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopoal,
CA 95472

O'Rellly & Associates books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles (http://safari.orellly.

com). For more information contact our corporate/institutional sales department: 800-998-
9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Rellly & Associates, Inc. Many of the designations used by manufacturers
and sellersto distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps. The association between
the image of an Irish setter and the topic of Cocoais atrademark of O'Reilly & Associates,
Inc.

Apple Computer, Inc. boldly combined open source technol ogies with its own
programming efforts to create Mac OS X, one of the most versatile and stable operating
systems now available. In the same spirit, Apple has joined forces with O'Reilly &
Associates to bring you an indispensable collection of technical publications. The ADC
logo indicates that the book has been technically reviewed by Apple engineersand is
recommended by the Apple Developer Connection.

Apple, the Apple logo, AppleScript, AppleTalk, AppleWorks, Carbon, Cocoa, ColorSync,
Finder, FireWire, iBook, iMac, iPod, Mac, Mac logo, Macintosh, PowerBook, QuickTime,
QuickTime logo, Sherlock, and WebObjects are trademarks of Apple Computer, Inc.,
registered in the United States and other countries. The "keyboard" Apple logo (i) isused
with permission of Apple Computer, Inc.

While every precaution has been taken in the preparation of this book, the publisher and
the author assume no responsibility for errors or omissions, or for damages resulting from
the use of the information contained herein.

http://safari.oreilly.com/
http://safari.oreilly.com/
mailto:corporate@oreilly.com
http://www.it-ebooks.info/

www.it-ebooks.info

Preface
Like afinely tuned BMW, Mac OS X isthe ultimate programming machine.

Under the hood lies a powerful Unix engine, named Darwin, developed via Appl€e's open
source initiative and based on FreeBSD 4.4 and the Mach 3.0 microkernel. On the outside
isahighly polished graphical user interface (GUI) whose usability can't be touched by any
desktop environment on the planet, including GNOME and KDE for Linux, aswell as
Windows XP.

The newest cat on the block-Mac OS X 10.2 (code-named Jaguar)-takes desktop and
network computing to a new level. Jaguar, first introduced to developers as a pre-Alpha
release at Apple's Worldwide Developer Conference (WWDC) in May 2002 and later
released to the public on August 24, 2002, brings many changes and improvements to the
legacy set forth by the previous Mac OS X releases. These changes include several
additions to the Cocoa application programming interfaces (APIs), known as the Cocoa
frameworks, arguably the best GUI application development environment on the face of
the planet. An integrated set of libraries and runtime, Cocoa provides arich infrastructure
on which to build great user applications.

On Codenames and Cats

As mentioned earlier, Mac OS X 10.2 was code-named Jaguar during its
development and testing phase. Earlier releases of Mac OS X included Puma
(Mac OS X 10.1) and Cheetah (Mac OS X 10.0). Software developerslike to
give their projects names that evoke some emotion or theme for the release being
worked on. A little research shows that the cheetah is the world's fastest 1and
mammal, while the jaguar, unlike many other big cats, has no predators save for
man. Worthy goals indeed.

Apple became so enamored of the Jaguar name that they ended up putting it onto
the box in which Mac OS X 10.2 isreleased, complete with ajaguar fur motif.

When it comes to building Cocoa applications, devel opers can choose from three languages
to work with the Cocoa APIs. Objective-C, Java, and AppleScript. This new edition of
Learning Cocoa, retitled as Learning Cocoa with Objective-C and thoroughly revised and
updated for Jaguar, shows you how to get started with building Cocoa applications for Mac
OS X using the Objective-C binding to the Cocoa frameworks.

http://www.it-ebooks.info/

www.it-ebooks.info

As an introductory book on Cocoa development, Learning Cocoa with Objective-C
accomplishes the following:

. Introduces you to the concepts of object-oriented programming with Objective-C

. Showsyou how to use Apple's Developer Toals, in particular, Project Builder and
Interface Builder

. Introduces you to Cocoa's frameworks-Foundation and the A pplication Kit-by
having you build simple applications along the way

The concepts learned in one chapter spill over to the next, and the sample programs you
build while reading along get more complex as you go deeper into the book. By the end of
the book, you will have learned enough about Cocoa and Objective-C to set you on your
way to higher learning, and for that, there are plenty of other books available:

. Building Cocoa Applications. A Sep-by-Sep Guide, by Simson Garfinkel and
Michael K. Mahoney (O'Reilly & Associates, Inc.)

. Cocoa Programming for Mac OS X, by Aaron Hillegass (Addison-Wesley)

. Cocoa Programming, by Scott Anguish, Erik Buck, and Donald Y acktman (Sams)

While these books also deal with Cocoa programming with Objective-C, each book takes a
dightly different approach. Programming is afunny art, and sometimesit is invaluable to
see several approaches to the same subject matter. To be atrue master of the craft, you'll

probably want to read each of these books and glean from each what you can.l!

In addition to this and the previoudly listed books, you also have a vast resource of
information at your fingertips in the form of Apple's own documentation. Installed on your
system along with the Developer Tools, Apple's docs can be found in /Developer /
Documentation in both PDF and HTML format. If you have afast or constant link to the
Internet, you can save some space on your hard drive by dumping these docs in the Trash
and using the online documentation found at http://devel oper.apple.com.

o When Apple updates their documentation, they often first post
the revisions online, so you might want to keep that URL handy.

Additionally, there are some online resources-mailing lists and web sites-that you should
subscribe to and read frequently. A listing of these resources can be found in Appendix B,

|ocated at the back of this book.

(') earn the ways of the Force, Luke-just stay away from the Dark Side.

http://developer.apple.com/
http://www.it-ebooks.info/

www.it-ebooks.info

Audience

Asthetitleimplies, thisisa"Learning" book-a book for newcomers to Cocoa and
Objective-C. This book assumes you have a basic knowledge of ANSI C and that you're
open to learning the concepts of object-oriented programming. If you're not familiar with C
and you haven't programmed with Java or some other compiled language, you might want
to hold off on reading this book just yet. Likewise, if you're aready familiar with Objective-
C or have programmed for NeXTSTEP, chances are this book will be too basic for your
liking. Not that you can't pick something up from reading it, but this book is better suited
for newcomers.

Who Should Read This Book

As mentioned earlier, this book was written for programmers who are interested in learning
how to develop Cocoa applications using the Objective-C language. It assumes that you
have some experience with C programming, as well as a basic understanding of computer-
science concepts. If you're familiar with C or Java, you should have no problem picking up
Objective-C.

Who Should Not Read This Book

Of course, one book can't be everything to everyone. Some people will find this book too
basic or too advanced for their liking. For example:

Novice programmers

If you have never programmed before and want to learn the basics of programming,
you should start off reading an introductory programming text. To learn C, the
language upon which Objective-C is based, we recommend the following books:

o The C Programming Language, by Brian W. Kernighan and Dennis M.
Ritchie (Prentice Hall)
o Practical C Programming, by Steve Oualline (O'Reilly)

These books will introduce you to the concepts of programming with C, giving you
the foundation you need before reading this book.

Experienced NeXT developers

If you have worked with OpenStep or NeXTSTEP, you will probably find the

http://www.it-ebooks.info/

www.it-ebooks.info

material in this book too basic. Y ou might use this book as a refresher to come up
to speed, but it probably won't be the Nirvana you're searching for.

Java developers

This book covers Cocoa using the Objective-C language. If you are a Java
developer and don't mind learning a new language (Iearning new languagesis
always good for you!), then you will do fine with this book. However, if you want a
strict treatment of Cocoawith Java, this book is not for you.

What You Need to Know

Extensive programming experience is not required to complete the examples in this book.
Since the Objective-C language is a superset of ANSI C, experience with the C
programming language is helpful. If you have experience with an object-oriented
programming language such as Java or Smalltalk, you should find the concepts of
Objective-C easy to comprehend. If you don't have experience with object-oriented
concepts, don't worry; we will try our best to guide you through the terminology and to
give you pointers to other texts and reference material.

No prior experience programming on Mac OS X is necessary to complete the tutorials in
this book. We'll show you how to use the Developer Tools that come with Mac OS X and
show you how to build your first Cocoa application in no time.

At some point you should explore the wealth of developer documentation that Apple
installs with the Developer Tools. This documentation covers the Mac OS X system
architecture, developer tools, release notes, the Objective-C language, the Cocoa API
references, and so on. There are four places you can access Apple's devel oper
documentation:

. The/Developer/Documentation folder on your system. Specifically, most of the
Cocoa documentation is located in the /Devel oper/Documentation/Cocoa folder.

. TheHep menuin Project Builder (/Developer/Applications), which is one of the
devel opment tools you will use as you work your way through this book.

. Mac Help from the Finder. After launching Mac Help and clicking on the "Help
Center” toolbar item, you'll be able to find the Developer Help Center link.

. Online at http://devel oper.apple.com. As mentioned earlier, Apple often posts

updates to its documentation online first, so you should check here if adocument
on your system doesn't have the answer for which you're looking.

http://developer.apple.com/
http://www.it-ebooks.info/

www.it-ebooks.info

About the Example Code

Y ou will find many examplesin this book. The code for these examples is contained within the text, but you
may prefer to download a disk image (.dmg) of the examples rather than typing all that code in by hand. Y ou

can find the code online and packaged for download at http://www.oreilly.com/catal og/I earncocoa2.l? You
may also want to visit this site for any important notes or errata about the book.

All of the examples have been tested using Mac OS X 10.2, Project Builder 2.0, and Interface Builder 2.1. If
you use this book with alater release of any of these products, the user interface and features may be different
from those shown in the book, but everything should work. However, because the exampl es utilize many

features first introduced with Jaguar, such as GCC 3% and the AddressBook API S, you should not use an
earlier release of Mac OS X with this book.

In some of the examples, we put a number (or |etter, depending on the other elements on the page) on the right
side of any line of code that we explain in detail. Numbered explanations appear below alisting, as shown in
the following example:

int row = [itenList sel ectedRow ;
NSString * newNane = [[itenlist selectedCell] stringVal ue];

1. Theindex of the row isobtained by passing thesel ect edRowmessagetothei t enli st object.

2. ThenewNane string is obtained from the cell by using the st r i ngVal ue message.

(2] This book does not come with a CD-ROM. Bundli ng a CD would increase the cost of production and the cost to
you. It is our belief that anyone reading this book has access to an Internet connection and would rather save money
by simply downloading the example code off the Web.

¥ Gee 3 introduces support for the C 99 standard, allowing us to make our example code more readable and easier
to understand.

http://www.oreilly.com/catalog/learncocoa2
http://www.it-ebooks.info/

www.it-ebooks.info

How This Book |I's Organized

This book consists of 17 chapters and 3 appendixes, organized into 5 parts. Thefirst three
parts are organized so that each chapter builds upon the previous one. Y ou should start at
the beginning and proceed sequentially until you've read through the last chapter.

Most chapters contain example applications for you to work through, as well as exercises
that build upon the material covered. Each chapter's applications and exercises are self-
contained and do not spread across chapters.

Part |

Cocoa Overview and Foundation introduces the Cocoa frameworks and describes the high-
level features they provide application programmers, as well as how they fit with other
Mac OS X frameworks. It also includes a brief introduction to object-oriented
programming, the Objective-C language, and Apple's development tools.

Chapter 1

Places Cocoa in the context of the Mac OS X programming environment and
introduces the frameworks and classes that make up the Cocoa API.

Chapter 2

Introduces Project Builder and Interface Builder, Apple'stools for Mac OS X
development. The chapter then goes on to describe the wide array of tools and
utilities available to assist in building, debugging, and performance-tuning
applications on Mac OS X.

Chapter 3

Explains the benefits of object-oriented programming practices (as compared to
procedural programming) and provides an introduction to the terminology and core
concepts needed to use the Cocoa frameworks effectively. It also includes a primer
on the Objective-C programming language.

Chapter 4

Provides a series of mini-tutorials to introduce the Cocoa Foundation, including
strings, arrays, collections, utility functions, and memory management.

http://www.it-ebooks.info/

www.it-ebooks.info

Part Il

Sngle-Window Applications covers the basic building blocks of any Cocoa application that
displays a single GUI window to the user. This section uses a series of examplesto
illustrate the concepts presented. The techniques and concepts you learn in each chapter
will lay the foundation for the next chapter.

Chapter 5

Introduces the Model-View-Controller (MVC) pattern and how Cocoa programs
are structured and developed. Y ou will also learn about nib files and how to use
them in your applications.

Chapter 6

Goesinto detail about how the windowing system works, as well as how to create
View and Controller objectsto present a user interface.

Chapter 7

Cocoa's default set of controls covers most of the common Ul needs that
applications have, but they can't cover everything. Y our application may need to
present a specialized view onto a data source or simply draw arbitrary content to
the screen. This chapter shows how to create these custom views.

Chapter 8

Introduces the event loop and explains how events propagate along the responder
chain. It also covers how events are queued and dispatched, as well as how event
delegation works.

Chapter 9

Shows how to work with the data-bearing objects of an application. The chapter
also shows how this information can be utilized with the Controllers and Views of
an application and how it can be read from and written to storage.

Part I

Many applications today, such asword processors and web browsers, are built around the
concept of adocument. Creating an application that can handle multiple documentsis

http://www.it-ebooks.info/

www.it-ebooks.info

tedious in the best of times. Luckily, Cocoa provides the ability for an application to handle
multiple documents with ease. Document-Based Applications shows how to use Cocoa's
document architecture.

Chapter 10

Presents the basic concepts of the document-handling architecture and how
documents are managed. The chapter guides you through the process of creating an
application that takes advantage of the architecture.

Chapter 11

Shows advanced text-handling abilities of Cocoa, such as handling fonts, working
with layout managers, enabling rulers, and working with attachments.

Part IV

Miscellaneous Topics covers a variety of Mac OS X and Cocoa features that are important
to delivering finished applications and giving them their finishing touches. The chaptersin
this part of the book cover diverse topics and can be read in any order.

Chapter 12

This chapter shows you how to add printing functionality to your application.

Chapter 13

Here we describe how bundles, application or otherwise, are structured, how icons
and document types are defined, and how application signatures work.

Chapter 14

Once you build an application, there are several ways to customize the interface to
accommodate users in different parts of the world.

Chapter 15

Mac OS X provides comprehensive management of user preferences. This chapter
explains how to work with this system to store information that can be used across
multiple invocations of your application.

Chapter 16

http://www.it-ebooks.info/

www.it-ebooks.info

Applications will often have more than just one interface component. Inspectors
and palettes abound in modern applications. This chapter shows in detail how to
store your user interface in multiple nib files to improve performance and ease
maintainability and localization.

Chapter 17

Once you build an application, there are several important things you should do to
make it ready for distribution. Cocoa provides default copyright strings and About
boxes that need to be edited, and you should probably create some sort of Help
documentation for the application. Finally, this chapter shows how to create an icon
for your application and add that to the application bundle as well.

Part V

The Appendixes include quick-reference material for learning more about Cocoa's
Objective-C classes and list resources that are beyond the scope of this book for expanding
your Cocoa devel opment horizon.

Appendix A
Provides solutions to all of the exercises found at the end of each chapter.
Appendix B

Provides avaluable list of Cocoa-related resources and where to find them,
including Mac OS X's "built-in" developer documentation, books, mailing lists, and
web sites.

Appendix C

Provides aguide to the various API references available to you as a developer, as
well as some tools that will help you search and browse the available
documentation.

http://www.it-ebooks.info/

www.it-ebooks.info

How to Use This Book

Our recommendation is that you read this book from cover to cover, particularly if you're
new to Cocoa and need to learn more about object-oriented programming (OOP). Asyou
read through the book, you should work on the sample programs along the way. Doing so
will give you the foundation you need to understand what Objective-C is (and isn't) and the
concepts of OOP, most notably the MV C paradigm that aids in GUI application design. We
try to take the approach of teaching you small things first and then building on those small
concepts throughout the rest of the book.

If you have experience with Java or Smalltalk, we recommend that you read this book from
front to back as well. Since you have experience with object-oriented concepts and
programming, there are some sections that you will be able to skim. However, be careful
not to skim too fast, as you might miss some important details.

http://www.it-ebooks.info/

www.it-ebooks.info

Conventions Used in This Book
Thefollowing isalist of the typographical conventions used in this book:
Italic

Used to indicate new terms, URLS, filenames, file extensions, directories,
commands and options, program names, and to highlight comments in examples.
For example, a path in the filesystem will appear as/Devel oper/Applications.

Constant Wdth
Used to show code examples, the contents of files, or the output from commands.
Constant Wdth Bol d

Used in examples and tables to show commands or other text that should be typed
literally.

Constant Wdth Italic

Used in examples and tables to show text that should be replaced with user-
supplied values.

Menus/Navigation

Menus and their options are referred to in the text as File =—# Open, Edit —#
Copy, etc. Arrows are used to signify a navigation path when using window
options; for example, System Preferences —# Login —# Login Items means that
you would launch System Preferences, click the icon for the Login control panel,
and select the Login Items pane within that panel.

Pathnames

Pathnames are used to show the location of afile or application in the filesystem.
Directories (or folders) are separated by aforward slash. For example, if you see
something like, " . . . launch Project Builder (/Developer/Applications)” in the text,
that means that the Project Builder application can be found in the Applications
subdirectory of the Developer directory.

http://www.it-ebooks.info/

www.it-ebooks.info

o
A carriage return (__]) at the end of aline of code is used to denote an unnatural line
break; that is, you should not enter these as two lines of code, but as one continuous
line. Multiple lines are used in these cases due to printing constraints.

% #
The percent sign (%) is used in some examples to show the user prompt from the
tcsh shell; the hash mark (#) isthe prompt for the root user.

Menu Symbols

When looking at the menus for any application, you will see some symbols
associated with keyboard shortcuts for a particular command. For example, to
create anew project in Project Builder, you would go to the File menu and select
New Project (File —# New Project), or you could issue the keyboard shortcut,
Shift-38-N.

Y ou should pay special attention to notes set apart from the text with the following icons:

- Thisisatip, suggestion, or general note. It contains useful
- supplementary information about the topic at hand.

Thisindicates awarning or caution. It will help you solve and
"@ avoid annoying problems.

http://www.it-ebooks.info/

www.it-ebooks.info

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you
may find that features have changed (or even that we have made mistakes!). Asa
newcomer to Cocoa and areader of this book, you can help us to improve future editions
by sending us your feedback. Please et us know about any errors, inaccuracies, bugs,
misleading or confusing statements, and typos that you find anywhere in this book.

Please also let us know what we can do to make this book more useful to you. We take
your comments seriously and will try to incorporate reasonable suggestions into future
editions. You can write to us at:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

Y ou can aso send us messages electronically. To be put on the mailing list or to request a
catalog, send email to:

info@oreilly.com
To ask technical questions or to comment on the book, send email to:
bookqguestions@oreilly.com

The web site for Learning Cocoa with Objective-C, Second Edition lists examples, errata,
and plans for future editions. Y ou can find this page at:

http://www.oreilly.com/catal og/learncocoa?
For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

mailto:info@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com/catalog/learncocoa2
http://www.oreilly.com/
http://www.it-ebooks.info/

www.it-ebooks.info

Acknowledgments

First and foremost, I'd like to thank my editor, Chuck Toporek, who talked me into writing
the new edition of this book (twice even) and alternately utilized the editor's whip and kind
words of encouragement to guide me toward its completion. Without him, his advice, and
hisfaith in me to get the job done, this book would not have happened. Also at O'Relilly, I'd
like to thank Jeff Holcomb, the copyeditor for this book; David Chu, who assisted Chuck in
pulling this book together for production; Brenda Miller, who produced the index; Derrick
Story, who encouraged my early efforts with Cocoa by letting me write for the O'Reilly
Network; and finally Tim O'Reilly, Michael Loukides, and Bob Eckstien, who always
knew that | would write a book for O'Reilly & Associates some day.

Thanks as well to all the people at Apple, especialy to the original NeXT and Apple
documentation teams. For this new edition, we've changed the title, stripped the book down
to bare metal, and built it back up. Without the foundation provided by the original
documentation teams, the job would have been much harder. Also thanks to the many
Cocoa engineers at Apple for taking the time to hash over the outline for the revision, and
for reviewing drafts of the manuscript along the way. Y ou guys know who you are.

Many thanks to the independent reviewers of this book, including Jo Davidson (who gave
up part of the Memorial Day weekend to help us meet our deadlines) and Mike Barron.

Special thanks to Jason Hunter, who gave me an author's insight into the writing process,
for helping me find the right metaphors in Chapter 3, and for always being there when

needed. In addition, many thanks to Wilfredo Sanchez Vega, who got me hooked on Mac
OS X in thefirst place after my Windows laptop went through one of its periodic
meltdowns.

Music from many creative and talented people fueled the writing of this book. Among the
artists in heavy rotation in iTunes and on the iPod: Tori Amos, Bedrock, Blue Man Group,
BT, The Chemical Brothers, The Crystal Method, Darude, DJ Amber (from the San
Francisco Bay rave scene), DJ Dragn'fly (from the Sacramento rave scene), Brian Eno,
Fatboy Slim, The Future Sound of London, Juno Reactor, Moby, New Order, The Orb,
Orbital, Mario Piu, Prodigy, Rinocerose, Sasha, Squarepusher, Underworld, Paul van Dyk,
and many others.

And finally, thanks to al my family and friends who lent support to the book writing
process and who encouraged me to chase my dreams: Dad, who taught me everything |
needed to know after al; Mom, who brought me into the world; Mahaila, who probably
never expected that I-of all the people in the family-would write a book; my sisters Susan,
Illona, Joli, and Heather, as well as my friends Justyna Horwat and Jim Driscoll. Last, but
not least, | want to thank Eleo, who ended up thoroughly addicted to the wireless network |

http://www.it-ebooks.info/

www.it-ebooks.info

installed at her place so that | could work on her couch, tapping away on my Titanium
PowerBook until late in the night.

http://www.it-ebooks.info/

www.it-ebooks.info

Part |: Cocoa Overview and Foundation

This part of the book introduces the Cocoa frameworks (Foundation and
Application Kit) and describes the high-level features they provide
application programmers, as well as how they fit with other Mac OS X
frameworks. It aso includes a brief introduction to object-oriented
programming, the Objective-C language, and Apple's Developer Tools.

Chaptersin this part of the book include:

Chapter 1
Chapter 2
Chapter 3

Chapter 4

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 1. Introduction to Cocoa

Cocoa provides arich layer of functionality on which you can build applications. Its
comprehensive object-oriented APl complements a large number of technologies that Mac
OS X provides. Some of these technologies are inherited from the NeXTSTEP operating
system. Others are based on the BSD Unix heritage of Mac OS X's core. Still others come
from the original Macintosh environment and have been updated to work with a modern
operating system. In many cases, you take advantage of these underlying technologies
transparently, and you get the use of them essentially "for free." In some cases, you might
use these technologies directly, but because of the way Cocoa is structured, they are a
simple and direct API call away.

This chapter provides an overview of the Mac OS X programming environment and
Cocoas placein it. You will then learn about the two frameworks-Foundation and
Application Kit (or AppKit)-that make up the Cocoa API, aswell as the functionality that
they provide.

http://www.it-ebooks.info/

www.it-ebooks.info

1.1 TheMac OS X Programming Environment
Mac OS X providesfive principal application environments:
Carbon

A set of procedural APIsfor working with Mac OS X. These interfaces were
initially derived from the earlier Mac OS Toolbox APIs and modified to work with
Mac OS X's protected memory environment and preemptive task scheduling. Asa
transitional API, Carbon gives developers a clear way to migrate legacy

applications to Mac OS X without requiring a total rewrite Y] Adobe Photoshop 7.0
and Microsoft Office v. X are both examples of "Carbonized" applications. For
more information on Carbon, see /Devel oper/Documentation/Carbon or Learning
Carbon (O'Rellly).

Cocoa

A set of object-oriented APIs derived from NeXT's operating-system technologies
that take advantage of many features from Carbon. Programming with the Cocoa
API isthe focus of this book. Many applications that ship with Mac OS X, such as
Mail and Stickies, are written in Cocoa. In addition, many of Apple's latest
applications, such asiPhoto, iChat, and iDVD2, are built on top of Cocoa.

Java

A robust and fast virtual-machine environment for running applications devel oped
using the Java Development Kit. Java applications are typically very portable and
can run unchanged, without recompilation, on many different computing
environments.

BSD Unix

The BSD layer of Mac OS X that provides arich, robust, and mature set of tools
and system calls. The standard BSD tools, utilities, APIs, and functions are
available to applications. A command-line environment also exists as part of this

layer.
Classic

The compatibility environment in which the system runs applications originally

http://www.it-ebooks.info/

written for Mac OS 8 or Mac OS 9 that have not been updated to take full

www.it-ebooks.info

advantage of Mac OS X. Classic is essentially a modified version of Mac OS 9
running inside a process that has specia hooks into other parts of the operating
system. Over time, Classic is becoming less interesting as more applications are
ported to run natively in Mac OS X.

To some degree, al of these application environments rely on other parts of the system.

Figure 1-1 gives alayered, abeit ssimplified, illustration of Mac OS X's application

environments and their relationship to the other primary parts of the operating system.

Figure 1-1. Cocoa as part of Mac OS X's programming environment

BsD Carbon

Cocna

Java

Core foundation

Darwin (Kernel environment)

Classic

Asyou can see from Figure 1-1, each of Mac OS X's application environments relies upon
functionality provided by deeper layers of the operating system. This functionality is
roughly broken into two major sections. Core Foundation, which provides a common set of
application and core services to the Cocoa, Carbon, and Java frameworks, and the kernel
environment, which is the underlying Unix-based core of the operating system.

[

4 Contrary to what you may have heard elsewhere, Carbon is not doomed to fade away over time.
This erroneous opinion seems to be caused by a misinterpretation of the word "transitional" to

mean that the API itself will be going away, rather than meaning it isthe API to use to transition
older applications. Moving forward, it will remain one of the core development environments for
Mac OS X. In fact, Apple engineers are striving to enable better integration between Carbon and

Cocoa

http://www.it-ebooks.info/

www.it-ebooks.info

1.2 Cocoa Defined

Cocoais an advanced object-oriented framework for building applications that run on
Apple'sMac OS X. It isan integrated set of shared object libraries, aruntime system, and a
development environment. Cocoa provides most of the infrastructure that graphical user
applications typically need and insul ates those applications from the internal workings of
the core operating system.

Think of Cocoa as alayer of objects acting as both mediator and facilitator between
programs that you build and the operating system. These objects span the spectrum from
simple wrappers for basic types, such as strings and arrays, to complex functionality, such
as distributed computing and advanced imaging. They are designed to make it easy to
create agraphical user interface (GUI) application and are based on a sophisticated
infrastructure that simplifies the programming task.

Cocoa-based applications are not just limited to using the features in the Cocoa
frameworks. They can also use al of the functionality of the other frameworks that are part
of Mac OS X, such as Quartz, QuickTime, OpenGL, ColorSync, and many others. And

since Mac OS X is built atop Darwin, a solid BSD-based system,[z] Cocoa-based
applications can use al of the core Unix system functions and get as close to the
underlying filesystem, network services, and devices as they need to.

1.2.1 The History of Cocoa

Cocoa has actually been around along time-almost as long as the Macintosh itself. That is
becauseit is, to alarge extent, based on OpenStep, which was introduced to the world as
NeXTSTEP in 1987, along with the elegant NeX T cube. At the time, the goal of
NeXTSTEP was to, as only Steve Jobs could say, "create the next insanely great thing." It
evolved through many releases, was adopted by many companies as their development and
deployment environment of choice, and received glowing reviews in the press. It was, and
continues to be, solid technology based on adesign that was years ahead of anything else in
the market.

NeXTSTEP was built on top of BSD Unix from UC Berkeley and the Mach microkernel
from Carnegie-Mellon University. It utilized Display PostScript from Adobe - alowing the
same code, using the PostScript page description language - to display documents on
screen and to print to paper. NeXTSTEP came with a set of libraries, called "frameworks,"
and tools to enable programmers to build applications using the Objective-C language.

In 1993 NeXT exited the hardware business to concentrate on software. NeXTSTEP was
ported to the Intel x86 architecture and released. Other ports were performed for the

http://www.it-ebooks.info/

www.it-ebooks.info

SPARC, Alpha, and PA-RISC architectures. Later, the frameworks and tools were revised
to run on other operating systems, such as Windows and Solaris. These revised frameworks
became known as OpenStep.

Fast forward to 1996. Apple had been working unsuccessfully on a next-generation
operating system, known as Copland, to replace the venerable Mac OS 7. Their efforts
were running amok and they decided to look outside for the foundation of the new OS. The
leading contender seemed to be BeOS, but in a surprise move, Apple acquired NeXT,
citing its strengths in development software and operating environments for both the
enterprise and Internet markets. As part of this merger, Apple embarked on the
development of Rhapsody, a development of the NeXTSTEP operating system fused with
the classic Mac OS. Over the next five years, Rhapsody evolved into what was released as
Mac OS X 10.0. As part of that evolution, OpenStep became Cocoa.

Mac OS X remains very much a Unix system; the Unix side of Mac OS X isjust hidden
from users unless they really want to useit. Its full power, however, is available to you, the
programmer, to utilize. Not only can you take advantage of the power, you can actually
look under the hood and see how it all works. The source code to the underpinnings of Mac
OS X can be found as part of Apple's Darwin initiative (http://www.devel oper.apple.com/

darwin).
1.2.2 Cocoa's Featur e Set

At its foundation, Cocoa provides basic types such as strings and arrays, as well as basic
functions such as byte swapping, parsing, and exception handling. Cocoa also provides
utilities for memory management, utilities for archiving and serializing objects, and access
to kernel entities and services such as tasks, ports, run loops, timers, threads, and locks.

On top of this foundation, Cocoa provides a set of user-interface widgets with quite a bit of
built-in functionality. This functionality includes such expected things as undo and redo,
drag and drop, and copy and paste, as well aslots of bonus features such as spell checking
that can be enabled in any Cocoa component that accepts text. Y ou will see how much of
this functionality works while you work through the tutorials in this book.

Imaging and printing

Mac OS X's imaging and printing model is called Quartz and is based on Adobe's
Portable Document Format (PDF). Unlike previous versions of Mac OS, the same
code and frameworks are used to draw the onscreen image and to send output to
printers. You'll get firsthand experience drawing with Quartz in Chapter 7, and with

printing in Chapter 12.

Apple's color management and matching technology, ColorSync, is built into
Quartz, ensuring that colors in documents are automatically color-corrected for any

http://www.developer.apple.com/darwin
http://www.developer.apple.com/darwin
http://www.it-ebooks.info/

www.it-ebooks.info

device on which they are printed or displayed. Any time an imageisdisplayedin a
Cocoa window or printed, its colors are automatically rendered correctly according
to any color profile embedding in the image along with profiles for the display or
printer.

I nter nationalization and localization

Cocoa's well-designed internationalization architecture allows applications to be
localized easily into multiple languages. Cocoa keeps the user-interface elements
separate from the executable, enabling multiple localizations to be bundled with an
application. The underlying technology is the same that is used by Mac OS X to

ship asingle build of the OS with many localizati ons.[®l This technol ogy is covered
in Chapter 14.

Because Cocoa uses Unicode as its native character set, applications can easily
handle all the world's living languages. The use of Unicode eliminates many
character-encoding hassles. To help you handle non-Unicode text, Cocoa provides
functionality to help you trandate between Unicode and the other mgjor character
setsin use today.

Text and fonts

Cocoa offers a powerful set of text services that can be readily adapted by text-
intensive applications. These services include kerning, ligatures, tab formatting,
and rulers, and they can support text buffers as large as the virtual memory space.
The text system also supports embedded graphics and other inline attachments.
You'll work thistext system firsthand in Chapter 11.

Cocoa supports avariety of font formats, including the venerable Adobe PostScript
(including Types 1, 3, and 42), the TrueType format defined by Apple in the late
1980s and adopted by Microsoft in Windows 3.1, and the new OpenType format,
which merges the capabilities of both PostScript and TrueType.

Exported application services

Cocoa applications can make functionality available to other applications, as well
asto end users, through two mechanisms: scripting with AppleScript and via
Services.

AppleScript enables users to control applications directly on their system, including
the operating system itself. Scripts allow even relatively unskilled users to automate
common tasks and afford skilled scripters the ability to combine multiple
applications to perform more complex tasks. For example, a script that executes
when a user logs in could open the user's mail, look for adaily news summary

http://www.it-ebooks.info/

www.it-ebooks.info

message, and open the URL s from the summary in separate web-browser windows.
Scripts have access to the entire Mac OS X environment, as well as other
applications. For example, a script can launch the Terminal application, issue a
command to list the running processes, and use the output for some other purpose.

Services, available as a submenu item of the application menu, allow usersto use
functionality of an application whenever they need to. For example, you can
highlight some text in an application and choose the "Make New Sticky Note"
service. Thiswill launch the Stickies application (/Applications), create a new
Sticky, and put the text of your selection into it. This functionality is not limited to
text; it can work with any data type.

Component technologies

One of the key advantages of Cocoa as a devel opment environment is its capability
to develop programs quickly and easily by assembling reusable components. With
the proper programming tools and alittle work, you can build Cocoa components
that can be packaged and distributed for use by others. End-user applications are
the most familiar use of this component technology in action. Other examples
include the following:

o Bundles containing executable code and associated resources that programs
can load dynamically

o Frameworks that other developers can use to create programs

o Palettes containing custom user-interface objects that other developers can
drag and drop into their own user interfaces

Cocoa's component architecture allows you to create and distribute extensions and
plug-ins easily for applications. In addition, this component architecture enables
Distributed Objects, a distributed computing model that takes unique advantage of
Cocoa's abilities.

(2l BSD stands for Berkeley Software Distribution. For more information about BSD and its
variants, see http://www.bsd.org/.

Bl Mac 0S X 10.2 ships with localizations in the following languages. English, German, French,
Dutch, Italian, Spanish, Japanese, Brazilian, Danish, Finnish, Korean, Norwegian, Swedish, and
both Simplified and Traditional Chinese. Apple might add to or modify thislist at any time.

http://www.bsd.org/
http://www.it-ebooks.info/

www.it-ebooks.info

1.3 The Cocoa Frameworks

Cocoa is composed of two object-oriented frameworks: Foundation (not to be confused
with Core Foundation) and Application Kit. These layersfit into the system as shown in
Figure 1-2.

Figure 1-2. The Cocoa frameworksin the system

Cocoa AppKit

Cocoa Foundation

Care Foundation

Kernel environment

The classes in Cocoa's Foundation framework provide objects and functionality that are the
basis, or "foundation,”" of Cocoa and that do not have an impact on the user interface. The
AppKit classes build on the Foundation classes and furnish the objects and behavior that
your users see in the user interface, such as windows and buttons; the classes also handle
things like mouse clicks and keystrokes. One way to think of the differencein the
frameworks is that Cocoa's Foundation classes provide functionality that operates under the
surface of the application, while the AppKit classes provide the functionality for the user
interface that the user sees.

http://www.it-ebooks.info/

www.it-ebooks.info

1.4 Languages

Y ou can build Cocoa applications in three languages: Objective-C, Java, and AppleScript.
Objective-C was the original language in which NeXTSTEP was developed and is the
"native language" of Cocoa It isthe language that we will work with throughout this book.
During the early development of Mac OS X (when it was still known as Rhapsody), alayer
of functionality-known as the Java Bridge-was added to Cocoa, allowing the API to be
used with Java. Support has been recently added for AppleScript in the form of
AppleScript Studio, which allows AppleScripters to hook into the Cocoa frameworks to
provide a comprehensive Aqua-based GUI to their applications.

1.4.1 Objective-C

The brainchild of Brad Cox, Objective-C isavery simple language. It is a superset of

ANSI C with afew syntax and runtime extensions that make object-oriented programming
possible. It started out as just a C preprocessor and alibrary, but over time developed into a
complete runtime system, alowing a high degree of dynamism and yielding large benefits.
Objective-C's syntax is uncomplicated, adding only a small number of types, preprocessor
directives, and compiler directives to the C language, as well as defining a handful of
conventions used to interact with the runtime system effectively.

Objective-C and C++

Starting with Mac OS X 10.1, the Objective-C compiler allows C++ and
Objective-C code to be mixed in the samefile. Thisis called Objective-C++ and
allows you to access functionality easily in C++ libraries from Cocoa programs.
This hybrid does not add C++ features to Objective-C, nor does it add Objective-
C features to C++. The object models and hierarchies between Objective-C and C
++ remain distinct and separate.

For more information about Objective-C++, see Apple's web site at http://
devel oper.apple.com/techpubs/macosx/Rel easeNotes/ Obj ective-C++.html.

Y ou can aso mix standard C code with Objective-C code, allowing you to
choose when to do something in an object-oriented way and when to stick to
procedural programming techniques by defining a structure and some functions,
rather than a class. Combining Objective-C code with standard C code also lets
you take advantage of existing C-based libraries. Thisis useful when you need
functionality that is not available in Objective-C, are using libraries provided by
athird party, or even reusing some of your own old code.

http://developer.apple.com/techpubs/macosx/ReleaseNotes/Objective-C++.html
http://developer.apple.com/techpubs/macosx/ReleaseNotes/Objective-C++.html
http://www.it-ebooks.info/

www.it-ebooks.info

Objective-C isavery dynamic language. The compiler throws very little information away,
which allows the runtime to use this information for dynamic binding and other uses. Well
be covering the basics of Objective-C in Chapter 3. Also, there is a complete guide to
Objective-C, Inside Mac OS X: The Objective-C Language, included as part of the Mac OS
X Developer Toolsinstallation. You can find this documentation in the /Devel oper/
Documentation/Cocoa/ObjectiveC folder.

1.4.2 Java

Javais a cross-platform, object-oriented, portable, multithreaded, dynamic, secure, and
thoroughly buzzword-compliant programming language devel oped by James Gosling and
his team at Sun Microsystems in the 1990s. Since its introduction to the public in 1995,
Java has gained alarge following of programmers and has become a very important
language in enterprise computing.

Cocoa provides a set of language bindings that allow you to program Cocoa applications
using Java. Apple provides Java packages corresponding to the Foundation and
Application Kit frameworks. Within reason, you can mix the APIs from the core Java
packages (except for the Swing and AWT APIs) with Cocoa's packages.

1.4.3 AppleScript

For many years, AppleScript has provided an almost unmatched ability to control
applications and many parts of the core Mac OS. This allows scripters to set up workflow
solutions that combine the power of many applications. AppleScript combines an English-
like language with many powerful language features, including list and record
manipulation. The introduction of AppleScript Studio in December 2001, as well asits
final release along with Mac OS X 10.2, allows scripters the ability to take their existing
knowledge of AppleScript and build Cocoa-based applications quickly using Project
Builder and Interface Builder.

Coverage of AppleScript Studio is beyond the scope of this book. To learn more about
AppleScript Studio, see Building Applications with AppleScript Studio located in/
Devel oper/Documentation/CoreTechnol ogies/AppleScriptStudio/
BuildApps_AppScrptSudio.

http://www.it-ebooks.info/

www.it-ebooks.info

1.5 The Foundation Framewor k

The Foundation framework is a set of over 80 classes and functions that define a layer of
base functionality for Cocoa applications. In addition, the Foundation framework provides
several paradigms that define consistent conventions for memory management and
traversing collections of objects. These conventions allow you to code more efficiently and
effectively by using the same mechanisms with various kinds of objects. Two examples of
these conventions are standard policies for object ownership (who is responsible for
disposing of objects) and a set of standard abstract classes that enumerate over collections.
Figure 1-3 shows the major groupings into which the Foundation classes fall.

Figure 1-3. Features of the Foundation framework

Programming types (Operating system (Fbject
and operations entities and services functionality
Data values Motifications Memory mgmt
Dates and times Threads Serialization
Strings Locks Archiving
Collections Tasks Distributed objects
Exceptions Parts
Rian loops
limers
File and 10 Other services
management
URL handling Undo/redo
File management Formatting
Scripting
Preferences

The Foundation framework includes the following:

. Theroot object class, NSObj ect
. Classes representing basic data types, such as strings and byte arrays

http://www.it-ebooks.info/

www.it-ebooks.info

. Collection classes for storing other objects
. Classes representing system information and services

1.5.1 Programming Types and Oper ations

The Foundation framework provides many basic types, including strings and numbers. It
also furnishes several classes whose purpose is to hold other objects-the array and
dictionary collections classes. You'll learn more about these data types-and how to use
them-throughout the chapters in this book, starting in Chapter 4.

Srings

Cocoas string class, NSSt r 1 ng, supplants the familiar C programming data type
char * to represent character string data. String objects contain Unicode
characters rather than the narrow range of characters afforded by the ASCI|
character set, allowing them to contain characters in any language, including
Chinese, Arabic, and Hebrew. The string classes provide an API to create both
mutable and immutabl e strings and to perform string operations such as substring
searching, string comparison, and concatenation.

String scanners take strings and provide methods for extracting data from them.
While scanning, you can change the scan location to rescan a portion of the string
or to skip ahead a certain number of characters. Scanners can also consider or
ignore case.

Collections

Collections alow you to organize and retrieve datain alogical manner. The
collections classes provide arrays using zero-based indexing, dictionaries using key-
value pairs, and sets that can contain an unordered collection of distinct or
nondistinct elements.

The collection classes can grow dynamically, and they come in two forms: mutable
and immutable. Mutable collections, as their name suggests, can be modified
programmatically after the collection is created. Immutable collections are locked
after they are created and cannot be changed.

Data and values

Data and value objects let ssimple allocated buffers, scalar types, pointers, and
structures be treated as first-class objects. Data objects are object-oriented wrappers
for byte buffers and can wrap data of any size. When the data size is more than a
few memory pages, virtual memory management can be used. Data objects contain
no information about the data itself, such asits type; the responsibility for how to

http://www.it-ebooks.info/

www.it-ebooks.info

use the data lies with the programmer.

For typed data, there are value objects. These are simple containers for asingle data
item. They can hold any of the scalar types, such asintegers, floats, and characters,
aswell as pointers, structures, and object addresses, and allow object-oriented
manipulation of these types. They can also provide functionality such as arbitrary
precision arithmetic.

Dates and times

Date and time classes offer methods for calculating temporal differences,
displaying dates and timesin any desired format, and adjusting dates and times
based on location (i.e., time zone).

Exception handling

An exception isaspecial condition that interrupts the normal flow of program
execution. Exceptions let programs handle exceptional error conditionsin a
graceful manner. For example, an application might interpret saving afilein a
write-protected directory as an exception and provide an appropriate alert message
to the user.

1.5.2 Operating System Entities and Services

The Foundation framework provides classes to access core operating-system functionality
such as locks, threads, and timers. These services all work together to create a robust
environment in which your application can run.

Run loops

The run loop is the programmatic interface to objects managing input sources. A
run loop processes input for sources such as mouse and keyboard events from the
window system, ports, timers, and other connections. Each thread has a run loop
automatically created for it. When an application is started, the run loop in the
default thread is started automatically. Run loops in threads that you create must be
started manually. Wel'll talk about run loopsin detail in Chapter 8.

Notifications

The notification-related classes implement a system for broadcasting notifications
of changes within an application. An object can specify and post a notification, and
any other object can register itself as an observer of that notification. This topic will
also be covered in Chapter 8.

http://www.it-ebooks.info/

www.it-ebooks.info

Threads

Locks

Tasks

Ports

Timers

A thread is an executable unit that has its own execution stack and is capable of
independent input/output (1/0). All threads share the virtual-memory address space
and communication rights of their task. When athread is started, it is detached from
itsinitiating thread and runs independently. Different threads within the same task
can run on different CPUs in systems with multiple processors.

A lock is used to coordinate the operation of multiple threads of execution within
the same application. A lock can be used to mediate access to an application's
global data or to protect a critical section of code, alowing it to run atomically-
meaning that, at any given time, only one of the threads can access the protected
resource.

Using tasks, your program can run another program as a subprocess and monitor
that program's execution. A task creates a separate executable entity; it differs from
athread in that it does not share memory space with the process that createsit.

A port represents a communication channel to or from another port that typically
resides in a different thread or task. These communication channels are not limited
to a single machine, but can be distributed over a networked environment.

Timers are used to send a message to an object at specific intervals. For example,
you could create atimer to tell awindow to update itself after a certain time
interval. Y ou can think of atimer as the software equivaent of an alarm clock.

1.5.3 Object Functionality

The Foundation framework provides the functionality to manage your objects-from
creating and destroying them to saving and sharing them in a distributed environment.

Memory management

Memory management ensures that objects are properly deallocated when they are
no longer needed. This mechanism, which depends on general conformanceto a
policy of object ownership, automatically tracks objects that are marked for release

http://www.it-ebooks.info/

www.it-ebooks.info

and deallocates them at the close of the current run loop. Understanding memory
management isimportant in creating successful Cocoa applications. We'll discuss
this critical topic in depth in Chapter 4.

Serialization and archiving

Serializers make it possible to represent the data that an object containsin an
architecture-independent format, allowing the sharing of data across applications. A
specialized serializer, known as a Coder, takes this process a step further by storing
class information along with the object. Archiving stores encoded objects and other
datain files, to be used in later runs of an application or for distribution. This topic
will also be covered in depth in Chapter 4.

Distributed objects

Cocoa provides a set of classes that build on top of ports and enable an interprocess
messaging solution. This mechanism enables an application to make one or more of
its objects avail able to other applications on the same machine or on aremote
machine. Distributed objects are an advanced topic and are not covered in this
book. For more information about distributed objects, see /Developer/
Documentation/Cocoal/ TasksAndConcepts/ProgrammingTopi cs/Distr Objects/index.
html.

1.5.4 Fileand 1/0O Management

Filesystem and input/output (1/0) functionality includes URL handling, file management,
and dynamic loading of code and localized resources.

File management

Cocoa provides a set of file-management utilities that allow you to create
directories and files, extract the contents of files as data objects, change your
current working location in the filesystem, and more. Besides offering a useful
range of functionality, the file-management utilities insulate an application from the
underlying filesystem, allowing the same functionality to be used to work with files
on alocal hard drive, a CD-ROM, or across a network.

URL handling

URL s and the resources they reference are accessible. URL s can be used to refer to
files and are the preferred way to do so. Cocoa objects that can read or write data
from or to afile can usually accept a URL, in addition to a pathname, as the file
reference.

http://www.it-ebooks.info/

www.it-ebooks.info

1.5.5 Other Services

The Foundation framework provides the ability to manage user preferences, the undo and
redo of actions, data formatting, and localization to many languages. Cocoa applications
can also be made responsive to AppleScript commands.

http://www.it-ebooks.info/

www.it-ebooks.info

1.6 The Application Kit Framework

The Application Kit framework (or AppKit, asit's more commonly called) contains a set of
over 120 classes and related functions that are needed to implement graphical, event-driven
user interfaces. These classes implement the functionality needed to efficiently draw the
user interface to the screen, communicate with video cards and screen buffers, and handle
events from the keyboard and mouse.

Learning the many classes in the AppKit may seem daunting at first. However, you won't
need to learn every feature of every class. Most of the AppKit classes are support classes
that work behind the scenes helping other classes operate and with which you will not have
to interact directly. Figure 1-4 shows how AppKit classes are grouped and rel ated.

Figure 1-4. The Application Kit framework's features

Lhser Feature Application
interface integration ilities
Windows Text Document arch

Views Fonts Pasteboards
Panels [mages Drag and drop
Controls Calor Printing
Widgets Filesystem access
Spelichecking

1.6.1 User Interface

The user interface is how users interact with your application. Y ou can create and manage
windows, dialog boxes, pop-up lists, and other controls. We'll cover these topics in depth

starting in Chapter 6.

Windows

The two principle functions of awindow are to provide an areain which views can
be placed and to accept and distribute to the appropriate view events that the user
creates through actions with the mouse and keyboard. Windows can be resized,
minimized to the Dock, and closed. Each of these actions generates events that can

http://www.it-ebooks.info/

www.it-ebooks.info

be monitored by a program.
Views

A view is an abstract representation for all objects displayed in awindow. Views
provide the structure for drawing, printing, and handling events. Views are
arranged within awindow in anested hierarchy of subviews.

Panels

Panels are atype of window used to display transient, global, or important
information. For example, a panel should be used, rather than awindow, to display
error messages or to query the user for aresponse to remarkable or unusual
circumstances.

The Application Kit implements some common panels for you, such as the Save,
Open, and Print panels. These common panels give the user a consistent ook and
feel for performing common operations.

Controls and widgets

Cocoa provides a common set of user-interface objects such as buttons, siders, and
browsers, which you can manipulate graphically to control some aspect of your
application. Just what a particular item doesis up to you. Cocoa provides menus,
cursors, tables, buttons, sheets, sliders, drawers, and many other widgets.

Asyou'll find throughout this book, the Cocoa development tools provide quite alot of
assistance in making your applications behave according to Apple's Human Interface
Guidelines. If you are interested in the details of these guidelines, read the book Inside Mac
OS X: Aqua Human Interface Guidelines, commonly known asthe "HIG." You can find a
local copy of the HIG in /Devel oper/Documentation/Essential sy AquaH| Guidelines/

AquaHI Guidelines.pdf.

1.6.2 Feature Integration

The AppKit gives your applications ways to integrate and manage colors, fonts, and
printing, and it even provides the dialog boxes for these features.

Text and fonts

Text can be entered into either simple text fields or into larger text views. Text
fields allow entry for asingle line of text, while atext view is something that you
might find in atext-editing application. Text views also add the ability to format
text with avariety of fonts and styles. We'll see the text-handling capabilities of

http://www.it-ebooks.info/

Images

Color

www.it-ebooks.info

Cocoain action in Chapter 11.

Images encapsul ate graphics data, allowing you easy and efficient access to images
stored in files on the disk and displayed on the screen. Cocoa handles many of the
standard image formats, such as JPG, TIFF, GIF, PNG, PICT, and many more.
We'll work abit with imagesin Chapter 13.

Color is supported by avariety of classes representing colors and color views,
Thereisarich set of color formats and representations that automatically handle
different color spaces. The color support classes define and present panels and
views that alow the user to select and apply colors.

1.6.3 Other Facilities

The AppKit provides a number of other facilities that allow you to create a robust
application that takes advantage of all the features your users expect from an application on
Mac OS X.

Document architecture

Document-based applications, such as word processors, are some of the more
common types of applications developed. In contrast to applications such as
iTunes, that need only a single window to work, document-based applications
require sophisticated window-management capabilities. Various Application Kit
classes provide an architecture for these types of applications, smplifying the work
you must do. These classes divide and orchestrate the work of creating, saving,
opening, and managing the documents of an application. We'll cover the document
architecture in depth in Chapter 10.

Printing

The printing classes work together to provide the means for printing the
information displayed in your application's windows and views. Y ou can aso
create a PDF representation of aview. You'll see how to print in Chapter 12.

Pasteboards

The pasteboard is arepository for datathat is copied from your application, and it
makes this data available to any application that caresto use it. The pasteboard

http://www.it-ebooks.info/

www.it-ebooks.info

implements the familiar cut-copy-paste and drag-and-drop operations.
Programmers familiar with Mac OS 9 or Carbon will recognize this functionality as
the "Clipboard."

Drag-and-drop

With very little programming on your part, objects can be dragged and dropped
anywhere. The Application Kit handles all the details of tracking the mouse and
displaying a dragged representation of the data.

Accessing the filesystem

File wrappers correspond to files or directories on disk. A file wrapper holds the
contents of afilein memory so it can be displayed, changed, or transmitted to
another application. It also provides an icon for dragging the file or representing it
as an attachment. The Open and Save panels also provide a convenient and familiar
interface to the filesystem.

Soellchecking

A built-in spell server provides spellchecking facilities for any application that

wants it, such as word processors, text editors, and email applications. Any text
field or text view can provide spellchecking by using this service. We'll enable
spellchecking in an application we build in Chapter 10.

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 2. Cocoa Development Tools

Getting started with Cocoa requires that quite a few concepts be presented at once. Since a
book is alinear construction, we have had to make some choices as to what pieces to
present first. In order to get your hands dirty using the tools, we chose to introduce Apple's
Development Toolsfirst as away to get you started in building your first Cocoa
application. You'll see some concepts here that will be glossed over. Don't worry; we will
revisit them as we go. For now, though, just go along for the ride and try not to pay too
much attention to the details we're saving for later.

http://www.it-ebooks.info/

www.it-ebooks.info

2.1 Installing the Developer Tools

When Applereleased Mac OS X, they made aredlly great decision. They decided to provide their development
toolsto every Mac user for free. These tools allow development of Carbon- and Cocoa-based applications, system
libraries, BSD command-line utilities, hardware device drivers, and even kernel extensions. We'll be focusing on
two of these tools to develop Cocoa-based applications throughout the book: Project Builder for editing,
compiling, and debugging source code, and Interface Builder for laying out the graphical user interface (GUI)
components for the application.

By default, the tools aren't installed, as most users won't use them and probably want the almost 500 MB of disk
space for something else. But developers can easily find them and install them from a variety of sources. And,
since they are free, any user who wantsto try developing software can do so by investing only thetime it takes to
learn.

Y ou can quickly check to seeif you have the Developer Toolsinstalled. If you have a/Developer/Applications
folder on your hard drive, as shown in Figure 2-1, you are ready to go. If not, you'll need to install the tools from
either the Developer Tools CD that came with your copy of Mac OS X or from a disk image you can download
from the Apple Developer Connection (ADC) site.

Figure 2-1. Apple's development toolsin the filesystem

Apalications

- i =m ; R A
1 ef 22 ®mems scied, 589 GB awailabde
% Hetwaork Apphcations Applearions o Apphe @ T
[S T Do umamation Extra
I Ticand usn B Library Exampli || Filefsierge
- hyatem Hexde 5| NG Browss (i | \
& Users ¥id _:.;":Il'.!. ICimposeEr |
Pzl stibes # Imberace Builder -
Paleiles = IR . plore
Frogect Lxfra yialromyser
vl "J Pelaalloon: Crebrumy Hame: Projsct
| MR AL sBuildar Bl s
B ObgeiAllor Kind- Application
Opgall Al Size: 2.1 MB
Ol GL Profiler Creared: 7131032
Openl . Builde Modified: F/15/02
@ PackageMake Wersion: <41
B PEFYiewer
® Pixie
Project Builder
-\.EI opert... Edite
E Ouartz Debu
AT
b Thread Viewer

2.1.1 Installing from the Developer Tools CD

A CD containing the Developer Tools comes with every boxed set of Mac OS X (including Mac OS X Server). To
install the tools, simply find the CD (it's the gray one), put it into your CD-ROM drive, and double-click the
Devel oper.mpkg file that appears in a Finder window, as shown in Figure 2-2.

Figure 2-2. The Developer Toolsinstallation file

http://www.it-ebooks.info/

www.it-ebooks.info

Developer Tools

7 items, 4 ME available
¥ s

Abaut AppleSoript About Deweloper RemowalldDevFilas

Studio.pdi Tools. pd

Carponlib S0E Dieveloper, Tipkg Fackages

2.1.2 Installing from the ADC Site

If you can't find your Developer Tools CD, or if you received aMac OS X upgrade package that didn't include it,
you will need to go to the ADC member web site at http://connect.apple.com and download a disk image.

To download the tools, log in to the ADC Member web site, click on Download Software in the navigation bar,
then click on the Mac OS X subcategory link that appears. From this page you can download the Developer Tools
either in segments or in one big chunk. If you download the Tools in segments, simply double-click on the first
segment. Stuff-I1t will launch and put all the segments together into onefile.

” Membership in the Apple Developer Connection hasiits privileges. There are many
levels of membership available. The free online membership gets you a good range of
wl 4 benefits, including access to the latest version of the Developer Tools and the ability
to track bugs that you submit. Y ou can register, free of charge, for online membership
at http://connect.apple.com.

2.1.3 Upgrading Your Tools

Apple provides regular updates to the Developer Tools through the ADC Member web site. These updates, which
have been appearing at arate of two to three times a year, introduce new features, fix bugs, and improve the
available documentation. The only downside is that updates can be rather large. For example, the Developer Tools
release that came with Jaguar weighed in at 285 MB. Despite the size, you should budget some time to download
and use the latest versions from the ADC web site.

;-‘:_- Because of the large size, updates to the Developer Tools are not available through
Mac OS X's Software Update tool (part of the System Preferences pane). Y ou should
be aware of thisif you're thinking that you can use Software Update as a way to
ensure that you have the latest set of Tools.

L
“wh

o

If you don't have a high-speed connection, you can get Apple to send you the latest
copy of the Developer Tools CD at anominal charge. Log in to the ADC member web
site, and go to the Purchase section.

http://connect.apple.com/
http://connect.apple.com/
http://www.it-ebooks.info/

www.it-ebooks.info

Docking the Developer Tools

After you'veinstalled the Developer Tools, one of the first things you should consider doing is adding
Project Builder and Interface Builder to your Dock. Since these applications are going to be used
throughout this book-and hopefully throughout your future as a Mac devel oper-having quick access
to the appsin your Dock can save you alot of time navigating through the Finder.

If you don't know how to add an application to your Dock, it's actually quite simple. Find your way to
the application you want to add, then ssmply drag itsicon to the Dock.

2.1.4 Project Builder

Project Builder is the hub application of Apple's Developer Tools. It manages software-devel opment projects and
orchestrates and streamlines the development process. Project Builder's key features include the following:

. A project browser that manages all the resources of a project, allowing you to view, edit, and organize
your source files.

. The ability to invoke the build system to build your projects and run the resulting program.

. A graphical source-level debugger that allows you to walk through the code, set breakpoints, and examine
call stacks.

. A code editor that supports language-aware keyword highlighting, delimiter checking, and automatic
indentation for many languages, including C, Objective-C, C++, Java, and AppleScript.

. Project search capabilities that allow you to find strings anywhere in a project.

. Source control management integration using the Concurrent Version System (CVS). CVS enables
development teams (local or distributed) to work together easily on the same source code base.

Project Builder's main window is shown in Figure 2-3.

Figure 2-3. Project Builder's main window

=] £y Skpboh - SETLrdPanelCorsralier.h

Build contrals I}ehugqinlg contrals

=
. . k- D B ST rnH Coemple r i S0 om0 sERmed Tt

) BTG raphd o o BT M e
STGroeh ek]

W0y | Fore ilanfirel lsr = EWireksCorkral lar |
sl ton S ereaps Tol - falhe i

. | NEag L abemerlr ok ke
w5 TP htteCoamircbarr . S | e g | oo | il 10T ;

R IR L L !

) Fa] BTG v P Cowmna gl 1 i NS larte |0 Ve G larie 102
Groupsandiles | % WERESIENEE | —_— i
Fﬂ"el) : 2 FTERaphird lae & gl Sl owl s
o b Lo Comb o
] ¢ Spdakeare iz
DiSClOSMIe b s 5 prtacs | [|§] | 5 enpatetis
. - i i |
miangle . T e

= (NSColer gy idlelon |

o i { el Wb b Lo o 1 jmender
Sl | O Pk bt b 1 2 T |
ArifpacingIl idarkst i et H
ST D TR | o o | 1 e |

http://www.it-ebooks.info/

www.it-ebooks.info

2.1.5 Say " Hello, World"

To introduce you to Project Builder and to tip our hat to almost every introductory tutoria ever written on
programming, we are going to build a very simple working program that prints "Hello, World!" Building and
running this program will also verify that you have aworking development environment.

2.1.5.1 Open Project Builder

Before you can start building applications with Project Builder, you will need to launch the application.
1. Find Project Builder in /Devel oper/Applications.
2. Double-click theicon.

If thisisthefirst time that you have started Project Builder, you will be presented with an Assistant to set up your
application preferences.

1. Click Next on the Assistant's welcome page.

2. Choose where the components of your programs will be placed when they are built. We recommend that
you go with the default, although you can change this at any time via Project Builder's preferences. Click
Next to move on.

3. Next, you'll be presented with a Window Environment configuration option, as shown in Figure 2-4. This

configuration sets how Project Builder'sinterface is presented to you. Choose between having everything
in one window and having everything occupy its own window.

Figure 2-4. Window Environment configuration

a Assisiant

s

L]
ﬂ Window Environment

Single Window Some Windows Many Windows

The choices abowe determine how Project Builder behaves when using template windows
“Singhe Window™ resirigts all development tasks 10 3 single all=in-ome wing ow
Seme Windows"™ opens separate wandows For the Find, Build, and Debug tasks,
“Many Windows™ opens a separate window For every develapment tash.

Cancel Previcus Fonext ¥

Thefiguresin this book use the Single Window environment, because thisis the environment that we

http://www.it-ebooks.info/

www.it-ebooks.info

personally use. If you have used another IDE, such as CodeWarrior, that uses many windows and are
comfortable with that approach, you may want to select one of the other two options.

4. When you have finished the first-time configuration, Project Builder displays the Release Notes for the
particular version you are using. Important information often shows up in these release notes. After the
first time you run Project Builder, you can access thisinformation using the Help —# Show Release
Notes menu.

2.1.5.2 Creating a new project

To create the "Hello, World" project, select File —# New Project. Project Builder then displays the New Project
Assistant, shown in Figure 2-5, which takes you through afew simple stepsto create a new project.

Figure 2-5. Project Builder's New Project Assistant

ﬂ New Project

Empty Projoect
Application

Bundle

Framework

Java

Kernel Extension
Standard Apple Plug-ins
Taol

Assistant

Cance Mext

The New Project Assistant lets you choose a project type. Based on the type of project you select, your Project
will be created with files that serve as a useful starting point. When you select atype of application here, Project
Builder createsit for you with a skeleton of the files that you will need for that particular application type. The
application types are as follows:

Application

Starting points for creating Cocoa applications (Objective-C- and Java-based), as well as Carbon- and
AppleScript-based applications

Bundle

Starting points for creating bundles that link against the Cocoa, Carbon, or Core Foundation frameworks

Framework

http://www.it-ebooks.info/

www.it-ebooks.info

Starting points for creating frameworks that link against either Cocoa or Carbon
Java

Starting points for developing Java applets or applications using either the AWT or Swing APIs
Kernel Extension

Starting points for developing both generic kernel extensions and |OKit drivers
Sandard Apple Plug-ins

Starting points for developing palettes for Interface Builder, preference panes for the System Preferences
application, and screen savers

Tool

Starting points for creating command-line applications that link against the Core Foundation, Cocoa
Foundation, or Core Services frameworks

Throughout this book, we focus amost exclusively on two categories of applications: simple tools with no GUI
(called Foundation Tools) and applications with GUI windows. For this example, we will build asimple tool that
doesn't have a graphical interface. Proceed as follows:

1. Scroll down to thelist of Tool choices, and select Foundation Tool from thelist, as shown in Figure 2-5,
and click Next.

2. The Assistant gives you an opportunity to name your new project and choose alocation in the filesystem
in which to saveit. Type hello in the Project Name field, as shown in Figure 2-6.

3. If you Tab to the location field, you will see that Project Builder gives you the option of saving the project
in ~/hello. Thiswill create anew directory in your home directory named "hello". However, for the
purpose of working through the examples in this book, we recommend that you change thisto ~/
LearningCocoa /hello. That way, all of the projects you create with this book can be saved in the ~/
LearningCocoa directory.

4. Click Finish.

Figure 2-6. Naming a Project Builder project

http://www.it-ebooks.info/

8 ASSiSLant
"T :
Mew Foundation Tool

Project Mame: | hello

F s w.
Location: ~/LearningCocoa/hello) Choose...
{ Cancel ¥ " Previous f Finish %

When you finish creating the project, the main project window opens, as shown in Figure 2-7.

Figure 2-7. Project Builder's main window

www.it-ebooks.info

800 helle - main.m =
- ‘nl" Ll ¥ _I
h L3
N ‘k (v | v@, @& hello A
s ':'"‘_";; :T' Files &, Find %, Bulld B Run | Debug
v LI]
¥ 7 Source é im| main.m;l = <ko salected symbal> = ﬂﬂ@
] Simport < oundat 1onsF cundat van b
T Documentation
- ! I'rll:l : int. mmyn {int arge; const char # orgw[]) {
—_ ' @ NSautors leasePaol * pool = [[MS&utoreleasefool allos]
¥ [0 Exrernal Frarneworks o init]s
.4 & |F| Foundation. frarmey 3
¥ | Products g Joingerh code hara,.
[le-]] HSLog{a Hello, World!"h;
[poo | Telenss]s
A return @3
3 }
4
&
i)
T
5
-
&
E
-]
a
i

Notice that Project Builder uses hierarchical groups to organize the various parts of a project. In this project, these

groups are the following:

Source

This group contains main.m, the file that contains the el n function that is the entry point for your

application.

Documentation

http://www.it-ebooks.info/

www.it-ebooks.info
This group contains a prototype Unix manpage for the program.[l]
External frameworks and libraries

This group contains references to the frameworks that the application imports to gain access to system
services.

Products

This group contains the results of project builds and is automatically populated with references to the
products created by each target in the project.

These groups are very flexible in that they do not necessarily reflect either the on-disk layout of the project or the
manner in which the build system handles the files. Their sole purpose isto help you organize the filesin your
project. The default groups created for you by the templates can be used as they are or rearranged however you
like.

To see the source code for the application’s entry point as shown in Figure 2-7:

1. Inthe Groups & Fileslist of Project Builder's main window, click the disclosure triangle to the left of the
Source group.

2. Click on theicon for the main.mfile. Y ou will see the contents of the file in the code editor.

The main.mfile contains the entry point for the application. The Foundation Tool project template provides a
standard main function that prints "Hello, World!", so we don't even need to add any code.

i mport <Foundati on/ Foundati on. h> /11

int main (int argc, const char * argv) {
NSAut or el easePool * pool = [[NSAutorel easePool alloc] 1nit]; /1

/! insert code here...

NSLog(@ Hel | o, Veorld!"); /1 4
[pool rel ease]; /[l 5
return O; /'l 6

}

Now let'swalk through the code, line-by-line, so you can get afeeling for what's going on here:

1. Imports the Foundation framework. This directiveissimilar to #i ncl ude, except that it won't include the
same file more than once.

2. Declaresthe standard C nai n function for a program. This function is where execution starts when the
program is started.

3. TheNSAut or el easePool isone of Cocoas memory-management tools. We'll cover more about how
memory management worksin Chapter 4.

4. The NSLog function works very much like pr i nt f inthe C language. The differenceisthat NSLog

http://www.it-ebooks.info/

www.it-ebooks.info
takesan NSSt r i ng object instead of aC string. The@ . . . " construct isacompiler directive that
creates an NSSt r i1 ng object using the characters between the quotation marks.
5. Thisline contains another part of Cocoa's memory housekeeping that we will explain in depth later.

6. A return from the mai n function indicating anormal program exit.

- Why does NSLog have the NS prefix? Simple: NS stands for NeXTSTEP. All of the
classes and functions in the Cocoa frameworks start with NS to help protect the
namespace in which all functions and classes exist from collisions. The continued use
of NS isavestige that shows Cocoa's heritage.

2.1.5.3 Building the project

To build the project, click the Build button in the main window. It's the one that |ooks like a hammer on the far
left side of the toolbar. A dialog box will appear, asking you to " Save before building?' Click Save All, or hit
Return, to save and build the project. Asthe project builds, Project Builder's build pane opensto reveal detailed
information about the build as it progresses. When Project Builder is finished-and encounters no errors along the
way-it displays "Build succeeded” in the lower-left corner of the project window, as shown in Figure 2-8.

Figure 2-8. Project Builder after successfully building the project

Build hutton
Y 2 bl = main,m
= o |- 5
R UE‘_ '%. = nelo H
Croups & Files .
g het q
SHITLE :—
o mi maif.m -
Wtarnsl Frampwesrks and Librae
- r, Foundatian. frar 3
Froducts o 2, Faifed ¢ “n Buid o Riifi I D Dug
l E | mainml # <No seleced ypmbels & Y
=
¥
1 L owaln L0t arge, *oapge[]0 {
2 Wtore |eossron] ¥ pon| = | [WiRstorslecsePon| olloc] wmi];
E HoLog! i ¥
E [eoal release]:

IrgETs

= Rreakpminis

Euild succesded

Status message

http://www.it-ebooks.info/

www.it-ebooks.info

” If you don't want Project Builder to question you to save files each time you try to
buid a project, you can change this option in Project Builder's Preferences. Select
wh &. Project Builder —# Preferences —# Building, and then select Always Save from
the pul-down menu next to Unsaved files.

2.1.5.4 Solving build problems

The code for this program should compile without a problem, since Project Builder generated it. However, when
you write code yourself, you won't always be so lucky. To see how Project Builder notifies you of build problems,
let's create one. Remove the semicolon right after the NSLog(@ Hel | o, Wor | d! ") statement; then try
building the project. You'll see abuild failure notice, as shown in Figure 2-9.

Figure 2-9. Build failed

Pl - Paif.

rilan
o

reducl . Fang g “wBudd & & Run I Cebun

a*
ik

m| k. i

il Lo

nt waEin (Lt arges, coml of e arge)} {
Hiubore lensePool ¥ posl o [[HSduloreleosePool alloz] init];

H v e bk

HELag
[pod T lenss];

agels

= Errakpoinia

Bunlg S 42 Rrromg

Project Builder tells you that there was a syntax and parse error. To see where the error is, click on the syntax
error message, and Project Builder highlights the line about which the compiler is complaining. Unfortunately, the
compiler is not smart enough to figure out that we don't have a semicolon in the right place; it just notices that it
has run across some syntax that it did not expect. Thisistypical with syntax errors. If you don't see the problem at
first, look at the line of code above the reported line.

Add the missing semicolon back in after the NSL.og function, and recompile by clicking the Build button to get a
working program again.

2.1.5.5 Running the application

Congratulations! You've just created your first Cocoa application and didn't even have to type in any code. All that
isleft to doisclick the Build and Run button, as shown in Figure 2-10. When the application launches, the Run

pane of Project Builder's main window will enlarge to display the output of the NSL.og function.

http://www.it-ebooks.info/

www.it-ebooks.info

” Since building and running is a straightforward process, in future chapters we don't
tell you how to "build and run" your application-we just say "build and run your
w! 4. application.”

Figure 2-10. Project Builder's main window after running Hello World

Build and Fun

Fielbi — rdl . —

*k ;',-h © (o -

¥ Croups & Files

_bll- L

1Fdes

SOUrCE
- m main.m
Exnernal Framewsoeks and Libis
o F) Foundation. frameworic i
Froducrs ;’
i | hello :
E; 0, Fured “y, B i 3 Run '} 1 B by
m| mainm T § mand § o i;'. -_'-
f L m@in {inl orge, * aege 10
8 WHatore lenssfool 4 pool = [[WautorslegesePoc| allec] init]s
&
HELogy . !
= [Eesal rovlmaza]
:'._F " % -
F
]
1
3
L}

helle exited normally

In addition to the string, the NSLog function prints the current date and time, the program name, and the process
ID number (PID) of the program. Since thisis atool application with no GUI, you might want to see the behavior
of this program on the command line.

1. Open up aTerminal window, found in the /Applications/Utilities folder.

"f o Aswith Project Builder, you may want to add the Terminal application to your
o Dock for easy access, if you haven't aready done so.
"y

T
LT

2. The hello executableis built into a subdirectory of your project. To run it, enter the following into the
Termina window:

[l ocal host: ~] duncan% Lear ni ngCocoa/ hel |l o/ bui |l d/ hell o
When the program is run, you should see something similar to the following output:

2002- 06- 08 23:23:29.919 hell o[490] Hello, World!

http://www.it-ebooks.info/

www.it-ebooks.info

The timestamp and process ID information come in handy when you are looking for the output from a program
that was launched from the Finder, but not from inside of Project Builder or from the command line. In those
cases, the output from NSLog will show up in the system's message log. Y ou can easily view these messages
using the Console application, also found in the /Applications/Utilities folder.

If you have spacesin the folder in which you saved your program, the Terminal shell
"5 will complain. The reason is that spaces are used to separate the arguments in a shell
command and must be escaped. If you saved your project into a~/Learning Cocoa
directory (notice the space), your command would need to look like this:

[l ocal host: ~] duncan% Learni ng\ Cocoal/ hell o/ build/hello

The backslash in front of the space tells the shell that the space is part of the path of
the program.

Console Versusthe Terminal

The Terminal application is the command-line interface to Mac OS X. It presents an interface to what
old-school Unix users call the "shell.” In ashell, you can issue any command line you want and see it
executed. In contrast, the Console is asimple log of messages printed to STDOUT by various
programs, which do not end up anywhere else. In the Console, you will typically see messages from
various background processes and, sometimes, debug statements from GUI programs.

2.1.6 Using the Debugger

Project Builder provides an easy-to-use interface to the system’s debugger that lets you step through code line-by-
line, set breakpoints (places to pause the execution of the program), and view variables and threads. The following
steps allow you explore the debugger.

1. Set abreakpoint in your code by clicking into the left margin of the code editor near the mai n method
declaration, as shown in Figure 2-11. Notice that where you click, a marker appears.

Figure 2-11. Setting a breakpoint

http://www.it-ebooks.info/

Build and Defug buttan

hella - mEn.m

www.it-ebooks.info

& hallo = |
@ Croups & Filis
¥ Lk halle
w SoedCE g
=3 m| mainm L
W Eierdd Frameswids ond L
~ B [y Fourdacon framesark l
* Fradums E S Fnd dp S Buikd 2 Rurn s i Dabuag |
M| hell= g [+] e LD R maisl ¥ a9
& 1w gy P A LR B T T
Breakpaint T v g []) {
",Idlmr Hisutare |sasefral * pacl = | [Hikstcreieossfool alloc] init];

T e

& Brdabpiails) B Taigend

Debupging of hello 3bopoed

WaLBQLA“Hel e, Har idl “}y
[penl Teleaza];

!
H

2. Now click the Build and Debug button. Thiswill start the debugger and then load the hel | o program into
it. Execution will stop at the first statement after the breakpoint. In this case, it will stop at the first line of
our main method, as shown in Figure 2-12.

Figure 2-12. The debugger in action

Stop Debueg session buttan Thread stack viewer Festart Resume Stepover function
helle § mainum =
_ ® hella = Ta 4. ITF
& Croupih Files [r——y— e ——
v Y halia = - d
v [0 Scunce ! Thread- | =1 wanahie walue fumm
-) mart.m a WAL
¥ [Esvzmal Sramesoris and L ® Frame S 1
L4 # i r| lowndation framewnork 0 main B iy Fn b 1T
¥ [Prosicrs) 1 _ikail ¥ Localy
i halia é z ¥z =]
Fl
H
g_ | e e e y patE
WFind 4 S ludd Fhan |0 Delup
-_ a] mainomd 8w 800
Fimgaort & cnaot (o, Foman Lo,
2 mm it waln {int o, v ® arge[]h {
Cument Ebore emeion] ¥ gl o [[WSAulsrelesselos| albee] bniv]y
expcution ")
lime i ML og oM | T}
E [pe3ad peLeama]y
retyurn A
E +
L}

$ropped at breakpoma,

Variable
viewer

Notice that Project Builder shows both athread stack viewer and a variable viewer. The thread stack

http://www.it-ebooks.info/

www.it-ebooks.info

viewer shows execution stack. The main method is at the top of the stack, indicating that this is the method
within which execution is stopped. The variable viewer gives the values of al the arguments and variables
that are applicable in the function. Notice the value of the pool variable.

3. Click once on the Step over Function button (called out in Figure 2-12). Note that the current execution

highlighter movesto the next valid line of code. Also notice that the value of the pool variableis
highlighted in red. This means that the pool variable wasjust set. The valueis actually a pointer to the
contents of the object in memory.

4. Click the Step over Function button once again. The NSLog function was called. To see the output, click
the Console tab above the variable viewer, as shown in Figure 2-13. Also notice tht the value of the pool

variable is no longer red. This highlighting lasts only one step after the contents of a variable change.

Figure 2-13. Console output in the debugger

Output Comeale tab
aoaé kel - mifim.m =
F . a) ""'. .
"k G : | i (] |-!-| b
Crowm & Filas "I L ..-.-) : g - .
2} bk |
O :_ i [1
-
ucli Py fide
B —
tahdng b prooesa 16871 Ghrsesd i [
7}
z
Al gt
)
i) -1 b Lossol g || Slandasd LD
T 1 y ¥arable WELE
- Argum
] # rame a
- ey 3 i
E i (T L
Loral
LES E
"
[
| &
4, Fired “ Buad = Eun k4 Dmizug
y
E W 5
= 1 }
; m el wn {ieL drge, * e []) 4
i Hikutors lsassfmnl * pasl = [[HibctoraleamsFonl @llng] 1nit];

Seopped afver svzp

5. Click the Continue execution button to let the program execute as normal. Y ou can click the Restart button
(called out in Figure 2-12) to restart the program at the beginning of execution.

6. Click the Stop button in the toolbar to exit the debugger.

Now that we have explored how to say "Hello, World!" to the console, let's take alook at building a GUI
application that says hello in amuch different way.

http://www.it-ebooks.info/

www.it-ebooks.info

(4 v anpages are the standard form of Unix documentation for command line utilities and are written as plain text files
withnrof f nmacros. See http://www.opensource.apple.com/projects/documentation/howto/html/

man_page HOWTO.html for more information.

http://www.opensource.apple.com/projects/documentation/howto/html/man_page_HOWTO.html
http://www.opensource.apple.com/projects/documentation/howto/html/man_page_HOWTO.html
http://www.it-ebooks.info/

www.it-ebooks.info

2.2 Interface Builder

Interface Builder is where you create the graphical user interfaces (GUIs) for your
applications. Instead of typing code by hand to lay out the interface components, you drag
objects from palettes and drop them onto the GUI you are creating. Objects can be
connected to one another and with instances of classes that you provide as part of your
application.

Interface Builder generates ni b'? files that are an archive of object instances and are
packaged up with your built application. Unlike the product of many user interface-building
systems, nib files are not generated code-they are true archived (also known as "freeze-
dried") objects consisting of related user interface objects and supporting resources, along
with information about how the objects are related. The objects in the nib file are created
and manipulated using Interface Builder's graphical tools.

Interface Builder's standard pal ettes hold an assortment of AppKit components. Other
pal ettes can include Cocoa objects from other frameworks, third-party objects, and custom-
compiled objects.

2.2.1 Graphical "Helo, World"

To introduce you to Interface Builder, we are going to create a program that says "Hello,
World" in awindow on the screen instead of as atext messagein a Terminal window. To
begin, we need to make a new project of atype different than our previous Hello World
application. Choose New Project from the File menu. Project Builder then displays the New
Project Assistant. Thistime, create a project of type Cocoa Application, as shown in Figure

2-14.

Figure 2-14. Creating a Cocoa application

http://www.it-ebooks.info/

www.it-ebooks.info

B8 Assistant
ﬂ New Project
Ernpty Project o~

¥ Application
AppleScript Apalication
AppleScript Dooument-hased Application
AppleScript Draplet
Carban Application e
Carban Application (Mib Based
Cocoa Applicatian
Cocoa Document - based &pplicatian
Cocoa-|ava Application
Cocoa-|ava Document-based Apgplication
¥ Bunale
Carbam Bundle
CFPsgin Bundle
Cocoa Bundie
¥ Framawork bl

f Cancel ° F Next Y

Thiswill create a project that is set up as a simple Cocoa application. Go ahead and create
the project, giving it the name Hello World and saving into your ~/LearningCocoa folder.
When you have created the project, you will see awindow similar to that shown in Figure 2-

15.

Figure 2-15. Hello World application in Project Builder

http://www.it-ebooks.info/

www.it-ebooks.info

4 Hello Waorld - main.m

N3 o § (e ella werld [§

@ Grouwps & Files

| %, Find ', Busild T Ain 1 Cebig
J_-_jln-l s -
Clazzes F m mainan 1l w0 <k salachad gpmbals @
L E
Db Sriase g
¥ Ml main.m
Resources
- MainManu,mibk i
| TETo i
o afaPlistarrings =
Frameworis =
!
Linked Frarmewarks t mEindint @rgo,. i g1
o Cocoa framewnrh {
P ——— 2 turn M3Applicationtfoinfarge . argy):
[- . P E H
riap AN -
[=}
o

Tangois

= Brcalgpownibs

The Cocoa Application project type uses adifferent set of groups to organize projects than
those used in the Foundation Tool example. The groups in this project type are as follows:

Classes

This group isempty at first, but is used to hold the implementation (.m) and header (.
h) files for your project's classes.

Other Sources

This group contains main.m, the file containing the main function that loads the
initial set of resources and runs the application. In Cocoa applications with graphical
interfaces, you typically don't have to modify thisfile.

Resources

This group contains the nib files and other resources that specify the application's
GUI.

Frameworks

http://www.it-ebooks.info/

www.it-ebooks.info

This group contains references to the Frameworks (Foundation and AppKit) that the
application imports to gain access to system services.

Products
This group contains the results of project builds.

To see what Project Builder provides for you by default, go ahead and build and run the
project. A blank window should appear once Project Builder is done compiling everything.
Play with thiswindow alittle bit, and you'll notice that you can resize, minimize, and
maximizeit.

Now, to finish our application, we should make it say "Hello, World" to us!
2.2.1.1 Open the main nib file

To begin constructing a user interface using Interface Builder, the first step isto open the
application's main nib file. Double-click MainMenu.nib in the Resources group of the
Groups & Fileslist of Project Builder's main window. Thiswill launch Interface Builder (if
it isnot already running) and open the nib file, as shown in Figure 2-16. A lot of windows
will appear. Y ou might want to hide your other running applications so that you can
concentrate on just the windows that belong to Interface Builder. Y ou can do this by using
the Interface Builder —# Hide Others menu.

These are the various parts of Interface Builder (called out in Figure 2-16):

Figure 2-16. Interface Builder

http://www.it-ebooks.info/

www.it-ebooks.info

Emipty interface window Control paletie window

'D "J Wirsdow = - L it s B r—

Minstances | Classes | Images | Sownds
."'q._ [} f
F = B

h_‘

Wanken

TH Wirdoaw

SMewokpplicaiion File Edit Window Melp

Menu har Nib file window

Nib file window

Thiswindow is where the various objects that are part of your nib file are defined
and manipulated. We'll explain more about the various parts of thiswindow in
Chapter 5.

Control palette window

Thiswindow contains all the controls that you can add to an interface. We'll explore
many of these controls throughout the book.

Menu bar

The menu-bar window contains the menu bar that will be active when your
application is running.

Empty interface window

Thisisthe window that will be displayed when your application is run. Notice that
it is the same size and in the same location on screen as when you Built and Ran the
application.

Interface Builder stores all kinds of information about user-interface objectsin an

http://www.it-ebooks.info/

www.it-ebooks.info
application's nib files. For example, you can set both the size and initial location of an
application's main window by simply resizing and moving the window in Interface Builder.
1. Move the window near the upper-left corner of the screen by dragging the titlebar.

2. Make the window smaller by using the resize control at the bottom-right corner of
the window.

To create our application, we need to add atext label to the window.

1. Select the Cocoa-Views by clicking the second button from the left top of the Cocoa
objects palette window, as shown in Figure 2-17. If you don't see the Cocoa pal ette
window for some reason, select Palettes from the Tools menu to bring it forward.

Figure 2-17. The Cocoa-Views palette

Cocoa Views buttan

Coc W
_— B .
= Tes |
3T
Bukton Sef
= # |_:E Field]
Sitch
Field2
= Radia Labhel Eord Text
Radio N small System Fong Tean

I‘.'-'.-5Hr'|‘| Font Text |

Teat [abel

2. Drag a System Font Text label from the pal ette onto the window.
3. Double-click on the new label and change the text to "Hello World".

4. Resizethe interface window to asmaller size, and move the text |abel to the center
of the window. Y ou should have something that looks similar to Figure 2-18.

Figure 2-18. Our finished Hello World interface

http://www.it-ebooks.info/

www.it-ebooks.info

a - Wi oy

Hella Wierld

Next, save your interface, as we are now done with Interface Builder. Some people refer to
saving the interface as "freeze-drying" it. All the various parts of the interface-definitions
about how they are related and connected-are saved in aform that can be quickly built up at
runtime. This processisalso caled " archiving” or "serialization."

To see the application in action:
1. Return to Project Builder.
2. Click the Build and Run button.

When the application runs, it opens up awindow containing the Hello World text. Note that
you can resize the window (although the text doesn't stay centered, we'll learn how to do
that in later chapters), minimize it, maximizeit, and closeit. Y ou can even quit the
application using the menu or the standard 3E-leyboard shortcut. All of this functionality
issimply "built-in" to Cocoa, allowing you to spend more time writing your applications
and less time taking care of details you shouldn't have to.

2] The name "nib" isan acronym for "NeXT Interface Builder," yet another vestige of Mac OS
X's heritage.

http://www.it-ebooks.info/

www.it-ebooks.info

2.3 Other Tools

In addition to Project Builder and Interface Builder, there are other applications that you
can use in the Cocoa devel opment process. Development tools that feature a GUI are listed
in Table 2-1. Except where noted, these applications are installed in the /Devel oper/

Applications folder.

Table 2-1. Other development tools

Name Description

Visually compares the contents of two files or two directories. Y ou
can use FileMerge to determine the differences between versions

FileMerge of the same source-code file or between two project directories.
Y ou can also use it to merge changes.

icns Browser Displays the entire contents of Mac OS X icon files.

| conComposer Creates Mac OS X icons from source art.

|ORegistryExplorer | Provides a hierarchical display of the system 1/O registry.

M easures the dynamic-memory usage of applications, finds
MallocDebug memory leaks, analyzes all allocated memory in an application,
and measures the memory allocated since a given time.

Tracks and displays al Cocoa and Core Foundation object
alocations for arunning application. ObjectAlloc alows you to
view the list of objects, aswell asthe call stack that resulted in
each allocation.

ObjectAlloc

PackageM aker Creates Mac OS X installer packages.

http://www.it-ebooks.info/

www.it-ebooks.info

Magnifies the screen area under the cursor, alowing you to see the
Pixie exact pixels comprising any onscreen object. Magnification is
adjustable from 1 to 12 times normal.

Opens, displays, and/or modifies the contents of a property list (.

Property List Editor olis) file

Displaysalist of al windows known to the system. This program
Quartz Debug allows you to turn on a Quartz debugging mode that flashes yellow
over areas of the screen as the window server updates them.

Analyzes performance characteristics of your application by

Sampler sampling the call stack of your program over a user-specified
period of time.
Thread Viewer Allows you to browse the high-level thread behavior of an

application.

2.3.1 Command-Line Tools

There are severa command-line tools for compilation, debugging, performance anaysis,
and so on, installed as part of the Developer Tools package. Many of these tools are ports
of standard Unix applications with which you may have prior experience. These tools,
listed in Table 2-2, can be found in the /usr/bin directory.

Table 2-2. Command-line development tools

Name/command Description

The GNU C compiler (gcc). Compiles C, Objective-C, C++, and

cc, gcc Objective-C++ source-code files.

A source-level symbolic debugger for C extended to support

gdb Objective-C, C++, and Objective-C-++.

http://www.it-ebooks.info/

www.it-ebooks.info

as Assembles; translates assembly code into object code.

Reads, writes, searches, and deletes user defaults. Thedef aul t s
defaul ts system records user preferences that persist when the application isn't
running.

Reads the contents of an Interface Builder nib file. The ni bt ool
ni bt ool prints classes, the object hierarchy, objects, connections, and
localizable strings.

| i bt ool Creates static or dynamic libraries from specified object binary files.

ot ool Displays specified parts of object files or libraries.

am Displays the symbol table, in whole or part, of the specified object

files.
pbxbui | d Allows Project Builder projects to be built from the command line
: Creates or refreshes a precompiled header file for each of the major
fi xPreconps
frameworks.
: Removes or modifies the symbol table that is attached to assembled
strip)
and linked outpui.
cus CV S alows teams composed of multiple members to coordinate their
work on acommon codebase.
Gathers the running behavior of a process and produces a report
sanpl e showing what functions were executed during the run of an
application.
| eaks Examines a process for malloc-allocated buffers that are not

referenced by the program.

http://www.it-ebooks.info/

www.it-ebooks.info

Although the Mac OS X development environment contains many tools, the tutorialsin
this book focus ailmost exclusively on the use of Project Builder and Interface Builder.
Some tools, such as the compiler, debugger, and linker, are usually invoked indirectly
through Project Builder when building a project. Others, such as ObjectAlloc, Quartz
Debug, and Sampler, are extremely useful to gain a deeper understanding of an
application's inner workings. Feel free to experiment with them at any point while working
through the tutorials in this book.

http://www.it-ebooks.info/

www.it-ebooks.info

2.4 Exercises

1. Locate the Project Builder and Interface Builder applications, and put them into the
Dock.

2. Locate the developer documentation, and place a shortcut to it in your Dock or in
your browser.

3. Watch the "Accessing APl Documentation in Project Builder" movie at http://
devel oper.apple.com/techpubs/macosx/Devel oper Tool s/ProjectBuilderAccess/
index.html.

http://developer.apple.com/techpubs/macosx/DeveloperTools/ProjectBuilderAccess/index.html
http://developer.apple.com/techpubs/macosx/DeveloperTools/ProjectBuilderAccess/index.html
http://developer.apple.com/techpubs/macosx/DeveloperTools/ProjectBuilderAccess/index.html
http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 3. Object-Oriented Programming with
Objective-C

Object-oriented programming isn't rocket science, but you can't learn it overnight either.
Thereisalot of terminology-composed of words like "encapsulation” and " polymorphism'
and phraseslike "is-a" and "has-a"-that goes with the territory. The concepts behind these
terms are not terribly complicated, but they can be hard to explain. Like most useful fields
of study, you must work with it awhile beforeit al clicks together in your mind. As each
concept becomes clear, you will gain a deeper understanding of the subject. That said, you
don't have to understand everything about object-oriented programming on the first pass to
make good use of the concepts.

In this chapter, we present the object-oriented concepts that matter most when working
with Cocoa, along with quite a bit of hands-on practice using those concepts. If thisisthe
first time you've approached object-oriented programming, read carefully, but don't worry
if you don't get everything at first. Just remember to flip back to this part of the book later
if something didn't sink in. If you already know a bit about object-oriented programming,
then you should treat this as arefresher and see how Objective-C's implementation of the
object-oriented concepts with which you are familiar works.

http://www.it-ebooks.info/

www.it-ebooks.info

3.1 Introducing Objects

Procedural programming divides the programming problem into two parts. data and
operations on that data. Because al of the functionality of a procedural program works on
the same set of data, the programmer must be very careful to manipulate the data of a
program in such away that the rest of the program can work correctly. He must be aware
of the entire program at alow level of abstraction so as not to introduce errors. Asa
procedural program growsin size, the network of interaction between procedures and data
becomes increasingly complex and hard to manage.

Object-oriented programming (OOP), first developed in the 19603,[1] restructures the
programming problem to alow for a higher level of abstraction. It groups operations and
datainto modular units called objects. These objects can be combined into structured
networks to form a complete program, similar to how the pieces in a puzzle fit together to
create apicture. In contrast to procedural programming's focus on the interaction between
data and functions, the design of objects and the interactions between those objects become
the primary elements of object-oriented program design.

By breaking down complex software projects into small, self-contained, and modular units,
object orientation ensures that changes to one part of a software project will not adversely
affect other portions of the software. Object orientation also aids software reuse. Once
functionality is created in one program, it can easily be reused in other programs.

Programming with objectsis quite like working with real-world objects. Take an iPod, for
example. It embodies both state and behavior. When you operate it, you don't necessarily
care how it works, aslong as it works in the way that you expect. Aslong as your iPod
plays music when you tell it to and synchronizes your music collection with iTunes when
you plug it into your computer, you're happy. Object-oriented programming brings this
same level of abstraction to programming and helps remove some of the impediments to
building larger systems. To enjoy listening to music, you don't have to know that iTunes
and your iPod use the MP3 format; you just put a CD into your computer and import the
music into your collection. iTunes and your iPod work together to download the music
from your computer when you plug in the iPod. Figure 3-1 shows these components

working together.

Figure 3-1. Real-world objectsinteracting together

http://www.it-ebooks.info/

www.it-ebooks.info

............... B

Rips from

.'?u.r:ﬁ o J'r(@

3.1.1 Classes of Objects

In the real world, there are often many objects of the same kind, or type. My iPod isjust
one of many iPods that exist in the world. In the lingo of object-oriented programming,
each iPod is an instance. An instance of an object has its own state and |eads an existence
independent of all other instances. My iPod probably has avery different collection of

music than yours does? But just as al iPods have the same set of buttons - allowing the
same set of operations (play, stop, etc.) - al instances of a particular object expose the
same functionality to the outside world.

Y ou specify an object by defining its class. Think of a class as a blueprint for making
object instances. It provides all the information needed to build new instances of an object.
Each class defines the internal variables that hold the data of an object instance and the
ways, or methods, by which that data can be manipulated. These methods define the
interface of the object. The interface is how other objects are allowed to useit.

On the back of every iPod is the phrase "Designed by Applein Cupertino. Assembled in
Taiwan." Thisisauseful analogy for thinking about how classes and objects relate to each
other. Inits corporate officesin California, Apple defined how an iPod operates and what
kinds of datait can store. Apple shipped those definitions to the factory in Taiwan that now
creates many unique instances of an iPod to ship to customers around the world. When you
create a class, you create a definition from which the runtime (the layer of software that
enables the object-oriented system to run) can create any number of objects (see Figure 3-

2).

http://www.it-ebooks.info/

www.it-ebooks.info

Figure 3-2. Runtime cr eates obj ect instances from a class

l Doject

definition Has referance bo clags ™ instance

L A
s Ii':e';i'le':i
1 o from class
.................. Objective-C | .
muntime

In Objective-C, classes are more than just blueprints. They are actually first-class objects
themselves that can have methods associated with the class and not with its instances.
These are called class methods. Every object created has a reference to its own class. The
iIPod analogy starts to get a bit stretched here, but imagine that each iPod had areferenceto
the plans on which it was based and could consult them at any time. Thisis sort of what it
means for an object to ook up its class object anytime it needs to do so.

3.1.2 Inheritance

We've defined a class to be a definition, or blueprint, from which object-oriented instances
are created. AniPod is an instance of the iPod class. But classes themselves can be defined
as specializations of other classes. For example, if you didn't know what an iPod was, you
would probably understand if | told you that it was a handheld MP3 player. In fact, all
handheld MP3 players share a certain number of characteristics. Like an iPod, aRio can
hold and play MP3 files downloaded from a computer. It can't hold as many songs as the
iPod, but at least some of the functionality is the same.

ol The iPod is actually much more than a portable MP3 player. It's
o also abootable FireWire drive that can hold any kind of data that
w! #&. youwant it to hold. People are finding some pretty creative uses

for it beyond playing music. In Objective-C, objects that can

perform other functions can declare that they obey a particular
protocol, or way of behaving. Welll talk more about protocols

and how they can be used effectively in Chapter 9.

Object-oriented programming lets us collect similar functionalities of different classes and
group them into a common parent class through inheritance. We can say that an iPod and a

http://www.it-ebooks.info/

www.it-ebooks.info

Rio are both types of MP3 players. If we define acommon VP3PPI ayer class, we can
gather certain aspects common to both devices into one class, as shown in Figure 3-3.

Thei Pod and R 0 classes are both subclasses of the VP3PPI ayer class. Likewise, the
VP3Pl ayer classisthe superclass of thei Pod and R o classes. Each subclass inherits
state (in the form of variable definitions) and functionality from the superclass. In this case,
both players inherit the same basic functions (play, stop, fast forward, etc.), but have very
different underlying implementations. The iPod uses a high-capacity hard drive while the
Rio uses flash memory.

Figure 3-3. Class hierarchy for the MP3Player class

MP3Player

Subclass fubclass

iPod Rio

Creating a new class is often a matter of specialization. Since the new class inherits all of
its superclass's behavior, you don't need to reimplement the things that work in the way that
you want. The subclass merely extends the inherited behavior by adding new methods and
any variables needed to support the additional methods. A subclass can alter superclass
behavior by overriding an inherited method, reimplementing the method to achieve a
behavior different from the superclass's implementation.

With Objective-C, a class can have any number of subclasses, but only one supercl ass’
This means that classes are arranged in a branching hierarchy with one class at the top-the
root class that has no superclass-as shown in Figure 3-4.

Figure 3-4. Theroot classin Objective-C

NSObject
I

NSArray N5Dictionary N55tring MP3Player

iPad Rio

http://www.it-ebooks.info/

www.it-ebooks.info

NSOhj ect istheroot class of this hierarchy. From NSCb| ect , other classesinherit the
basic functionality that lets them work in the system. The root class also creates a
framework for the creation, initialization, deallocation, introspection, and storage of
objects.

As noted earlier, you often create a subclass of another class because that superclass
provides most, but not all, of the behavior that you require. A subclass can have its own
unigue purpose that does not build on the role of an existing class. To define anew class
that doesn't need to inherit any special behavior other than the default behavior of objects,
you make it asubclass of NSChj ect .

object-oriented programming tend to use too much. Used
Inappropriately, it can lead to fragile software. In Cocoa, it's
often easier to use anew set of classes from a new class than to
use inheritance. Thisis called object composition. As you work
through this book, you'll see many examples of object
composition.

‘ Inheritance is a powerful concept-one that many people new to

[SIMULA 1 and SIMULA 67 were the first two object-oriented programming languages. They
were designed and built by Ole-Johan Dahl and Kristen Nygaard in Norway between 1962 and
1967.

(2 There's even a decent chance that you might not like the music on my iPod, and vice versa.

BBl some object-oriented programming languages, such as C++, allow classes to inherit
functionality from more than one superclass. This ability, known as multiple-inheritance, can often
lead to more problems than it solves. Objective-C provides protocols (discussed in Chapter 9) to
provide some of the benefits of sharing behavior (but not implementation) across the class
hierarchy.

http://www.it-ebooks.info/

www.it-ebooks.info

3.2 Creating and Using Objects

Now that we've introduced afew object-oriented concepts, we are going to dive into some simple code exercisesto
show how to apply this knowledge. The following steps will guide you:

1. In Project Builder, create a new Foundation tool (File —# New Project —# Tool —# Foundation Tool)
project named "objects’, and saveit in your ~/LearningCocoa folder.

2. Next, modify the main.mfile, located in the "Source" group, so that it looks like Example 3-1. The Foundation
tool project template automatically generates some of this code. The lines that you need to add are shown in
boldface type.

Example 3-1. Creating objects

int main (int argc, const char * argv[]) {

NSAut oRel easepool *pool = [[NSAutorel easepool alloc] init];

NSQbj ect * object; /Il a
obj ect = [NSCbj ect alloc]; /1 b
object = [object init]; /[l c
NSLog(@ Cr eat ed object: %@, object); /1 d

[pool rel ease];
return O;

}
Here's what the code that we added does:

a Declaresavariable named obj ect of type NSChj ect . You should recognize thisas aregular C
pointer.

b. Creates anew object of type NSChj ect and assignsit tothe obj ect variable. Theal | oc method
reserves (or allocates) memory space for the object and returns a pointer to that space. Well explain
more about methods in just a bit.

c. Beforean object isused in any way, it must beinitiaized. Thisi ni t call initializes the object so it can
beused. Thei ni t method returns afully initialized object ready for use. Since it is possible that the
I ni t method will return a different object, we assign thereturn to the obj ect variable again.

d. Printsarepresentation of the object to the consoleusingapr i nt f style format string with a %token,
indicating that the svalue of the object given after the format string should be printed.

There's actually a bit more going on in this code than what we've described. However, welll fill in the missing
pieces as we go to avoid introducing too many concepts at once.

http://www.it-ebooks.info/

www.it-ebooks.info

Format String Tokens

There are several methods in Cocoa, suchasNSLog and [NSSt ring stringWt hFormat |,
that can use format strings with alist of arguments. These format strings can contain all of the
normal pri nt f -style tokens, as well as a Cocoa-specific token for objects. You'll find the
following tokens to be useful:

%@

Print as an object
%l or %

Print as asigned decimal
%0

Print as an unsigned octal
%s

Print asastring
%

Print as an unsigned decimal
%X

Print as an unsigned hexadecimal

In addition to the tokens in this short list, you can add all sorts of modifiersto control precisely
how values are printed. Seethe pr i nt f manpage for complete information about format strings.
Y ou can access the manpage in either of the following ways:

o OpenaTermina window and enter ren pri ntf at the prompt.
o In Project Builder, usethe Help —# Open man page... menu item.

. Build and run the program. Y ou should see something like this on the console:
2002-06-11 23:17:16. 181 objects[477] Created object: <NSCbject: 0x5ae90>

Thistells us that we created an object of type NSCbj ect that islocated at the memory address Ox5ae90. This
isn't the most exciting information that could be printed, and it certainly won't win any user-interface awards,
but it shows us that objects are being created in the system by the runtime.

3 As a Cocoa programmer, you probably won't ever make direct use of the memory location
of the object instances you create. But under the hood, Cocoa uses this information to
“w! 4. |ocate and manipulate objects that you reference in code.

http://www.it-ebooks.info/

www.it-ebooks.info

Since objects should never be used without proper allocation and initialization, Objective-C programmers tend to
combine the methods into one line as shown in Example 3-2. Replace lines a, b, and ¢ from Example 3-1 with the

single bolded line in Example 3-2.

Example 3-2. Combing object allocation and initialization

int main (int argc, const char * argv[]) {
NSAut oRel easepool *pool = [[NSAutorel easepool alloc] init];

NSOhj ect * object = [[NSChject alloc] init];
NSLog(@ Creat ed object: %@, object);

[pool rel ease];
return O;

}

This shortens the allocation and initialization of an object to one line, ensuring that everything works properly, evenin
the case wherethei ni t method of aclass returns a different object than originally allocated. We will use this style of
object creation throughout the rest of the book.

3.2.1 Working with Multiple Objects

Working with multiple object instances of the same class is easy, aslong as you keep the references to different objects
distinct.

1. Edit the code in the project's main.mfile as shown in Example 3-3.

Example 3-3. Working with multiple objects

int main (int argc, const char * argv[]) {
NSAut oRel easepool *pool = [[NSAutorel easepool alloc] init];

NSObj ect * objectl [[NSCbj ect alloc] init];
NSOhj ect * object?2 [[NSChject alloc] init];
NSLog(@ obj ect1: %@, objectl);
NSLog(@ obj ect 2: %@, object?2);

[pool release];
return O;

}

2. When built and run, the program will print something similar to the following:

2002- 06- 11 15:59:29. 716 objects[370] objectl: <NSOhject: 0x4ce90>
2002-06- 11 15:59:29. 717 objects[370] object2: <NSObject: 0x4b410>

This example shows that two object instances of NSCbj ect have been allocated, and they occupy two
different locations in memory.

http://www.it-ebooks.info/

www.it-ebooks.info

3.3 Methods and M essages

In our discussion about objects so far, we've been using (and promised to explain) the term
method. Methods are structured like C functions and can be thought of as procedures; but,
instead of being global in nature, they are procedures associated with and implemented by
the object's class.

There are two kinds of methods: class methods and instance methods. Class methods are
scoped to the classitself and cannot be called on instances of the class. The al | oc method
is an example of a class method. Instance methods, on the other hand, are scoped to object
instances. Thei ni t method is an example of an instance method that is called on an
instance of an object returned by the al | oc method.

To call amethod, send an object a message telling it to apply a method. All those square
brackets that you have seen in the code are message expressions that result in methods
being called. Figure 3-5 shows the various parts of a basic message.

Figure 3-5. Objective-C message expression

Messane

Recurmed value Beceiver Method
ndme

anDbject =|[NSObject alloc];

In thisfigure, the message is the expression enclosed in square brackets to the right of the
assignment operator (equals sign). The message consists of an object, known as areceiver,
and the name of a method to call on that object. In this case, the object isthe NSOb| ect
class, and the method to be called isthe al | oc method. In response to receiving this
message, the NSChj ect class returns a new instance of the class that will be assigned to
thevariableanObj ect .

3.3.1 Argumentsin Messages

The message in Figure 3-5 calls a method that doesn't take any arguments. Like

procedures, methods can receive multiple arguments. In Objective-C, every message
argument isidentified with alabel (a colon-terminated keyword), which is considered part
of the method name. Figure 3-6 shows a message with a single argument.

Figure 3-6. Objective-C message expression with a single argument

http://www.it-ebooks.info/

www.it-ebooks.info

Message

Recarver Methaod Arg
Name

[rectangle setWidth:width];

In this figure, the message tells the runtime to call theset W dt h: method and passit the
argument wi dt h. Notice that a colon terminates method names that take an argument,
while method names that don't take an argument (likethe al | oc method in Figure 3-5)

don't have a colon.

Figure 3-7 shows a multiple-argument message. Here, the message and arguments are used
to set the width and height of the rectangle object towi dt h and hei ght , respectively.
Thismethod iscaled theset W dt h: hel ght : method.

Figure 3-7. Objective-C message expression with multiple arguments

Message

Recehver First part of hrg1 Secondpart Amg2
method name of methed
name

[rectangle setWidth:width height:height];

It will call amethod with two arguments. When using this
method, you must passin two arguments, |abeled and formatted
asin Figure 3-6. If you haven't used Smalltalk or one of its
derivatives, you will find this practice strange at first, but you'll
soon appreciate the readability it imparts to code.

‘ Notethat set W dt h: hei ght : refersto one method, not two.

3.3.2 Nested M essages

Figure 3-8 shows nested messages. By enclosing one message within another, you can use

areturned value as an argument without having to declare avariable for it. The innermost
message expression is evaluated first, resulting in areturn object. Then the next nested
message expression is evaluated using the object that was returned in the inner expression
asthe receiver of the second message. We saw thisin action in Example 3-2 when we

combinedtheal | oc andi ni t methods of NSChj ect .

Figure 3-8. Nested Objective-C messages

http://www.it-ebooks.info/

www.it-ebooks.info

Quter message
Inmer message

object = [[[NSObject alloc] init];

=

Nested messages work only when the inner expression returns an
object value. If the inner expression returns something else (for
example, ani nt) then acrash will result a runtime. Thisis
because messages can be passed only to objects, not to primitive

types.

3.3.3 How Messaging Works

The NSObj ect class ensures that every object in the system has an instance variable
named | sa. Thisvariable points to the class that defines how the object works.In addition,
every class object has areference to its superclass. Thisrelationship isillustrated in Figure

3-9.

Figure 3-9. Instances have areferenceto their class.

NS Object
superclass
4
SUper
iPad ; .
instance J i5g ---+-de) - iPod class

The class object contains quite a bit of information about the internals of the class and how
it works. Part of thisinformation is a method lookup table that maps selectors to methods,
as shown in Figure 3-10.

Figure 3-10. Method lookup table

http://www.it-ebooks.info/

www.it-ebooks.info

fethod lookup table

SEL | play method

iPod dass frreesrremeees +| SEL | pause method
SEL | stop method

A selector (defined as the SEL type in Objective-C) is a compiler-assigned code that
identifies a method to the runtime. When you send a message to an object, the compiler
actually creates code to perform acall to an Objective-C-defined function, which uses the
selector information to perform a dynamic method lookup at runtime. For more details
about how this functionality works underneath the hood, read Inside Mac OS X: The
Objective-C Language, located in the /Devel oper/Documentation /Cocoa/ObjectiveC
folder.

http://www.it-ebooks.info/

www.it-ebooks.info

3.4 Objective-C-Defined Types

So far, we've talked about afew of Objective-C's built-in types, such as SEL .. Before we
continue, Table 3-1 lists the set of Objective-C-defined types.

Table 3-1. Objective-C-defined types

Type Definition

i d An object reference (a pointer to its data structure)

Cl ass | A class object reference (a pointer to its data structure)

SEL A selector (a compiler-assigned code that identifies a method name)

| MP A pointer to a method implementation that returns an id

BOOL A Boolean value, either YES or NO

ni | A null object pointer, (1 d) O

Ni | A null classpointer, (Cl ass) 0

The i d type can be used to type any kind of object, class, or instance. In addition, class
names can be used as type names to type instances of aclass statically. A statically typed
instance is declared as a pointer to an instance of its class or to an instance of any class
from which it inherits.

http://www.it-ebooks.info/

www.it-ebooks.info

3.5 Creating New Classes

When you want to create a new kind of object, you define anew class. A classis defined in two files. Onefile, the header
file (.h), declares the variables and methods that can be invoked by messages sent to objects belonging to the class. The
other fileis the implementation file (.m), which actually implements the methods declared by the header file, as well asthe
private implementation details of the class. The interface defined in the header file is public. The implementation is private
and can be changed without affecting the interface or the way the classis used.

To show how to create a new class, we will model songs that would go into an MP3 player. Don't get too scared yet; we're
not actually going to write the MP3 player itself.

1. To get started, create a new Foundation Tool in Project Builder (File —# New Project —% Tools —#
Foundation Tool) named "songs', and save it in your ~/LearningCocoa folder.

2. Define aheader for our song class. Choose File —# New File, then select Objective-C class asthe file type, as
shown in Figure 3-11.

Figure 3-11. New File Assistant

Fat

Assistant
ﬁ Mew File
[mpty File e
Appledoript
Appsestnnt
Carban
[
L +
Header |
Java HSWindawContraller subclags
Objective-C class i
Ohjectse -C NSDocument subclass
Objective-C NSview suhclass s
Ohjective-C NSWindowController subclass bl
Cancel Hext ¥

3. Namethefile Song.m, as shown in Figure 3-12. Make sure that the Also create "Song.h" checkbox is clicked. This
creates the header file for the application's interface.

Figure 3-12. New Objective-C class Assistant

http://www.it-ebooks.info/

e

Assistant

]
ﬂ Mew Objective-C class

File Mame

Location
Addd 1o Praject

Targets

" Cancel

S0 L m

iﬁ_i' Also create "Song.h'

{LearningCocoa) songs Choose
1
LONgS 5
‘H‘__ =0Ngs
" Previous 6 PFinish)

www.it-ebooks.info

=

Be careful not to confuse this use of the word interface with the term Graphical User
Interface. This use of the word refers to how componentstalk, or know, about each other and
doesn't refer to how users will interact with the program.

When you finish, Project Builder should look something like Figure 3-13. If Song.h and Song.m are not in the Source

category of files, you can simply drag them there. (Hint: Use the black insertion indicator that appearsin the outline view
to guide you as you drag.) Where they appear doesn't matter to Project Builder, but keeping things neat and tidy will help

you, especialy on larger projects.

Figure 3-13. Newly created classin Project Builder

Fi Y =
A e | #
.\- }‘ w
@& Croups & Files
14 sengs
Sounc
i N |
f m)
= il Main.m
Docwmentation
« oG8, 1
External Framewory
o F| Faundatian.fram
Produtes
'_.

50105 - Song.h
LOngs 3 |
%, Fired . Build @ Run 1 Debug

o
X sl] & <No salected symibels &
T '_I Song.h 1 .1 &y
o
9
¥

3
z
= tinterface Song : MEbject {
3

)

i Tangets

= Broahpoints

http://www.it-ebooks.info/

www.it-ebooks.info

By creating the class header and implementation files, we have a start on a class that can be used in the rest of the program,
including our main function in the main.mfile. Project Builder creates a basic Song.h header file for you. A new classis
declared in the header file with the @ nt er f ace compiler directive. In this case, the directiveis the following:

@nterface Song : NSObj ect

Thisindicates that we are defining a class called Song that inherits from NSCbj ect . The colon indicates the inheritance.
Therest of the fileisleft for usto complete. All the instance variables used by the class are declared between the brackets.
All the methods of the class are declared between the end bracket and the @ nd directive.

3.5.1 Defining the Song I nterface
Edit the Song.h file as shown in Example 3-4. Once again, the lines that you need to add are shown in boldface type.

Example 3-4. Song.h interface

@nterface Song : NSCObject {

NSString * nane; Il a

NSString * artist; Il b
}
- (NSString *)nane; Il c
- (void)set Name: (NSString *)newNane; /1 d
- (NSString *)artist; Il e
- (void)setArtist:(NSString *)newArti st; [f
@nd

Here's what the additional code does:
a. Declaresthe nane variable that will point to an object of type NSSt r i ng.
b. Declaresthear ti st variable that will point to an object of type NSSt r i ng.
c. Declares an instance method, named nane, that returns a pointer to an NSSt r i ng object when called.

d. Declares an instance method, named set Nane: , that takes a pointer to an NSSt r | ng object as an argument. The
minus sign at the start of the method declaration indicates that it's an instance method, as opposed to aclass
method. This method will be used to set the name of the song that the object represents. The method does not return
anything, so we declareit to return voi d.

e. Declares aninstance method, named ar t | st , that returns a pointer to an NSSt r i ng object when called.

f. Declares an instance method, named set Art i st : , that takes apointer to an NSSt r i ng object as an argument.
This method will be used to set the artist of the song that the object represents. Once again, this method does not
return anything, so we declareit to return voi d.

e In our example so far, we've only defined instance methods using the minus sign (-). Class
aa methods, such asthe al | oc method of NSChj ect , are defined in code using the plus sign
WA ()

http://www.it-ebooks.info/

www.it-ebooks.info

Propertiesand Accessor M ethods

Notice that in our Song.h file we have two methods for each variable, which are named using asimple

elsawhere.

pattern. The variable is known as a property. The methods are known as accessor methods. The method that
is named after the property returns the value of the property to the caller. The method named set Pr operty
changes the property. In the case of our Song class, the nane method gets the name of the Song, and the
set Name method setsit. Hiding access to the properties of the object is called encapsulation; this allows you
to change the implementation of how variables are stored inside the object without potentially breaking code

3.5.2 Defining the Song | mplementation

Now that we have defined the interface, we actually need to fill in the implementation of the class. Take alook at the Song.
mfile. You will notice that it imports Song.h, which is the application's interface. There are also two compiler directives,

@ npl ement ati on Song and @nd.
Add the code shown in Example 3-5 between the @ npl ement at i on and @nd directives.
Example 3-5. The Song.m implementation

#i nport "Song. h"

@ npl ement ati on Song

- (NSString *)nane Il a
{
return nane;
}
- (void)set Nanme: (NSStri ng *)newNane
{
[newNane retain];
[nane rel ease];
name = newNane;
}
- (NSString *)arti st
{
return arti st;
}
- (void)setArtist:(NSString *)newArti st
{
[newArtist retain];
[artist rel ease];
artist = newArtist;
}
@nd

Here's what the additional code does:

1. Declaresthe nanme method that returns an NSSt r i ng return value.

11

/11
/11
11
11
11

11

/11

11
/11
11

http://www.it-ebooks.info/

www.it-ebooks.info

2. Returnsthe NSSt r i ng object associated with the nane instance variable.
3. Declarestheset Nane: method that takes asingle NSSt r i ng argument.

4. Sendsther et ai n message to the newNane object. Thistells the object that we intend to keep areferenceto it.
Thisis part of Cocoa's memory management that will be described in depth in Chapter 4.

5. Sendsther el ease messageto the nane object. If the nane object is not pointing to an NSSt r i ng object (if it
ispointing to ni |), then this message will not do anything. However, if nane had been set on this Song object
before, this message would tell the NSSt r i ng object that we were not interested in it anymore.

6. Setsthe nane variableto point to the NSSt r i ng object to which newiNane points.
7. Declaresthear t i st method that returnsan NSSt r i ng return value.
8. Returnsthe NSSt r i ng object associated withthear t i st instance variable.
9. Declarestheset Arti st : method that takesasingle NSSt r 1 ng argument.
10. Sendstheretain messagetothe newAr t i st object, telling it that we are interested in keeping areferenceto it.
11. Sends arelease message to the existing object to which our ar t i st variable points, if any.
12. Setsthe artist variable to point to the NSSt r i ng object towhich newAr t i st points.
3.5.3 Using the Song Class
Now, we need to edit the main function in the main.mfile, so we can do something with the Song class.
1. Edit the main.mfile to match Example 3-6.
Example 3-6. Using the Song class

#i nport <Foundati on/ Foundati on. h>

#i nport "Song. h" /1 a

int main (int argc, const char * argv[]) {
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
Song * songl = [[Song alloc] init]; Il b

[songl set Nane: @ W Have Expl osive"];
[songl setArtist: @The Future Sound of London"];

Song * song2 = [[Song alloc] init]; Il c
[song2 set Nanme: @ Loops of Fury"];
[song2 setArtist: @The Chemnical Brothers"];

NSLog(@ Song 1. %@, songl); /1 d
NSLog(@ Song 2: %@, song2);

[pool rel ease];
return O;

Here's what the additional code does:

http://www.it-ebooks.info/

www.it-ebooks.info

a. Importsthe Song.h interface file, so we can use the Song class.

b. Allocates, initializes, and setsthe name (set Nane) and artist (set Arti st)of songl. Theal | oc and
i ni t methodswork just the same as they did with NSChj ect , since Song inherits them from
NSObj ect .

c. Allocates, initializes, and sets the name and artist of song?2.
d. Printsthesongl and song?2 objects, so we can see them.
2. Build and run the program. Y ou should see something like this on the console:

2002-06-11 22:05:11. 866 songs[7058] Song 1: <Song: 0x50f 30>
2002-06-11 22:05:11.867 songs[7058] Song 2: <Song: O0x4f4b0>

Y ou will recognize that this output is similar to the output that was printed from the NSObj ect object instances. Thisis
because the NSL.og method actually callsthedescr i pt i on method on an object, as defined by the NSObj ect class. To
change this to print something a bit more user-friendly, we somehow need to redefine what the descri pt i on method
prints.

If you get acompiler error saying that the song?2 variableis undeclared, chances are that you
"'@ are not using Mac OS X 10.2 (Jaguar). This book makes use of many of the new features of
Jaguar, including support for the C99 standard in GCC 3.1.

http://www.it-ebooks.info/

www.it-ebooks.info

3.6 Overriding Methods

A subclass can not only add new methods to the ones it inherits from a superclass; it can aso replace, or override, an
inherited method with a new implementation. No special syntax is required; just reimplement the method in the subclass's
implementation file.

Overriding methods doesn't alter the set of messages that an object can receive. It aters the method implementation that will
be used to respond to those messages. This ability for each class to implement its own version of a method is known as
polymor phism.

1. Edit the Song.mfile as shown in Example 3-7 to add thedescri pt i on method.

Example 3-7. Adding the description method

#i nport "Song. h"
@ npl enent ati on Song

- (NSString *)nane

{
return nane;
}
- (void)setNane: (NSStri ng *)newNane
{
[newNane retain];
[nane rel ease];
name = newNane,
}
- (NSString *)arti st
{
return artist;
}
- (void)setArtist:(NSString *)newArti st
{
[newArtist retain];
[artist rel ease];
artist = newArti st;
}
- (NSString *)description Il a
{
return [self nane]; /Il b
}
@nd

The code we added performs the following tasks:

a. Declaresthedescri pt i on method that overrides the method by the same name in the NSChj ect class.
We don't need to declare this method in the Song.h interface file, asit is aready part of the interface declared
by NSObj ect .

http://www.it-ebooks.info/

www.it-ebooks.info

b. Returnsthe name of the song as its description, using the special sel f variable that points to the object
under operation. We could have just returned the variable directly from this method, but using the [sel f
name] message meansthat if the internal implementation of the Song class changes, this method will work
correctly with no additional work.

2. Build and run the program. Y ou should see the following output on the console:

2002- 06- 11 22: 32: 20. 435 songs[7096] Song 1: W Have Expl osive
2002-06-11 22:32:20. 436 songs[7096] Song 2: Loops of Fury

Overriding the descri pt i on method alows usto assign much more meaningful strings for output than NSObj ect 's
default class name and memory address outpuit.

3.6.1 Calling Superclass M ethods

Sometimes, in amethod that overrides a superclass's method, calling the functionality in the superclass's method can be
useful. To do this, you can send amessageto super , aspecial variable in the Objective-C language. When you send a
message to super , it indicates that an inherited method should be performed, rather than the method in the current class.

For example, if we wanted to print the same information that the NSChj ect classprintsinthedescri pti on method, we
could implement our descr i pt i on method asfollows:

- (NSString *)description
{

}

return [super description];

If we were to make this change, we would see the following output:

2002-06- 11 22:37:03.997 Songs[7115] Song 1: <Song: 0x53100>
2002-06-11 22:37:03.998 Songs[7115] Song 2: <Song: 0x530a0>

Since this defeats the purpose of overriding thedescr i pt i on method, we're not going to add this implementation to our
Song class. If you experiment with this, be sureto set it back tor et urn [sel f description].

3.6.2 Object Creation

One of aclass's primary functionsisto create new objects of the type defined by the class. As we've seen, objects are created
at runtime in atwo-step process that first allocates memory for the instance variables of the new object and then initializes
those variables. We've said this before, but because it's important, we'll repeat it here: an al | oc message should always be
coupled withan i ni t message in the same line of code. The receiver for theal | oc message is aclass, while the receiver
forthei ni t message isthe new object instance:

TheC ass * newObject = [[TheC ass alloc] init];

Theal | oc method dynamically allocates memory for a new instance of the receiving class and returns the new object. The
receiver for thei ni t messageisthe new object that was dynamically allocated by al | oc. An object isn't ready for use
doesvery little. In fact, it simply returnssel T, aspecia variable in Objective-C that is defined to point to the object that is
called upon by the method.

After being allocated and initialized, a new object isafully functional member of its class with its own set of variables. The
newChj ect object can receive messages, store valuesin itsinstance variables, and so on.

Subclass versions of thei ni t method should return the new object (sel f) after it has been successfully initialized. If it
can't beinitialized, the method should release the object and return ni | . In some cases, ani ni t method might release the

http://www.it-ebooks.info/

www.it-ebooks.info

new object and return a substitute. Programs should therefore always use the object returned by | ni t , and not necessarily
theonereturned by al | oc.

Subclassversionsof | ni t incorporate theinitialization code for the classes from which they inherit through a message to
super . When working with classes that inherit from NSChj ect , asimple cal to the superclassi ni t method, as shown in
the following code block, is sufficient.

- init

{
[super init];
/* class-specific initialization goes here */
return self;

}

Note that the messageto super precedesthe initialization code added in the method. This ensures that initialization
proceedsin the order of inheritance.

However, since extending classes other than NSObj ect may return adifferent object than that on which the initializer was
called, you must be more careful in these cases and use the following code:

- init
{
i f (self = [super init]) {
/* class specific initialization goes here */
}
return self;
}

Note that this code checksto seeif super returned an object, or ni | , before doing any initialization itself. This code will
work in any situation; however, none of the classes that we create in this book require these checks.

) If you have been observant, you may have noticed that we have used two kinds of syntax to
= denote comments. Thefirstisthetraditional / * . . . */ C-style comment. The second is
W) 4. thenewer// stylecomment that continues to the end of theline. Y ou'll see both forms used
: quite frequently in Objective-C code. Therereally aren't any guidelines as to which style should
be used where. Y ou should simply use whichever works best, given the context of the comment.

3.6.2.1 Designated initializers

Subclasses often define initializer methods with additional arguments to alow specific values to be set. The more arguments
aninitializer method has, the more freedom it gives you to determine the character of initialized objects. Classes often have a
set of initializer methods, each with a different number of arguments, to set up objects ahead of time with appropriate
information. For example, we could define the following initializer method for our Song class:

- (id)initWthNanme: (NSString *)newNane artist: (NSString *)newArti st;

Thisinitializer allows usto create new Song objects and set them up with one line of code rather than three. For this to work
properly in cases where users of this class don't call thisinitiaizer, but simply usethei ni t method, we make sure that the

i ni t method callsthisinitializer with appropriate default arguments. This method is called the designated initializer for the
class. The other initialization methods defined in this class invoke the designated initializer through messagesto sel f. In
thisway, all theinitializers are chained together. The designated initializer should always call its superclass's designated
initializer.

http://www.it-ebooks.info/

www.it-ebooks.info

= Typically, though not always, the designated initializer is the one with the most arguments. The
‘ s only way to determine the designated initializer of a class accurately isto read the
W 4. documentation for the class.

1. Towork with designated initializers, edit Song.h and add the initializers, as shown in Example 3-8.

Example 3-8. Adding a designated initializer

#i nport <Foundati on/ Foundati on. h>
@nterface Song : NSObj ect {
NSStri ng *nane;
NSString *arti st;
- (id)initWthNanme: (NSString *)newNane artist: (NSString *)newArtist;
- (NSString *)nane;
- (void)setNane: (NSStri ng *)newNane;
- (NSString *)arti st;
- (void)setArtist: (NSString *)newArti st;
@nd
The code we added declares an initializer for our Song class that takes the name of the song as well asthe artist.

2. Now add the initializer implementations to Song.m as shown in Example 3-9.

Example 3-9. Designated initializer implementation

#i nport "Song. h"

@ npl enent ati on Song

- (id)init
/Il a
{
return [self initWthNanme:nil artist:nil];
}
- (id)initWthNanme: (NSString *)newNane artist: (NSString *)newArti st Il b
{
[super init]; Il c
[sel f set Nane: newNane] ; /1 d
[self setArtist:newArtist]; Il e
return self; /Il f
}
- (NSString *)name
{
return nane;
}

(void)set Nanme: (NSString *)newNane

[newNane retain];
[name rel ease];
name = newNane;

http://www.it-ebooks.info/

www.it-ebooks.info

(NSString *)arti st

return artist;

(void)setArtist: (NSString *)newArti st

[newArtist retain];
[artist rel ease];
artist = newArti st;

(NSString *)description

return [super description];

}
@nd

The code we added in Example 3-9 performs the following tasks:

a. Overridesthei ni t method provided by NSChj ect . This overridden method calls the new designated
initializer with ni | string arguments for the nane and ar t i st arguments.

b. Declares our designated initializer with the same signature we used in Song.h.
c. Calsthei ni t method of the NSChj ect superclass.
d. Setsthe name of the new object.

e. Setsthe artist of the new object.

—h

. Returnsthe freshly initialized object, ready for use.
. Now, edit the main.mfile to match Example 3-10.
Example 3-10. Using the designated initializer

#i nport <Foundati on/ Foundati on. h>
#i nport " Song. h"

int main (int argc, const char * argv[]) {
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];

Song * songl [[Song alloc] initWthName: @W Have Expl osive"
artist: @The Future Sound of London"];
Song * song2 = [[Song alloc] initWthNanme: @Loops of Fury”

artist: @The Chemi cal Brothers"];

NSLog(@ Song 1: %@, songl);
NSLog(@ Song 2: %@, song2);

[pool rel ease];
return O;

http://www.it-ebooks.info/

www.it-ebooks.info

In this code, we've simply replaced the longer three lines with our new initiaizer.

4. Build and run the program. Y ou should see the following familiar outpuit:

2002-06-11 23:08:07. 783 Songs[7195] Song 1: W Have Expl osive
2002- 06- 11 23:08:07.784 Songs[7195] Song 2: Loops of Fury

L=

[T

Asyou can seein Example 3-10, aline of code is often too long to fit on one line. Project

Builder has autoindentation functionality to make these constructs look good automatically, so
#: youdon't haveto typein abunch of spaces manually. Simply go into Project Builder's

preferences, select the Indentation pane, and make sure that the " Syntax-aware indenting”
checkbox is checked.

3.6.3 Object Deallocation

We have aflaw in our very simple program in the form of amemory leak. Of course, thisleak is probably not going to hurt
anybody - since the program exits so quickly, allowing the operating system to reclaim all the memory belonging to the
process - but it doesn't pay to get into bad habits. Aswell, code has atendency to be reused in ways that the original author
did not expect. Therefore, you should always make a point of cleaning up after your code, no matter how simpleitis.

When an object is no longer being used by the program, it must be deallocated. When an object isreleased, the deal | oc
method (provided by the NSChj ect class) iscalled, letting it release objects it has created, free alocated memory, and so
on. Since our Song class has two instance variabl e objects, they need to be released when an instance of the classis released.

1. Todothis, weneedtoadd adeal | oc method implementation to our Song classin the Song.mfile, as shownin
Example 3-11.

Example 3-11. Adding a deallocation method

#i nport " Song. h"

@ npl enent ati on Song

{
}

{

{

(id)init

return [self initWthNanme:nil artist:nil];

(id)initwWthName: (NSString *)newNanme artist: (NSString *)newArti st

[super init];

[sel f set Nanme: newNane] ;
[sel f setArtist:newArtist];
return self;

(voi d)deal | oc /Il a
NSLog(@ Deal | ocating %@, self); Il b
[nane rel ease]; Il ¢
[artist rel ease]; /1 d
[super deall oc]; Il e

(NSString *)nane

http://www.it-ebooks.info/

www.it-ebooks.info

{
return nane;
}
- (void)setName: (NSStri ng *)newName
{
[newNane retain];
[nane rel ease];
nane = newNane;
}
- (NSString *)arti st
{
return artist;
}
- (void)setArtist:(NSString *)newArti st
{
[newArtist retain];
[artist rel ease];
artist = newArtist;
}
- (NSString *)description
{
return [self nane];
}
@nd

The code that we added in Example 3-11 performs the following tasks:

a. Declaresthedeal | oc method. Note that sincethe deal | oc method is defined by the NSChj ect class,
we don't have to declare it in the Song.h header file.

b. Prints out a message saying that the object is being deallocated.
c. Releasesthe nane instance variable.
d. Releasesthear ti st instance variable.

e. Callsdeal | oc on the superclass, allowing the deallocation functionality of the NSObj ect classto operate.
When you override the default deal | oc functionality, you must always be sureto call deal | oc inthe
superclass.

. Edit the main.m source file with the changes shown in Example 3-12.

Example 3-12. Releasing the song obj ects created

#i mport <Foundati on/ Foundati on. h>
#i nport " Song. h"

int main (int argc, const char * argv[]) {
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];

Song * songl [[Song alloc] initWthName: @W Have Expl osive"
artist: @The Future Sound of London"];

Song * song2 = [[Song alloc] initWthNane: @Loops of Fury"

http://www.it-ebooks.info/

www.it-ebooks.info

artist: @The Chenical Brothers"];

NSLog(@ Song 1: %@, songl);
NSLog(@ Song 2: %@, song2);

[songl rel ease];
[song2 rel ease];

[pool rel ease];
return O;

}

The added code tells the system that we are no longer interested in the songl and song2 variables. Because we are
no longer interested, and there are no other objects interested in these variables, they will be deallocated immediately.
Thiswill plug up our memory leak, making it a good citizen.

3. Build and run the project. Y ou should see the following output:

2002-06- 11 23:12:07.783 songs
2002-06-11 23:12:07.784 songs
2002-06- 11 23:12:07.783 songs
2002-06-11 23:12:07.784 songs

7200] Song 1: W Have Expl osive
7200] Song 2: Loops of Fury

7200] Deal |l ocati ng W Have Expl osive
7200] Deal | ocating Loops of Fury

—r———

In Chapter 4, we present the finer details of memory management and explain why the act of releasing an object here calls
thedeal | oc method of our Song objects.

http://www.it-ebooks.info/

www.it-ebooks.info

3.7 Other Concepts

There are some other concepts in object-oriented programming and Objective-C that we
haven't explored in depth in this chapter. Before you learn too much about these new
concepts, you'll want to practice quite a bit with the concepts that you've already learned.
We're telling you about these other concepts now so that when you come to them, you
won't be surprised.

Categories

Y ou can add methods to a class by declaring them in an interface file under a
category name and defining them in an implementation file under the same name.
The category name indicates that the methods are additions to a class declared
elsewhere, not to a new class.

Protocols

Class and category interfaces declare methods that are associated with a particular
class-methods that the class implements. Informal and formal protocols, on the
other hand, declare methods that are not associated with a class, but which any
class-and perhaps many classes-might implement. We'll talk more about protocols
in Chapter 9.

Introspection

An object, even onetyped asi d, can revedl its class and divulge other
characteristics at runtime. Several introspection methods, such as

I shMenmber O Cl ass: andi sKi ndOF Cl ass: , dlow you to ascertain the
inheritance relationships of an object and the methods to which it responds.

Remember, you can find out much more information about Objective-C and object-
oriented programming in the devel oper documentation installed on your hard drive along
with the Developer Tools (/Devel oper/Documentation/Cocoa/ObjectiveC).

http://www.it-ebooks.info/

www.it-ebooks.info

3.8 Exercises

1. Usetheresourcesin Appendix C, and read the documentation for NSObj ect and
NSSt ri ng.

2. Read the documentation for the NSLog function.

3. Investigatethei sa and sel f variables by having the designated initializer of the
Song class print a description of the class.

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 4. The Cocoa Foundation Kit

Now that we have filled your head with lots of theory about object-oriented programming,
we'll look into some of the essential parts of Cocoa's Foundation framework. In this chapter
we cover strings, collections, and memory management. Once you have afirm grasp on
these topics, you'll be ready for the raison d'étre of Cocoa: GUI programming.

The nature of these topics doesn't lend itself to a nifty, al-inclusive code example that
shows everything in action at once. So, instead of contriving asingle, awkward example,
we're just going to work through a set of simple code samples to illustrate the concepts
presented. We'll also augment the use of these samples with some usage of the debugger.

http://www.it-ebooks.info/

www.it-ebooks.info

4.1 Strings

So far, we have worked with stringsusingthe @ . . . " construct in various method and function calls. This construct
is convenient when working with strings. When interpreted by the compiler, it istranslated into an NSSt r i ng object that
is based on the 7-bit ASCII-encoded string (also known as a"C string") between the quotes. For example, the statement:

NSString * lush = @Lush";
is functionally equivalent to:
NSString * lush = [[NSString alloc] initWthCString:"Lush"];

NSSt r i ng objects are not limited to the ASCII character set; they can handle any character contained in the Unicode
character set, allowing most of the world's living languages to be represented. Unicode is a 16-bit-wide character set, but
can be represented in 8-bits using the UTF-8 encoding.

4.1.1 Basic String Operations
NSSt ri ng provides several methods that are handy when working with strings. A few of these methods are as follows:
- (int)
 engt h
Returns the number of Unicode characters in the string object upon which it is called.
- (const char *)
cString

Returns a representation of the string as a C string in the default encoding. This method is helpful when you need to
operate with C-based functions, such as those found in traditional Unix system calls.

It's important to note that since C strings are 7-bit, and the NSSt r i ng class can handle
"'@ the full Unicode character set, not all NSSt r i ng objects can be represented as C
strings.

- (const char *)
UTF8Stri ng

Returns a representation of the string as a UTF-8 representation. UTF-8 allows the transmission of Unicode
characters over channels that support 8-bit encodings. All of the lower levels of Mac OS X - including the HFS+
and UFS filesystems, as well asthe BSD system routines - can handle char * argumentsin the UTF-8 encoding.

- (NSString *)

st ri ngByAppendi ngStri ng:

http://www.it-ebooks.info/

www.it-ebooks.info

(NSString *)aString
Returns a new string object by appending the given string to the string upon which the method is called.
To explore these methods, we'll create a simple program using the following steps:

1. In Project Builder, create a new Foundation Tool (File —# New Project —# Tool —# Foundation Tool) named
"strings’, and save it in your ~/LearningCocoa folder.

e Y ou may have noticed that sometimes our project names start with alowercase |etter
o and sometimes with an uppercase letter. The common practice in naming applicationsis
wl a5 that command-line applications should be lowercase and GUI applications should be

initial capitalized. We'll use this practice through this book.

2. Open the main.mfile, located in the "Source" group, and modify it to match the code shown in Example 4-1.

Example 4-1. Working with strings

int main (int argc, const char * argv[]) {

NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
NSString * artist = @Underworld"; /] a
NSLog(@ %@ has | ength: %", artist, [artist |ength]) Il b

[pool release];
return O;

The code we added in Example 4-1 performs the following tasks:

a. Declaresan object of type NSSt ri ng, named ar t i st , and setsit to thevaue " Under wor | d"
b. Obtainsthe!| engt h of the string and printsit using the NSLog function

3. Build and run (38-R) the application. Y ou will be prompted to save the main.mfile, and then Project Builder will
compile and the run the code. Y ou should see the following output in Project Builder's console;

2002- 06- 17 23:29:32.344 strings[1147] Underworld has length: 10

As we have seen before, the NSLog function prints the current date and time, the program name, and the process ID
(PID) of the program, as well as the output that we told it to print. In the output, we seethat thear t | st object was
substituted for the %@token and that the return value from the | engt h method was substituted for the % token.
Remember, you can use any of the standard pr i nt f substitution tokens in the format string, in addition to the %@
token.

4.1.1.1 Setting breakpoints and debugging

Instead of adding code to the strings tool, we will use the debugger to explorethe UTF8St r i ng and
st ringByAppendi ngSt ri ng methods. Thiswill give you some practice using the debugger, while you learn about
these methods.

http://www.it-ebooks.info/

www.it-ebooks.info

1. Set abreakpoint between the NSLog function and the [pool rel ease] lineof code in main.m. Remember to
set a breakpoint, click in the column on the left side of the code editor. If you want to move the breakpoint, click
and drag the breakpoint to its new location. In our code, this breakpoint is at line 8. An example of the breakpoint
set is shown in Figure 4-1.

Figure 4-1. Setting a breakpoint in the main.m file

608 strimgs = main.m
g % ey s
e e - | % P
Hew | B i 4, Bunid 2 Pa=n 1 Unkbug
Breakgpoinns Use | = m| FanmE 3 masll § oD
Ereakpoint pangl — Y A
pa wain { g, * a1} [
Wt el emePen| ¥ ponl o [[WeurtsrelsseePos] ol lec] snit];
g WEString & ortink = L =
L = WL o OTCiSt, [Ortist tengie]dp
Breakpaint ',:_‘,f"'
[t rleeas]y
_5. \ rwturn B3
g
&
i
e
]
[}

2. Build and debug the application (Build —# Build and Debug, or 38-Y). Execution will start and then pause at the
breakpoint we set, highlighting the line at which it stopped in a salmon colored bar.

3. Click on the Console tab above the variable viewer to open up the debugger console, as shown in Figure 4-2. You
should see that the NSLog function outputs its string.

Figure4-2. Program execution paused at breakpoint

http://www.it-ebooks.info/

www.it-ebooks.info

Debugger console

-_':, Bl sIrings - mam.m

‘{% : Hrings ¥

-
(s ¢

Breakpaint -
F‘Tﬂmp] - e b Eomssbs o Starsdand 10
; Thread-1 Gl 'L'|--.-|J-:.r- :“I"r Summary
F - 'r‘"' IHJ;... sbhillic s [
W, Fine “ Riska PR & Debsig g
g Bl mEn A 8 manG 200
E T B
% ' :bl-::l.utlt:::wl ‘ w\.-.l - ‘IIL{“'!L"I:‘L"I:IWI ollee] inik]
MZXEInG ¥ st -]
Bmmmm @ |:H.v_|-.l . g EERAEE, [eEviEt lerghh) i
o) The debugger console behaves similarly to working with the Terminal application. You
= enter acommand, hit Return, and the result of the command is shown on the next line.
wh o Just like the default shell in the Terminal, the debugger maintains a history of

commands that you can access by hitting the up and down arrows on your keyboard.

4. Typeinprint-object artist atthe(gdb) promptinthe debugger console. Y ou may haveto click in the
debugger console to giveit focus, so that you can enter commands.

(gdb) print-object artist
When you enter this command, the debugger outputs the following:
Underwor | d

In addition to simply printing objects, we can print the result of any message that we can send to an object. This
functionality isincredibly useful when trying to find the various states of an object while using the debugger.

5. Enter in the following into the debugger console:
(gdb) print-object [artist description]
The following result, matching what we just saw in Step 4, will be printed:
Underwor | d
6. Let'sseethest ri ngByAppendi ngSt ri ng method in action. Enter the following into the debugger console:
(gdb) print-object [artist stringByAppendingString: @: Pearl's Grl"]
The debugger outputs the following result of the method call:

Underworl d: Pearl's Grl

http://www.it-ebooks.info/

www.it-ebooks.info

7. You can aso send messages to NSSt r i ng objects created using the @ . . . " construct. Enter the following into
the debugger console:

(gdb) print-object [@The artist is: " stringByAppendingString:artist]
The debugger outputs:
The artist is: Underworld

The next debugger command we will learnisthe pri nt command. This command prints out C types instead of objects.
Wewill usethepri nt command to evaluate the return values of the| engt h and UTF8St r i ng methods.

8. Enter the following into the debugger console:
(gdb) print (int) [artist |ength]
The debugger outputs:
$1 = 10

The $1 symbol isatemporary variable that holds the results of the message, and the 10 denotes the number of
characters (or | engt h)inthearti st object. Note that we needed to cast the return type fromthe | engt h
message so that the pr i nt command could operate. Try thisagain without the (i nt) cast.

9. Toseethe UTF8St ri ng method in action, enter the following:
(gdb) print (char *) [artist UTF8Stri ng]
The debugger outputs something similar to the following:
$2 = 0x9f 738 "Underwor| d\ 000". ..
Thisisthe null-terminated char * string representation, in UTF-8 encoding, of our ar t i st string.

To quit the debugger, you can either click the stop button or enter qui t at the (gdb) prompt.

Debugger Command Cheat Sheet

There's alot more that the debugger can do. Here are afew of our favorite debugger commands. Try them out
to see what they do.

cal |l [exp]

Calls the given function on an object.
print [exp]

Prints the primitive value of the expression given.
print-object [exp]

Prints the value of the object returned by the expression.

http://www.it-ebooks.info/

www.it-ebooks.info

set [variable] = [exp]

Sets the variable to the value of the expression. For example, we can reset the artist variable to a new
string by using the expressionset artist = @ New Artist”,

whati s [variabl e]
Prints the kind, or type, of avariable.
hel p

Prints out alist of the commands available while using the debugger.

4.1.2 Working with Portions of a String

When working with strings, it often is necessary to extract data from them. The NSSt r i ng class provides the following
methods for finding and obtaining substrings:

- (NSRange)
rangeCr Stri ng:
(NSString *)aString
Returns an NSRange struct that containsthe | ocat i on and | engt h of thefirst occurrence of the given string
- (NSString *)
substri ngFrom ndex:
(unsi gned) i ndex
Returns a string object that contains the characters of the receiver, from the index given to the end of the string
- (NSString *)
substringTol ndex:
(unsi gned) i ndex

Returns a string object that contains the characters of the receiver, from the beginning of the string to the index
given

- (NSString *)
substri ngWt hRange:
(NSRange) r ange
Returns a string object that contains the characters of the receiver, within the range specified

To explore these methods, we'll create a simple program (that works with just substrings) using the following steps:

http://www.it-ebooks.info/

www.it-ebooks.info

1. In Project Builder, create anew Foundation Tool (File —# New Project —% Tool —% Foundation Tool) hamed
"substrings’, and save it in your ~/LearningCocoa folder.

2. Open the main.mfile, located in the "Source" group, and modify it to match the code shown in Example 4-2.

Example 4-2. Working with substrings

int main (int argc, const char * argv[]) {

NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
NSString * song = @Let Forever Be, The Chenical Brothers”; Il a
NSRange range = [song rangeCfString: @","]; Il b
printf("comma | ocation: %\n", range.location); /'l c
NSString * title = [song substringTol ndex: range. | ocation]; /1 d
NSString * artist =

[song substringFrom ndex: range. |l ocati on + range. | ength]; /Il e
printf("title: 9%\n", [title UTF8String]); I1f
printf("artist: %\n", [artist UTF8String]); Il g

[pool release];
return O;

}

The code we added in Example 4-2 performs the following tasks:

a

b.

g.

Declares a string object named song and setsit.
Obtains the range of the commain the song string.

Prints the location of the comma. Notice that we are using the standard C pr i nt f function here. We will
usepri nt f instead of NSLog in many of the upcoming exercises, so the output from our programs won't
be cluttered with timestamps and PIDs. Note that, unlike the NSLog function, we have to be sure to include
the\ n character to print out the new line.

Declaresastringnamedt i t | e and setsit to the substring, from the start of the song string to the location
of the comma.

. Declares a string named artist and sets it to the substring, from the commato the end of the song string. We

usether ange. | ocati on +range. | engt h construction so that we find the index just after the comma
value. If wejust used the location of the comma, it would show up in our substring.

. Printsthet i t | e tothe console, using the UTF-8 representation of the string. Notice that we are using the

printf % token.

Printstheart i st to the console, using the UTF-8 representation of the string.

3. Build and run (38-R) the application. Y ou will be prompted to save your files, and then Project Builder will
compile and run the code. Y ou should see the following output in the console:

comma | ocation: 14
title: Let Forever Be
artist: The Chenical Brothers

http://www.it-ebooks.info/

www.it-ebooks.info

4.1.3 Mutable Strings

Once created, instances of the NSSt r i ng class cannot be changed; they are immutable. If you want to change the contents
of an NSSt r i ng object, you must create a new one, aswe saw using the st r i ngByAppendi ngSt ri ng method. In
programs that manipulate strings extensively, this would become cumbersome quickly. To let you modify the contents of a
string, Cocoa provides the NSVt abl eSt ri ng class.

s If you have programmed in Java, NS\VUt abl eSt r i ng can be considered analogous to the
= java.l ang. StringBuf f er class.
wh o

g

Some of the methods that you frequently will use with mutable strings are the following:
- (void)

appendStri ng:

(NSString *)aString

Adds the characters of the given string to those already in the mutable string object upon which the method is
called.

- (void)
del et eChar act er sl nRange:
(NSRange) r ange
Deletes the charactersin a given range.
- (void)
i nsertString:
(NSString *)aString
at | ndex:
(unsi gned i ndex)

Inserts the characters of the given string into the mutable string at the location specified by the index. All of the
characters from the insertion point to the end of the mutable string are shifted to accommodate the new characters.

To explore these methods, we'll create yet another simple program, using the following steps:

1. In Project Builder, create a new Foundation Tool (File —# New Project —# Tool —# Foundation Tool) named
"mutablestrings’, and save it in your ~/LearningCocoa folder.

2. Open the main.mfile, located in the "Source" group, and modify it to match the following code:

int main (int argc, const char * argv[]) {
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
NSMut abl eString * song = [[NSMut abl eString alloc] init]; Il a

http://www.it-ebooks.info/

www.it-ebooks.info

[song appendString: @ Deaf Leppard"]; Il b
printf("9%\n", [song UTF8String]); Il c
NSRange range = [song rangeCOf String: @ Deaf"]; /'l d
[song repl aceChar act er sl nRange: range wi thString: @Def"]; Il e
printf("%\n", [song UTF8String]); I f
[song insertString: @Ani mal by " atlndex:0]; /'l g
printf("%\n", [song UTF8String]); /'l h
[song rel ease]; /1

[pool rel ease];
return O;

}

The code we added performs the following tasks:
a. Creates anew empty mutable string named song.
b. Appends the contents of the "Deaf Leppard" string to the song mutable string.
c. Printsthe song mutable string to the console.
d. Getstherange of the "Deaf" substring.
e. Replacesthe"Deaf" substring with "Def" to correct the misspelling.
f. Printsthe song mutable string to the console.
0. Insertsthe string "Animal by" at the beginning the mutable string.
h. Once again prints the song mutable string.

i. Releasesthe song object. Because we created the Song object using the al | oc method, we are
responsible forr releasing it. We'll explain more about how this works later in this chapter.

3. Build and run (3§-R) the application. Y ou should see the following output in the console:

Deaf Leppard
Def Leppard
Ani mal by Def Leppard

Mutability Versus I mmutability

Why does Cocoa provide both mutable and immutable versions of strings and the collection classes? The
answer isthat there are tradeoffs to both kinds of objects. An immutable object, once created, can't change.
This means that a higher performing implementation can be used. Mutable objects, on the other hand, aren't
nearly so amenable to performance tuning, as there is overhead involved in keeping them "editable.”

In addition, immutable objects are inherently thread-safe and can be passed to code worked on by other
programmers without fear that the contents of the object will be modified. When creating your own code, you
should favor immutabl e objects unless you need the ability to change the contents of an object.

http://www.it-ebooks.info/

www.it-ebooks.info

4.1.4 Working with Files

A common use of stringsisto work with pathsto filesin the filesystem. The NSSt r i ng class provides severa methods to
manipulate strings as filesystem paths, extract afile name or an extension, resolve paths containing symbolic links, and
even expand tilde expressions (such as ~duncan/Library) in paths. Some of the commonly used path manipulation methods
are asfollows:

- (NSString *)
| ast Pat hConponent

Returns the last path component of the receiver. For example, if you call this method on the string ~/
Lear ni ngCocoa/ substrings/ mai n. mitwill return mai n. m

- (NSString *)
pat hExt ensi on

Returns the extension, if any, of afile path. For example, if you call this method on the string mai n. my it will
return the value m

- (NSString *)
stri ngBySt andar di zi ngPat h

Returns a string with all extraneous path components removed or resolved. This method will resolve theinitial tilde
expression, aswell asany . . or ./ symbols, to actual directories.

In addition to working with paths, you can also create string objects using the contents of afile and write string objects to
files using the following methods:

- (NSString *)
stringWthContentsO Fi |l e:
(NSString *)path
Creates anew string by reading characters from the file specified by the path argument.
- (BOAL)
writeToFil e:
(NSString *)path
atom cal | y:
(BOOL) f I ag

Writes the contents of the string to the given file. The at omi cal | v flag indicates whether the file should be
written safely to an auxiliary file, then copied into place. Most of the time, this setting makes no difference. The
only time it mattersisif the system crashes when the file is being flushed to disk.

To see these methods in action, follow the following steps:

http://www.it-ebooks.info/

www.it-ebooks.info

1. In Project Builder, create anew Foundation Tool (File —# New Project —# Tool —# Foundation Tool) named
"filestrings', and save it in your ~/LearningCocoa folder.

2. Open the main.mfile, located in the " Source" group, and modify it to match the code shown in Example 4-3.

Example 4-3. Reading filesinto strings

i nt

main (int argc, const char * argv[]) {

NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];

NSString * filenane = @~/ Lear ni ngCocoa/filestrings/ main.m; /Il a
filenane = [fil enanme stringByStandardi zi ngPat h] ; /1 b
printf("%\n", [filenane UTF8String]); /Il ¢
NSString * source = [NSString stringWthContentsOFFile:filenange]; /1 d
printf("%\n", [source UTF8String]); /1l e

[pool release];
return O;

The code we added in Example 4-3 performs the following tasks:

a. Createsastring object, named f i | enane, that contains the path to the main.m source file of this project.
Note that you must save your project in your ~/LearningCocoa folder for this example to work. If you are
saving your projects to some other location, you will need to edit the path appropriately.

b. Setsthef i | enane variableto a standardized path. Thiswill resolvethe ~/ characters to your home
directory.

c. Printstheresolved f i | enane variable.
d. Createsanew string, named sour ce, with the contents of the main.m sourcefile.

e. Printsthesour ce string to the console.

3. Build and run (38-R) the application. Y ou should see output similar to the following appear in the console:

/ User s/ duncan/ Lear ni ngCocoa/fil estrings/ mai n. m
#i nport <Foundati on/ Foundati on. h>

i nt

main (int argc, const char * argv[]) {
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];

NSString * filenane = @~/ Lear ni ngCocoa/filestrings/ main. m;
filename = [fil enane stringByStandardi zi ngPat h] ;
printf("%\n", [filename UTF8String]);

NSString * source = [NSString stringWthContentsO'File:filenane];

http://www.it-ebooks.info/

www.it-ebooks.info

printf("%\n", [source UTF8String]);

[pool release];
return O;

}

Well explorethe | ast Pat hConponent and pat hExt ensi on methods using the debugger.

4. Set abreakpoint between thelast pri nt f statement andthe|[pool rel ease]; line. If you typed the code
exactly as shown in Example 4-3, the breakpoint will be on line 12.

5. Build and debug the application (3g-Y). Execution will start and then pause at the breakpoint.
6. Click on the Console tab above the variable viewer to open up the debugger console.
7. Typeinthefollowing at the (gdb) prompt:
(gdb) print-object [filenane | astPathConponent]
When you enter this command, the debugger should output the following:
mai n. m
8. Typeinthefollowing at the (gdb) prompt:
(gdb) print-object [filenane pat hExtension]
When you enter this command, you should see the following:
m
9. Quit the debugger; use the Stop button, or typein qui t atthe (gdb) prompt and hit return.

Now that we've covered quite afew things that you can do with strings, it's time to look at Cocoa’s collection classes.

http://www.it-ebooks.info/

www.it-ebooks.info

4.2 Collections

Cocoa provides several classesin the Foundation Kit whose purpose is to hold and organize instances of other classes. These are
called the collection classes. There are three primary flavors of collections in Cocoa: arrays, sets, and dictionaries. These classes,
shown in Figure 4-3, are extremely useful in Cocoa application development, and their influence can be found throughout the Cocoa
classlibraries.

Figure 4-3. Cocoa collection classes

N5Object
NSArray NSSet NSDictionary
N5MutableAmay NSMutableSet |H5Hutahle[lirtinnar}'
N5CountedSet

Collection classes, like strings, come in two forms: mutable and immutable. Immutable classes allow you to add items when the
collection is created, but no further changes are alowed. On the other hand, mutable classes allow you to add and remove objects
programmatically after the collection is created.

Much of the power of collection classes comes from their ability to manipulate the objects they contain. Not every collection object
can perform every function, but in general, collection objects can do the following:

. Derivetheirinitial contents from filesand URLSs, as well as other collections of objects
. Add, remove, locate, and sort contents

. Compare their contents with other collection objects

. Enumerate over their contents

. Send amessage to the objects that they contain

. Archivetheir contentsto afile on disk and retrieve it Iater[l]
4.2.1 Arrays

Arrays-instances of the NSAr r ay class-are ordered collections of objects indexed by integers. Like C-based arrays, the first object
inan array islocated at index 0. Unlike C- and Java-based arrays whose size is set when they are created, Cocoa mutable array
objects can grow as needed to accommodate inserted objects.

The NSAr r ay class provides the following methods to work with the contents of an array:
- (unsi gned)
count
Returns the number of objects currently in the array.
- (id)
obj ect At | ndex:

(unsi gned) i ndex

http://www.it-ebooks.info/

www.it-ebooks.info

Returns the object located in the array at the index given. Like C- and Java-based arrays, Cocoa array indexes start at 0.

(BOQAL)

cont ai ns(hj ect :

(id)anCbj ect

Indicates whether a given object is present in the array.

To practice working with arrays do as follows:

1. In Project Builder, create a new Foundation Tool (File —# New Project —% Tool —% Foundation Tool) named "arrays’,

and save it in your ~/LearningCocoa folder.

2. Open the main.mfile, located in the " Source" group, and modify it to match the following code:

int main (int argc, const char * argv[]) {

NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];

NSString * string = @one two buckle ny shoe"; Il a
NSArray * array = [string conponentsSeparatedByString: @ "]; /'l b
int count = [array count]; /'l c
int i;
for (i =0; i <count; i++) {

printf("%: %\n", i, [[array objectAtlndex:i] UTF8String]); /1 d
}

[pool release];
return O;

}

The code we added performs the following tasks:
a. Declares anew string.

b. Createsan array of string objects using the conponent sSepar at edBy St ri ng: method of the NSSt r i ng
class. Note that in the first example of this chapter, where we looked for the range of the commarto split the spring,
we could have used this method to get the two strings.

c. Obtainsthe count of the array to useinthef or loop.

d. Printseach item of the array to the console.

3. Build and run (§8-R) the application. Y ou should see output similar to the following appear in the console:

0: one

1. two

2: buckl e
3: ny

4: shoe

4.2.1.1 Using the debugger to explore NSArray

We'll explore afew more NSAr r ay methods using the debugger:

1. Set abreakpoint after the f or loop. If you typed in the code exactly as noted previously, including the spaces and the

comments that are part of the main.m file template, the breakpoint will be on line 15.

http://www.it-ebooks.info/

www.it-ebooks.info

2. Build and debug (3g-Y) the application. Execution will start and then pause at the breakpoint we set.
3. Click on the Console tab to open up the debugger console.
4. Typeinthefollowing at the (gdb) prompt:
(gdb) print-object [array objectAtl ndex: 4]
Y ou should see the following output:
shoe
5. Typein thefollowing:
(gdb) print (int) [array contai nsObject: @buckl e"];
Y ou should see the following output:
$1 =1

Thisindicates that the array did contain the string we specified. Try using a string that isn't in the array, and see what the
return valueis. Y ou should see areturn value of 0.

6. Quit the debugger, and close the project.
4.2.2 Mutable Arrays

The NSVut abl eAr r ay class provides the functionality needed to manage a modifiable array of objects. This class extends the
NSAr r ay class by adding insertion and deletion operations. These operations include the following methods:

- (void)
addhj ect :
(id)anCbj ect
Inserts the given object to the end of the receiving array.
- (void)
i nsert Qoj ect :
(id)anCbject
at | ndex:
(unsi gned i ndex)

Inserts the given object to the receiving array at the index specified. All objects beyond the index are shifted down one slot to
make room.

- (void)
renovebj ect At | ndex:
(unsi gned i ndex)

Removes the object from the receiving array located at the index and shifts all of the objects beyond the index up one slot to

http://www.it-ebooks.info/

www.it-ebooks.info

fill the gap.
- (void)
renmovej ect :
(id)anCbj ect

Removes all occurrences of an object in the receiving array. The gaps left by the objects are removed by shifting the
remaining objects.

The following steps will explore these methods:

1. In Project Builder, create a new Foundation Tool (File —% New Project —# Tool —# Foundation Tool) named
"mutablearrays’, and save it in your ~/LearningCocoa folder.

2. Open the main.mfile, located in the " Source" group, and modify it to match the code shown in Example 4-4.
Example 4-4. Working with mutable arrays

int main (int argc, const char * argv[]) {

NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];

NSMut abl eArray * array = [[NSMutabl eArray alloc] init]; /'l a
[array addObj ect: @sheryl crow']; /'l b
[array addObject: @just wants to have fun"]; /'l c
printf("%\n", [[array description] UTF8String]); /1 d
[array rel ease]; Il e

[pool rel ease];
return O,

}
The code we added in Example 4-4 performs the following tasks:
a. Creates anew mutable array
b. Adds an object to the array
¢. Adds another object to the array
d. Printsthearray
e. Releasesthe array, since we created it using the al | oc method
3. Build and run (38-R) the application. Y ou should see the following output in the console:
("sheryl crow', "just wants to have fun")

4.2.2.1 Exploring NSMutableArray with the debugger

http://www.it-ebooks.info/

www.it-ebooks.info

We'l further explore the NSVt abl eAr r ay class using the debugger:
1. Set abreakpoint before the line of code that releases the array (line 10).
2. Build and debug (3-Y) the application. Execution will start and then pause at the breakpoint.
3. Click on the Console tab to open up the debugger console.

4. First, weinsert an object into the array after the first object. Then we'll print it out to see the modified array. Typein the
following:

(gdb) call (void) [array insertObject: @santa nonica" atlndex: 1]
(gdb) print-object array

The following output should appear.

<NSCFArray 0x94be0>(
sheryl crow,

santa noni ca,

just wants to have fun

)

5. Now remove one of the objects:

(gdb) call (void) [array renpve(hject: @just wants to have fun"]
(gdb) print-object array

The following will be output:
<NSCFArray 0x94be0>(

sheryl crow,
santa noni ca

)
6. Quit the debugger, and close the project.
4.2.3 Arrays and the Address Book

Asaquick example of how to use arraysin asituation that isn't so contrived, we will use an API introduced in Mac OS X 10.2-the
Address Book API. The Address Book serves as a central contact database that can be used by all applications on the system. The
hope is that you won't need a separate contact database for your mailer, for your fax software, etc. Already, the applications that ship
with Mac OS X, such as Mail and iChat, utilize the Address Book. The Address Book application is shown in Figure 4-4.

Figure 4-4. The Address Book

http://www.it-ebooks.info/

www.it-ebooks.info

c 'CI fuddress Book
 Exj[s] Searnch
G o L
|'__.' Brian Behlendeei James Duncan Davidson
i | Diructodies Chiisting Bramhai 1
Swsan Czigany .
James Duncan Dawidson
Ted Dasidean hbitd 415 000-0000
Jim Deigeo athat
ustyna Horwak wr Sanene s f
Jason Hupler
Tim ORsilly eome page RHp e Bl
Elen Roncomn homse 51 BSamas com (AR
Chutk Topanek
home 121 Some 5
Ann Franiecs C& #1103
Ubningad Glaies
+ - it -

Use the following steps to guide you in this exploration:

1. Launch the Address Book application (it isinstalled in your Dock by default; you can find it in the /Applications folder
otherwise), and make sure that you have some contacts defined.

2. In Project Builder, create a new Foundation Tool (File =—# New Project =% Tool —# Foundation Tool) named
"addresses', and saveit to your ~/LearningCocoa folder.

3. Add the Address Book framework to the project by selecting the Project —# Add Frameworks menu item. A dialog box
will open, asking you to select the framework to add. It should open up to the /SystenvLibrary/Frameworks folder. If not,
navigate to that folder, and select the AddressBook.framework folder to add to the project. After you click the Add button, a
sheet will appear to control how the framework should be added. The settings shown will be fine, and al you need to do is
click the Add button again.

This step ensures that Project Builder links against the AddressBook framework, as well as the Foundation framework, when
it builds our application.

4. Open the main.mfile, and modify it to match the following code:

#i nport <Foundati on/ Foundati on. h>

#i nport <Addr essBook/ Addr essBook. h> Il a
int main (int argc, const char * argv[]) {
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
ABAddr essBook * book = [ABAddressBook shar edAddr essBook] ; /'l b
NSArray * people = [book people]; /'l c

int count = [people count];

int i;

for (i =0; I < count; i++) {
ABPer son * person = [people objectAtlndex:i]; /1 d
NSString * firstName = [person val ueForProperty: @First"]; /Il e
NSString * | ast Nane = [person val ueFor Property: @ Last"]; /] f

printf("% %\n",
[l ast Nane UTF8Stri ng],
[firstName UTF8String]); /Il g

}

[pool rel ease];
return O;

}

The code we added performs the following tasks:

http://www.it-ebooks.info/

www.it-ebooks.info

a Importsthe AddressBook API set. Without this line, the compiler cannot compile the main.m file, because it won't be
ableto find the definitions for the Address Book classes.

b. Obtainsthe Address Book for the logged-in user.
c. Obtainsan array containing all of the people in the Address Book.

d. Loopsthrough the people to obtain an ABPer son object. The ABPer son class provides the methods to work with
the various attributes that a person record hasin the Address Book database.

e. Getsthefirst name of the person.
f. Getsthelast name of the person.

g. Printsthe name of the person out to the console.

) For more information about the various classes in the AddressBook framework, seethefilesin/
' - Devel oper/Documentation/Additional Technol ogies/AddressBook.
whoa .
[] 5

5. Build and run (3B-R) the application. Y ou should see alist of your contacts output in the console. Here's a sample from our
run of the application, using the contacts pictured in Figure 4-4:

Davi dson Janes Duncan
Hunt er Jason
Ronconi El eo
Horwat Justyna
Driscoll Jim

Davi dson Ted

Br anham Chri sti ne
Behl endorf Bri an
OReilly Tim
Topor ek Chuck

Czi gany Susan

We haven't gone into great detail on the use of the AddressBook, but just alittle knowledge on arrays has aready let you work with
thisimportant user data. By the time you're done with this book, just think how dangerous you will be! But no matter how dangerous
you get, you should remember to use the Address Book API when you create an application that needs to keep track of contacts.
Also, you'll be able to build some pretty neat apps using this data. For example, I'm considering building an application that
automatically prints Christmas cards to send to all the contactsthat | consider to be friends.

4.2.4 Sets

Sets-implemented by the NSSet and NSVt abl eSet classes-are an unordered collection of objects in which each object can
appear only once. A set can be used instead of an array when the order of elementsin the collection is not important, but when
testing to seeif an object is part of the set (usualy referred to as "testing for membership"), speed isimportant. Testing to seeif an
object isamember of aset isfaster than testing against an array.

4.2.5 Dictionaries

Dictionaries-implemented in the NSDi ct i onar y class-store and retrieve objects using key-value pairs. Each key-value pair in a
dictionary iscalled an entry. The keysin adictionary form a set; akey can be used only once in adictionary. Although the key is

usualy astring (an NSSt r i ng object), most objects can be used as keys.[z] To enabletheretrieval of avalue at alater time, the key
of the key-value pair should be immutable or treated as immutable. If the key changes after being used to put avaluein the
dictionary, the value might not be retrievable. The NSDi ct i onar y class provides the following methods to work with the contents
of an array:

- (unsi gned)

http://www.it-ebooks.info/

www.it-ebooks.info

count
Returns the number of objects currently in the dictionary
- (id)
obj ect For Key:
(id)akKey
Returns the object that isindexed using the given key in the dictionary
- (NSArray *)
al | Keys
Returns an array containing al of the keysin the dictionary
To practice working with dictionaries:

1. In Project Builder, create anew Foundation Tool (File —# New Project —# Tool —# Foundation Tool) named
"dictionaries’, and saveit in your ~/LearningCocoa folder.

2. Open the main.mfile, located in the "Source" group, and modify it to match the code shown in Example 4-5.

Example 4-5. Working with dictionaries

int main (int argc, const char * argv[]) {
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];

NSArray * keys =

[@one two three four five" conponentsSeparatedByString: @ "]; /Il a
NSArray * val ues =

[@al pha bravo charlie delta echo" conponentsSeparatedByString: @ "]; // b
NSDi ctionary * dict = [[NSDictionary alloc] initWthQojects:val ues

for Keys: keys] ; Il c

printf("%\n", [[dict description] UTF8String]); /1 d
[pool release];
return O;

}

The code we added in Example 4-5 performs the following tasks:
a. Creates anew array based on a space-delimited string. This set of objects will serve as the keys for the dictionary.
b. Createsanew array that will serve as the values of the dictionary.
c¢. Createsanew dictionary with our keys and values.
d. Printsthe dictionary, so it can be examined.
3. Build and run (3€-R) the application. Y ou should see output similar to the following appear in the console:
{five = echo; four = delta; one = alpha; three = charlie; two = bravo; }

4. Thisisarepresentation of the structure of the dictionary. Note that the elements are not stored in any particular order.

http://www.it-ebooks.info/

www.it-ebooks.info

Remember that the keys form a set in which uniqueness, not order, is critical .
We'll explore this example further using the debugger.

4. Set abreakpoint after thepr i nt f statement. If you typed in the code exactly aslisted earlier, the breakpoint will be on line
15.

5. Build and debug (8§-Y) the application, open the debugger console, and type the following:
(gdb) print (int) [dict count]
The following will be output:
$1 =5
Thistells us that there are five elementsin the collection.
6. Type the following:
(gdb) print-object [dict objectForKey: @three"]
The following will be output:
charlie
7. Typethefollowing:
(gdb) print-object [dict allKeys]
The following will be output:

<NSCFArray 0x97800>(
t wo,

f our,

t hree,

one,

five

)
8. Quit the debugger, and close the project.
The strengths of the dictionary classes will become apparent when we discuss how they can hold and organize data that can be
labeled, such as values extracted from text fields in a user interface. We'll show thisin action in Chapter 9, when we show how you
can work with dictionariesto drive tablesin user interfaces.

4.2.6 Mutable Dictionaries

The NSMVut abl eDi cti onary class provides the functionality needed to manage a modifiable dictionary. This class extends the
NSDi ct i onary class by adding insertion and deletion operations. These operations include the following methods:

- (void)
set bj ect :
(id)anCbj ect

f or Key:

http://www.it-ebooks.info/

www.it-ebooks.info

(id)akKey

Adds an entry to the dictionary, consisting of the given key-value pair. If the key already existsin the dictionary, the
previous object associated with that key is removed from the dictionary and replaced with the new object.

- (voi d)renoveObj ect For Key:
(id)akKey

Removes the key and its associated value from the dictionary.

Working with Numbers

Collections can hold only objects; they cannot hold C-based primitive typessuch asi nt, f | oat ,and| ong.
However, there will be many cases where you will want to store primitive typesin your collections. To allow these
types to be manipulated as objects, Cocoa provides the NSNunber class. This class can wrap any C numeric type and
defines a group of methods to set and access the value. In addition, it definesaconpar e: method, allowing two
numbers to be compared with each other.

4.2.7 Storing Collections as Files

One of the nicer things about Cocoa’s collection classes is that they support the writing and reading of collection data to and from
files called property lists, or plist files. Thislets you store your data easily and read it later. In fact, Mac OS X uses property lists
extensively to store all kinds of data, such as user preferences, application settings, and system-configuration data. In upcoming
chapters, we'll be working with user preferences (also known as defaults) and we will see how Mac OS X uses plistsin application
bundles.

The methods to support this functionality are relatively simple. For the array and dictionary classes, these methods are as follows:
- (id)
initWthContentsO Fi | e:
(NSString *)aPath
Initializes a newly allocated array or dictionary with the contents of the file specified by the path argument
- (BOQL)
witeToFil e:
(NSString *)path
atom cal | y:
(BOCL)fI ag
Writes the contents of an array or dictionary to the file specified by the path argument
To practice working with collections and files do as follows:

1. In Project Builder, create a new Foundation Tool (File —# New Project —# Tool —# Foundation Tool) named
"collectionfiles’, and save it in your ~/LearningCocoa folder.

2. Open the main.mfile, and modify it to match Example 4-6.

http://www.it-ebooks.info/

www.it-ebooks.info

Example 4-6. Working with property lists
#i nport <Foundati on/ Foundati on. h>

int main (int argc, const char * argv[]) {
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];

NSMut abl eArray * array = [[NSMut abl eArray alloc] init]; /Il a
[array addObj ect: @ San Franci sco"]; /Il b
[array addObj ect: @ Houston"];

[array addObject: @ Tul sa"];

[array addObj ect: @ Juneau"];

[array addObj ect: @ Pheoni x"];

[array witeToFile: @cities.plist" atom cally: YES]; /Il ¢
NSString * plist =

[NSString stringWthContentsO'File: @cities.plist"]; /1 d
printf("%\n", [plist UTF8String]); Il e
[array rel ease]; /1 f

[pool rel ease];
return O,

}

The code we added inExample 4-6 does the following things:

a. Creates anew mutable array.
b. Adds aseriesof stringsto the mutable array.

c. Writesthe array to afile named cities.plist. Since thisis not an absolute path, it will be written in the working
directory of application. In our case, thisfile will be written in ~/LearningCocoa/collectionfiles/build/cities.plist.

d. Creates anew string based on the contents of the file that we just wrote. Once again, we use arelative path.
e. Printsthe contents of thefile to the console.
f. Returnsthe array object that we created.

3. Build and run (3€-R) the application. Y ou should see output similar to the following appear in the console:

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE plist PUBLIC "-//Apple Conmputer//DTD PLIST 1.0//EN'" "http://ww. appl e

coni DTDs/ PropertyList-1.0.dtd">

<plist version="1.0">

<array>
<string>San Franci sco</string>
<string>Houst on</string>
<string>Tul sa</string>
<string>Juneau</string>
<string>Pheoni x</string>

</array>

</plist>

Thisisan XML representation of the array. This data can be edited with atext editor, transmitted across the Internet, or
turned back into a collection of stringsin another Cocoa program.

http://www.it-ebooks.info/

www.it-ebooks.info

Property Lists

Mac OS X uses property lists, frequently referred to as plists, to organize datainto aform that is meaningfully
structured, easily transportable, and storable. Property list files are saved in an XML format for easy editing and
transportability.

Y ou can see many examples of plist filesin your ~/Library/Preferences folder. Property lists organize data into
named values and lists of values using several types directly represented as the following Cocoa objects: NSSt r i ng,
NSNunber , Bool ean, NSDat e, NSDat a, NSAr r ay, and NSDi ¢t i onar y. They makeit easy for applications to
store preference data and, the case of the Info.plist file in an application bundle, communicate information about an
application to the system. To take alook at how applications can use plists to store configuration information, look at
the plist file for the menu bar clock.

1. Open the ~/Library/Preferences folder, and locate the com.apple.MenuBar Clock.plist file.

2. Double-click on thefile to open it with the Property List Editor application (located in the /Devel oper/
Applications folder).

The Property List Editor application can be used to browse the tree of properties. Y ou can also hit the Dump button to
see the XML representation of the property list. Be careful not to save any edits you make, as you can severely
confuse an application by making the wrong changes here.

(11 Objects placed into an array must implement certain methods to support this functionality. All of the Foundation classes that you are likely
to add to a collection are aready prepared for this.

(2 The object used as akey must respond to thei sEqual : message and conform to the NSCopyi ng protocol. Since we have not covered
protocols yet, the rule of thumb is that any Cocoa object provided in the Foundation framework can be used as a key. Other objects may not
work.

http://www.it-ebooks.info/

www.it-ebooks.info

4.3 Memory M anagement

Memory management is an important subject in programming. Quite afew of the problems
encountered by novice application developers are caused by poor memory management.
When an object is created and passed around among various "consumer” objectsin an
application, which object is responsible for disposing of it and when? If an object is not
deallocated when it is no longer needed, memory leaks. If the object is deallocated too
soon, problems may occur in other objects that assume its existence, and the application
will most likely crash.

The Foundation framework defines a mechanism and a policy that ensures that objects are
deallocated only when they are no longer needed. We have hinted at it before, but now it is
time to explain things.

The policy is quite simple: you are responsible for disposing of all objects that you own.
Y ou own objects that you create, either by allocating or copying them. Y ou also own (or
share ownership in) objects that you retain. The flip side of thisrule is that you should
never release an object that you have not retained or created; doing so will free the object
prematurely, resulting in bugs that are hard to track down, even though the fix is simple.

4.3.1 Object Initialization and Deallocation
Asdiscussed in Chapter 3, an object is usually created using theal | oc method and is
initialized using the i ni t method (or avariant of thei ni t method). When an array's

I ni t method isinvoked, the method initializes the array's instance variables to default
values and completes other startup tasks. For example:

NSArray * array = [[NSArray alloc] init];

When done with an object that you created, you send ther el ease message to the object.
If no other objects have registered an interest in the object, it will be deallocated and
removed from memory.

When an object is deallocated, the deal | oc method isinvoked, giving the object an
opportunity to release objectsit has created, free allocated memory, and so on. We saw this
in action in Chapter 3, when we added the deal | oc method to the Song class.

4.3.2 Reference Counting

To allow multiple objects to register interest in another object and yet have this object

http://www.it-ebooks.info/

www.it-ebooks.info

removed from memory when no other objects are interested in it, each object in Cocoa has
an associated reference count. When you allocate or copy an object, its reference count is
automatically set to 1. Thisindicates that the object isin use in one place. When you pass
the object to other objects, wanting to make sure the object stays around for their use, they
can usether et al n method to increment the reference counter.

To visualize this, imagine that we have an object being held in three different arrays, as
shown in Figure 4-5. Each array retains the object to make sure that it remains available for

its use. Therefore, the object has a reference count of 3.

Figure 4-5. Reference counting

Array .
kY
Amay feeessesmsene »-
~
e Retain count = 3
hmay |

Whenever you are done with an object, you send a rel ease message to decrement the
reference count. When the reference count reaches 0, the release method will invoke the
object'sdeal | oc method that destroys the object. Figure 4-6 shows an object being
removed progressively from a set of arrays. When it is no longer needed, itsretain count is
set to 0, and the object is deall ocated.

Figure 4-6. Releasing of an object

Ay -, hray | Array x fmay
[|96o) o] o) [] ()
arrey | HEL | Ay | Ay |
L Remnouwr=2 G feinawnt=1 Fi Retwncwn=0 i Objectdestoped

4.3.3 Autor elease Pools

According to the policy of disposing of all objects you create, if the owner of an object
must rel ease the object within its programmatic scope, how can the owner give that object

http://www.it-ebooks.info/

www.it-ebooks.info

to other objects? Or, said another way, how do you release an object you would like to
return to the caller of a method? Once you return from a method, there's no way to go back
and release the object.

The answer is provided by the aut or el ease method built into the NSCb| ect class, in
conjunction with the functionality of the NSAut oRel easePool class. The

aut or el ease method marksthe receiver for later release by an

NSAut or el easePool . Thisenables an object to live beyond the scope of the owning
object so that other objects can use it. This mechanism explains why you have seen dozens
of code examples that contain the following lines:

NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
...code...
[pool rel ease];

Each application putsin place at |east one autorelease pool (for each thread of control that
isrunning in the application) and can have many more. Y ou put an object in the pool by
sending the object an aut or el ease message. In the case of an application's event cycle,
when code finishes executing and control returns to the application object, the application
object sendsar el ease message to the autorel ease pool, and the pool sends arelease
message to each object it contains. Any object that reaches a reference count of 0
automatically deallocates itself.

When an object is used solely within the scope of a method that creates it, you can
deallocate it immediately by sending it ar el ease message. Otherwise, use the

aut or el ease message for all objects you create and hand off to other objects so that
they can choose whether to retain them.

Y ou shouldn't release objects that you receive from other objects, unless you have first
retained them for some reason. Doing so will cause their reference count to reach 0
prematurely, and the system will destroy the object, thinking that no other object depends
on it. When objects that do depend on the destroyed object try to accessit, the application
will most likely crash. These kinds of bugs can be hard to track down, even though their
cause and fix are simple.

Y ou can assume that areceived object remains valid within the method in which it was
received and will remain valid for the event loop that is handling it. If you want to keep it
as an instance variable, you should send it ar et ai n message and then autorelease it when
you are done using it.

4.3.4 Retaining Objectsin Accessor M ethods

One of the primary places where you will need to be aware of memory management isin
the accessor methods of your classes. At first glance, it is obvious that you will want to
release an old object reference and retain the new one. However, because code that calls a

http://www.it-ebooks.info/

www.it-ebooks.info

class's setter method might call it multiple times with the same object as an argument, the
order in which you release and retain the object references is important.

Asarule, you want to retain the new object before releasing the old one. This ensures that
everything works as anticipated, even if the new and old objects are the same. If you
reverse these steps, and if the new and old objects are actually the same, the object might
be removed permanently from memory before being retained.

Hereistheretain, then release rule expressed in code:

- (void)setProperty: (id)newProperty

{
[newPr operty retainj;
[property rel ease];
property = newProperty;
}

There are other ways to ensure connections in setter methods, many of which are valid and
appropriate for certain situations. However, thisis the simplest possible pattern we can give
that will always work. We will use this pattern throughout the book.

4.3.5 Rules of Thumb

The important things to remember about memory management in Cocoa distill down to
these rules of thumb:

1. Objectscreated by al | oc or copy have aretain count of 1.

2. Assume that objects obtained by any other method have aretain count of 1 and
reside in the autorelease pool. If you want to keep it beyond the current scope of
execution, then you must retain it.

3. When you add an object to a collection, it is retained. When you remove an object
from acollection, it is released. Releasing a collection object (such as an
NSAr ray) releases all objects stored in it as well.

4. Make surethat thereareasmany r el ease or aut or el ease messages sent to
objectsasthereareal | oc, copy, nut abl eCopy, orr et ai n messages sent. In
other words, make sure that the code you write is balanced.

5. Retain, then release objectsin setter methods.

6. NSString objectscreatedusingthe @ . . . " construct are effectively
constants in the program. Sending retain or rel ease messages to them has no effect.

http://www.it-ebooks.info/

www.it-ebooks.info
This explains why we haven't been releasing the strings created with the
@ . . . " construct.

If you apply these rules of thumb consistently and keep the retain counts of your objects
balanced, you can manage memory in your applications effectively.

http://www.it-ebooks.info/

www.it-ebooks.info

4.4 Exercises

1. Investigatethe| ower case and upper case methods of NSSt r i ng using the
debugger.

2. Write a Foundation Tool command-line application that prints the contents of any
filename given toit.

3. Read the documentation on your hard drive about the NSAr r ay, NSSet , and
NSDi ct 1 onar vy classes.

4. Modify the arrays example application so that it saves the contents of the array to a
file.

5. Write an example that saves adictionary to disk. Don't just use string objectsin the
array, but use some other objects like dictionaries and numbers so that you can see
how Cocoa saves different types out to XML property lists.

6. Examine the code we've written so far with an eye for how memory is managed. (A
bug regarding memory management has been left in one of the examples.)

http://www.it-ebooks.info/

www.it-ebooks.info

Part I1: SingleWindow Applications

This part of the book covers the basic building blocks of any Cocoa
application that displays a single GUI window to the user. This section uses
a series of examplesto illustrate the concepts presented. The techniques and
concepts you learn in each chapter will lay the foundation for the next
chapter.

Chaptersin this part of the book include:

Chapter 5
Chapter 6
Chapter 7
Chapter 8

Chapter 9

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 5. Graphical User Interfaces

Now that we've covered the Foundation, we're going to take a step up and start working
with the AppKit framework to create GUI-based applications. In this chapter, we'll build a
single-window application from beginning to end, letting us introduce the various GUI
subjects necessary to become proficient with Cocoa programming. For the first time, you'll
see the complete workflow typical of Cocoa application development, composed of the
following steps:

1. Design the application.

2. Create the project using Project Builder.

3. Create the interface using Interface Builder.

4. Definethe classes using Interface Builder.

5. Connect the Model, View, and Controller objects using Interface Builder.
6. Implement the classes using Project Builder.

7. Build and run the project using Project Builder.

The application we'll build in this chapter is a currency converter-asimple utility that
converts adollar amount to an amount in some other currency. This example has been one
of the mainstay examples of NeXTSTEP/OpenStep/Cocoa programming; it's been around
almost long enough to reach "Hello World" status. Although it is a simple application, it
consolidates quite a few of the concepts and techniques needed to get started with writing
Cocoa GUI applications.

After working through this first complete GUI application, we'll spend the rest of this
section of the book exploring in-depth the topics introduced in this chapter.

http://www.it-ebooks.info/

www.it-ebooks.info

5.1 Graphical User Interfacesin Cocoa
Graphical user interfacesin Cocoa are built on the following four concepts:

. Windows
. Nibfiles
. Outlets
. Actions

5.1.1 Windows

A window in Cocoa looks similar to windows in other user environments, such as
Microsoft Windows or earlier versions of the Mac OS. A window can be moved around the
screen and stacked on top of other windows like pieces of paper. A typical Cocoa window,
shown in Figure 5-1, has atitlebar, content area, and several control objects.

Figure 5-1. A typical Cocoa-based window

Window controls Titlefar
| |
Be e Untitled 2
privingnmenls 5ech as Merosof Windowe s oF ol
Rrsinns of thee M i‘lH A wnndow can b mosaed arouni

i screen and stacked on iop of gach pihar ke picoes of
napnt A dypical Cocoa window, shown in Figuee 5-1, has a
tillebar, condent anea, and several condrol ohjects

Mainy user inkeriace objects othar than the standand
wincows are window objecls withoul the standard window
widgets, Menus, pop-up menus, dialog bokes, sheels
Comrtent amed —— aleris, panels, infe windows, ool paletes, and soolling
15 are primarily windows. In tact, anything drasan on thie
sotpeEn missl appear ina window, End users, howewer, may
nol rpcognize of e o them as Swindows

Many user-interface objects other than the standard windows are window objects without
the standard window widgets. These include menus, pop-up menus, dialog boxes, sheets,
aerts, panels, info windows, tool tips, tool palettes, and scrolling lists. In fact, anything
drawn on the screen must appear in awindow. End users, however, may not recognize or
refer to them as "windows."

http://www.it-ebooks.info/

www.it-ebooks.info

5.1.2 Nib Files

A nibfileisan archive of object instances generated by Interface Builder. Unlike the
product of many user interface-building systems, anib file is not generated code. It is a set
of true objects that have been encoded specially and stored on disk. The objects in the nib
file are created and manipulated using Interface Builder's graphical tools.

Nib files typically package a group of related user-interface objects and supporting
resources, along with information about how the objects are related-both to one another
and to other objectsin your application. Nib files hold all of the objects they describe by
specially archiving, or freeze-drying, so that they can be reconstituted in a running
application and then used again.

Every application with a graphical user interface has at least one nib file that is loaded
automatically when the application is launched. The main nib file typically contains the
application menu. Auxiliary nib files contain the application windows, as well as their
associated user-interface objects. For example, an image-manipulation program such as
Photoshop might have auxiliary nib files for the various palettes and controls that | et you
work with an image.

It can be useful to think of the objects that compose a user interface, and are contained
within anib file, as forming a hierarchy. Figure 5-2 shows the ownership hierarchy of nib-

based objects for Figure 5-1. At the top of the nib file's hierarchy of archived objectsisthe

file's owner object, a proxy object pointing to the actual object that owns, or controls, the
nib file-typically the object that loaded the nib file from disk.

Figure 5-2. Owner ship hierarchy of nib-based objectsfor Figure 5-1

1— File's owner —1
Menu bar l— Window —l
1— Titlebar —1 Content view
v
Window controls Title label Scroll view

'

Text view

http://www.it-ebooks.info/

www.it-ebooks.info

5.1.3 Outlets

An outlet is a special-instance variable, marked with the | BOut | et keyword in aclasss
header, that contains a reference to another object, as shown in Figure 5-3. An object can

communicate with other objects in an application by sending messages to them through
outlets.

Figure 5-3. Object connected to a text field via an outlet

@interface Controller

IBOutlet id textField; WS e Some text

-(IBAction)doAction: (id)cender;

An outlet can reference any object in an application: user-interface objects, instances of
custom classes, and even the application object itself. What distinguishes outlets from other
instance variablesis that Interface Builder recognizesthe | BOut | et keyword and lets
you manipulate the connections it defines. These connections, once defined, will be linked
up for you when your application runs. Specifying these relationships between objects in
Interface Builder saves you from having to write initialization code by hand. There are
ways other than outlets to reference objects in an application, but outlets and Interface
Builder's facility for initializing them are a great convenience.

5.1.4 Actions

Actions are special methods, indicated with the | BAct i on keyword, which are defined by
aclass and triggered by user-interface objects. Interface Builder recognizes action
declarationsin a header file, as it does with outlets. Similarly, Interface Builder allows you
to connect actions that a user might take with an interface, such as pushing a button, to
methods on an object. These connections are shown in Figure 5-4.

Figure 5-4. Targets and actions

@interface Controller

IBOutlet id textField;

Lalls when pushed

f
Button # - ([BAction)dofction: (id)sender;

An action refers both to a message sent to an object when the user clicks a button (or
mani pulates some other control), and to the invoked method.

http://www.it-ebooks.info/

www.it-ebooks.info

5.2 Designing ApplicationsUsing MVC

Cocoa applications make use of along-standing object-oriented paradigm called Model -
View-Controller (MVC). Asillustrated in Figure 5-5, MV C proposes three types of objects

in an application-model, view, and controller:
Model
Objects that hold data and define the logic that manipul ates that data
View
Objects that represent something visible to the user, such as awindow or a button
Controller
Objects that act as mediators between model and view objects

Figure 5-5. Modéel, view, and controller objectsin an MVC design

View View
l_x '
, v =
grosriaes - [——
¥ ¥
Model Model

The MV C paradigm works well for many applications, because the controller's central and
mediating role frees the model objects from needing to know about the state and events of

http://www.it-ebooks.info/

www.it-ebooks.info

the user interface. Likewise, the view objects don't have to know about the programmatic
interfaces of the model objects. Dividing the problem aong these lines hel ps encapsul ate
the various objects in an application. This can also aid reuse, since the model could be used
elsewhere, perhaps even on another platform.

MVC, strictly observed, is not advisable in all circumstances. Sometimes it can be
advantageous to combine roles. For example, in an graphics-intensive application, such as
an arcade game, you might have several view objects that merge the roles of view and
model for performance reasons. In other applications, especially simple ones, you can
combine the roles of controller and model; these objects join the special data structures and
logic of model objects with the controller's hooks to the interface.

5.2.1MVC in Currency Converter's Design

The Currency Converter application will consist of two custom objects: aConvert er
that will serve asour model and aCont r ol | er that will mediate between the user
interface and the Conver t er object. We'll create the view of the application using a
collection of AppKit objects, which we'll assemble using Interface Builder. The
relationships between these objects are shown in Figure 5-6.

Figure5-6. MVC in Currency Converter'sdesign

g Fwie gar |

Ciallar o Cooreurt

F Comsart ¥

View

{!:nn-.-erter
(model)

The Cont r ol | er object will assume the central role in the application. Like all controller
objects, it communicates with the interface and model objects, and it handles tasks specific
to the application. The Cont r ol | er object getsthe values that users enter into fields,
passes these valuesto the Conver t er object, gets the result back from the Converter,
and putsthisresult into afield in the interface. By insulating the Conver t er from the
implementation-specific details of the user interface, the Conver t er object becomes a
reusable component for other applications.

http://www.it-ebooks.info/

www.it-ebooks.info

5.3 Createthe Currency Converter Project

Now that we have designed the application, we can get to work on the implementation. In
Project Builder, create anew Cocoa Application project (File —# New Project —
Application —4 Cocoa Application) as shown in Figure 5-7, then name the project

"Currency Converter", and saveit in your ~/LearningCocoa folder.

If you click on the disclosure triangle next to Other Sources in the left pane and click on
main.m, you'll notice that the file looks a bit different from the Foundation projects we've
worked with in the past. The main.mfile contains the following code:

Il

[l main.m

/1 Currency Converter

Il

/Il Created by Janmes Duncan Davidson on Fri Aug 30 2002.

/1 Copyright (c) 2002 _ MyConpanyNanme . Al rights reserved.
Il

#i nport <Cocoa/ Cocoa. h>

int main(int argc, const char *argv[])

{
}

return NSApplicationMin(argc, argv);

Figure5-7. Creating a new Cocoa Application

http://www.it-ebooks.info/

www.it-ebooks.info

- Assistant
ﬂ Mew Project
Empiy Progect
Apmlication
AppleSonpt Applicatian
Appletonnt Documeni-based Applicatian

AppleSonpt Droplet

Carbon Applicatan

Carbon Applicatson iMib Based)

Cocoa Anplicatan

Cocoa Document-based Applicatan

Cocoa-]ava application

Cocoa-lava Document-based Applicatan
Bundle

Carbipe Bumdle

EFFlugin Eurdle

Cocoa Bundle

Framework

Cancel Mext

Noticethat thei npor t statement has changed to importing Cocoa.h instead of Foundation.
h. The Cocoa.h header contains the definitions for both the Foundation and AppKit classes.
Also notice that the main method makes a call to the NSApp! | cat | onMai n function.
This function is defined by the AppKit and will start the application, load the main nib file,
and set up the event loop and autorel ease pool for that loop. Now that we have taken alook
at this sourcefile, we can let it be. You'll very rarely, if ever, modify the main.mfile of a
Cocoa GUI application.

- Project Builder automatically generates the comments at the top
of the source file from the Cocoa Application template. Y ou'll
probably want to changethe My ConpanyNane text tothe
actual copyright holder and make sure that the copyright year is
correct. See Chapter 17 for more details on how to finish and
polish your applications.

http://www.it-ebooks.info/

www.it-ebooks.info

5.4 Createthelnterface

The Currency Converter'sinterface is actually quite ssimple to create. It consists of afew
text fields and a button. The process of creating it will give you an opportunity to explore
how Interface Builder works. Figure 5-8 shows a hand-drawn sketch of how we'd like the

interface to look. This gives us something to go by when designing the interface in Interface
Builder.

Figure5-8. The Currency Converter interface

e h-w“_"*ql

& EE C ocrency Comevrel

W W e e T T e T L L S g S

T

e e R P '|IL

E_u_t'_l '-'..H'-fJG' EL'AE.- f“‘”’ ﬁ:" : ‘L.'A— =

- PP J

Uelerg e Comtera s [|

e i i,

Dﬁ"al._'_k..-ﬂ"'[e {:\L*-‘-'?{:L'I'ri‘{"l‘ l__,,_,._..h___ﬂ ,,}

P g S e
L oade)
o

=g,
pai e L S ———

g P S i i, e i
r

7

i e e AL e i

i i T N I R gt e . T Bl S -
g - . - - ..I.F‘ 1 d

|
[o e
Ny,

5.4.1 Open the Main Nib File
Begin by creating an application's user interface in Interface Builder.

1. In Project Builder's |eft pane, click on the disclosure triangle next to Resources to
reveal the MainMenu.nib file.

2. Double-click on MainMenu.nib to open it in Interface Builder.

http://www.it-ebooks.info/

www.it-ebooks.info

A default menu bar and window, titled Window, will appear when the nib file is opened.
5.4.2 Resize the Window

The window is abit large for our purposes. Y ou can change the size either by dragging the
bottom-right corner of the window or by using the Info window, as shown in Figure 5-9.

Y ou can open thiswindow by selecting Tools —# Show Info from Interface Builder's

menu (Shift-38 -1).

Figure 5-9. Info window showing the Size panel

Lock 'Window Frams
Camtent Root
Bail 14LelE Hihrl
n 401
Felr b P b
M. 213 h 107 o | 1 0
Curremny Currend
=
= = '
"
=
<

When you have opened the Info window, use the following process to resize the window:
1. Select Size from the Info window's pop-up menu.
2. Inthe Content Rect area, select Width/Height from the right-hand pop-up menu.

3. Inthetext fields under the Width/Height menu, type 400 in the width (w) field and
200 inthe height (h) field, as shown in Figure 5-9.

5.4.3 Set the Window's Title and Attributes

By default, our window has atitle of Window. We want the application window to have a
more meaningful title, as well as afew other attributes that we care about.

http://www.it-ebooks.info/

www.it-ebooks.info

1. Select Attributes from the Info window's pop-up menu, and change the window's
title to Currency Converter, as shown in Figure 5-10.

2. Verify that the Visible at launch time option is selected. Thiswill ensure that this
window is created on screen when the application is launched.

3. Deselect the Resize checkbox in the Controls area. Thiswill prevent users from
resizing the application.

Figure 5-10. Info window showing the Attributes panel

5.4.4 Placethe Text Fields

The Currency Converter will use text fields to accept user input and display converted
values. To place atext field into the window:

1. Dragan NSText Fi el d object from the Views palette (shown in Figure 5-11), and
place it in the upper-right corner of the application window.

When you drag the text field onto the window, Interface Builder helps you place
objects according to the Aqua Human Interface Guidelines (HIG) by displaying
guidelines when an object is dragged close to the proper distance from neighboring
objects or the edge of the window.

http://www.it-ebooks.info/

www.it-ebooks.info

Figure 5-11. Dragging an NSTextField from the Views palette

o | Te:
Text | SN Te: HH
=3 -"|
Euttan S [
~ 4] FleldiNETexField
A | Lo
Switch
Fleld2
i Radio ahel Ford Text

™ Radio E: Small System Fang Text

System Font Text

2. Resizethetext field by grabbing a handle and dragging it in the direction in which
you want it to grow. In this case, drag the |eft handle to the left to enlarge the text
field, as shown in Figure 5-12.

Figure5-12. Resizing a text field

@

O Currency Converter

h

Just as you can specify the size of the application window, you can aso specify
exact sizes for other elements of your application. For example, if you want the text
field to be 150 pixelswide, select the NSText Fi el d object, and then select Size
from the NSTextField Info window (Shift-3g-1). In the width field (w), enter 150
asthe value, and hit the Tab key to accept the value; the NSText Fi el d object will
conform to its newly defined dimensions.

5.4.5 Duplicating Objects

Currency Converter needs two more text fields, each the same size asthe first. To place
these fields, you have two options: you can drag another text field from the palette and

http://www.it-ebooks.info/

www.it-ebooks.info

make it the same size, or you can duplicate the first object. To create anew text field by
duplication:

1.

Select the text field, if it is not already selected.

Choose Edit —# Duplicate (or use the keyboard shortcut, 38-D). The new text
field appears dlightly offset from the original field.

Another way to duplicate afield isto click on the object, then hold down the Option
and drag the object. A plus sign will appear next to the pointer to indicate that you're
making a copy of the object, and the guidelines will help you move the newly
duplicated object into place.

Reposition the new text field under the first text field. Y ou'll notice that the guides
will appear once again to help you move the second text field into place.

To make the third text field, make another duplicate. Notice that Interface Builder
remembers the offset from the previous Duplicate command and automatically uses
that offset to create and place the third text field.

5.4.6 Changethe Attributesof a Text Field

Since the third text field will display the results of the computation, it should not be
editable. To change its attributes:

1.

Select the third text field.

Choose Attributes from the Info window's pop-up menu, as shown in Figure 5-13.

In the Options section of the Info window, uncheck the Editable attribute so users
cannot alter the contents of the field.

Make sure that the Selectable attribute is on so that users can copy and paste the
contents of thisfield to other applications.

Figure 5-13. The NSTextField Info window

http://www.it-ebooks.info/

www.it-ebooks.info

MATexiFi Inl
Artributes c
Il
Colors
- Tl Backprosnd
Aligrment
Barder send Acticn
o=
Oiptions Layout
Incfrerh ——— | Edditnb
W Enabied W coraliable
\lr Selectable ‘Wraps

SEna

5.4.7 Add Text Labels

Next we need to add some labelsto the text fields, so the user will know why the fields are
there.

1. Using Figure 5-14 as a guide, drag a System Font Text object from the Views
pal ette onto the Currency Converter window.

Figure5-14. Aligning a text field with itslabel

| &) - Currency Converter

Aycrem F I:ll:'IE Layr

2. Right-align the text using the Info window.

3. Duplicate the text label twice, and then edit the text for al three labels, as shown in
Figure 5-15. To edit atext label, double-click on the current label (System Font

Text) to highlight it, then type in the new label. After entering the new label, hit the

http://www.it-ebooks.info/

www.it-ebooks.info

Tab key to accept the new |abel.

ol Hitting the Return key will not accept the new label;
instead, it will insert a carriage return.

Figure 5-15. Currency Converter'stext fields and labels

) 3 Currency Converter

Exchange Hate per 51
Dollars to Convert

Amount in Oither Currency

Asyou typein the new labels, you'll notice that the text fields aren't wide enough to
hold the text shown in Figure 5-15. To correct this problem, resize the text fields by

grabbing the middle-left field holder and dragging the edge of the text field to the
left until al of the text appears.

5.4.8 Add a Button to the Interface

The last functional part of the user interface that we need to add is the Convert button. It
needs to be set up so that it can be invoked either by clicking it or by pressing Return when
the application has the user's focus.

1. Drag abutton object from the Views palette, and place it in the lower-right portion
of the window.

2. Double-click thetitle of the button to select its label, and change the title to Convert.
3. With the button selected, choose Attributesin the Info window, and then choose
Return from the pop-up menu labeled Equiv, as shown in Figure 5-16. This allows

the button to respond to the Return key, as well as to mouse clicks.

Figure 5-16. The NSButton I nfo window, used to change the Convert button's
attributes, soit will respond to a mouse-click or to the Return key

http://www.it-ebooks.info/

www.it-ebooks.info

H%Euiton Inlo

AT —

AL Lianyert

g el
Eguivw. R RETLiTT h: ¥ ™
I'ype Push Eutton -
HeFRanaar
Ai=liitel TR

Transparemn

Lanfifiudus
\,i' Ersahied an Positicn

Selected

afmnal

fimiely Inset

4. Align the button under the text fields. To center the button under the text fields, you
can pop up a set of measurement guides that tell you the distance from an object to
any of its neighboring objects. With the button selected, hold down the Option key
and point to an object whose distance from the button you want to see, as shown in
Figure 5-17. With the Option key still down, use the arrow keys to nudge the button

to the exact center of the text fields.
Figure 5-17. Aligning the Convert button with thetext fields

8 B Currency Converter

Lxchange Rate ger 51
Dollars 1o Convert

Amau it if Other Curréncy !
L= | ko]

e

3% Camert €

5.4.9 Adding a Decorative Line

Lines can separate el ements to help the user make sense of the objectsin the user interface.
Wel'll add aline between the editable fields and the result field.

http://www.it-ebooks.info/

1. Movethethird text field and label down abit in the user interface.

www.it-ebooks.info

2. Drag ahorizontal line from the Views palette onto the interface, and use the

alignment guidesto place it right under the dollars text field.

3. Usethe selection handles on the line to extend it to each side of the interface.

4. Movethe result text field and label back up into position using the guides, then

move the Convert button up into place.

5. Resize the window using the guides to give you the proper distance from the text

fields on the right and the Convert button on the bottom.

At this point, Currency Converter's application window should look like Figure 5-18.

Figure 5-18. Thefinal Currency Converter interface

Ll & Currency Converier

Exchange Fate gper 51
Dollars to Convert
Arnount in Other Currency

F o — 1
Comyart

Aqua Layout and Object Alignment

Aligning Aquainterface widgets could be difficult, because the objects have
shadows, and Ul guideline metrics don't typically take the shadows into account.
To help aleviate this problem, Interface Builder uses visua guides and layout
rectangles to aid with object alignment. Interface Builder provides the guides to
indicate when your objects line up or are in the correct location.

In Cocoa, al drawing is done within the bounds of an object's frame. Because
Interface objects have shadows, they don't visually align correctly if you aign the
edges of the frames. For example, the Aqua Ul guidelines say that a push button
should be 20 pixelstall, but you actually need aframe height of 32 pixelsfor
both the button and its shadow. The layout rectangle is what you must align, not
the button itself.

Y ou can view the layout rectangles of objectsin Interface Builder by using

http://www.it-ebooks.info/

www.it-ebooks.info

Layout —# Show Layout Rectangles (gg-L). Also, Interface Builder's Size
Inspector has a pop-up to toggle between the frame and layout rectangle, so you
can set values by hand when appropriate.

Look in the Alignment and Guides submenus of the Layout menu for various
alignment commands and tools. Y ou can also use the alignment tool (Tools —#
Alignment) to provide a floating window with buttons that perform various types
of alignment functions.

5.4.10 Setting the I nitial First Responder and Enabling Tabbing

Thefina step in composing Currency Converter's interface has little to do with appearance
and everything to do with behavior. When users launch the application, they should
immediately be able to enter information in the interface and tab between the text fields.

Thefirst place a user's input should go when they launch the application isin the first text
field. To ensure that this happens, specify the first text field as the application window's
initial first responder -- the object in the window that will befirst in line to accept events
from the keyboard. To do this:

1. Inthe Instances pane of nib file window, click on the Window instance and Control-
drag a connection to the first text field in Currency Converter's window.

2. Selectthei ni tial Fi rst Responder outlet in the Info window, as shown in
Figure 5-19, and click the Connect button.

Figure 5-19. Connecting Currency Converter'sinitial first responder

http://www.it-ebooks.info/

www.it-ebooks.info

Currency Conwerter 0 £ W S sl Il
Canneckicns rad
Exchange Rate per $1: 3 Outhets
allars 1o Conwert: duhispa b
inibalfirst&esponde ¢
oo D
Aumowunt in Cther Curmency:
CormeErt
®00 . MainMenu.nib
= L = Gourte T Dustanatesn
! Instances T Clasees T Images -T Saunds inimialf i R pondar WETaxIField o
: = B
/\ [ey
F F Rainkienis
" : (__Disconnect)

Next, we want to ensure that when the user presses the Tab key, the focus moves to another
text field. To do this:

1. Select thefirst text field, and Control-drag a connection line from it to the second
text field, as shown in Figure 5-20.

Figure 5-20. Connecting text fieldsfor inter-field tabbing

O a Currency Converter oo R
CorrmcEany ::'
Cuchange Rate per 51 - hutlets
Dipilars 1o Conver L] g
dielegate
formasier
Amount in Other Currengy —
ek K g 3
f Corvert ¥
ol Mainhenia.nib
= = Sapre Destiration
rh!l‘l.l'ﬂ:!!-T Classes T Images T Saurds roEi Ry W e WS TestFeeld 0
A <= 3
=
o -

Fankierw

Windie T " Discoamecr Y

http://www.it-ebooks.info/

www.it-ebooks.info

2. Select the next KeyVi ew outlet in the Info window, and click the Connect button.

3. Repeat the previous two steps, but connect the second field to the first. Thiswill
make it so you can tab from the second field back up to the first text field.

5.4.11 Test the Interface

The Currency Converter interface is now complete. Interface Builder lets you test the
interface without having to write any code.

1. Choose File —# Save All to save your work.

2. ChooseFile — Test Interface (38-R) to launch the interface in a mode where you
can test it.

3. Try various operationsin the interface, such as tabbing, cutting, and pasting
between text fields.

4. When finished, choose Quit New Application (gg-Q) from the Interface Builder
application menu to exit the text mode.

Notice that the screen position of the Currency Converter window in Interface Builder is
used astheinitial position for the window when the application is launched. Place the
window near the top-left corner of the screen so that it will be a convenient (and traditional)
initial location.

http://www.it-ebooks.info/

www.it-ebooks.info

5.5 Definethe Classes

WEell define the two classes needed for our application here in Interface Builder: a
controller class and amodel class. If you recall, the controller class controls the interaction
between the model and view objects, while the model object holds data and defines the
logic that manipulates that data.

5.5.1 Createthe Controller Class

The controller class, Cont r ol | er, doesn't need to inherit any special functionality from
other classes, so it will be asubclass of NSCoj ect . To defineit:

1. Click the Classes tab of the MainMenu.nib window, as shown in Figure 5-21.
2. Select NSObject from the list of classes.
3. Press Return to create a new subclass of NSChj ect , and renameit Control | er.

Figure5-21. Creating the Controller class and defining outlets

&B0O5 Maimbenu. mils Camtrallir Clas Ial:
- . ATTribame s wl
Instances | Classes Images Sounds
- "'r.: o v Caanrriy Language: 5 Objecthe C
v
(METE] ET ", _ankrollar
T
Lomwertes FaOutlets | 1 Aciion

FiirstRie s paoin dbesr
Qutlet Mams Tyt
LM ErEr el
4 dodlarfield A
h raneField il
el

)

5.5.1.1 Define outletsfor the controller

The Cont r ol | er object needs access to the text fields of the interface, so you must
create outlets for them. Cont r ol | er will also need to communicate with the
Converter class(yet to be defined) and thus requires a fourth outlet for that purpose.

http://www.it-ebooks.info/

www.it-ebooks.info

1. Selectthe Cont r ol | er classin the Classes window, as shown in Figure 5-21.

2. Select the Attributes menu item in the Info window.

3. Add an outlet named r at eFi el d by clicking the Add button, entering the name,
and pressing Return.

4. Create three more outlets, named do! | ar Fi el d, t ot al Fi el d, and
converter,asdetailedin step 3.

5.5.1.2 Define actions for the controller

The Cont r ol | er classneedsonly one action method to respond to user-interface events.
When the user clicks the Convert button (or uses the Return key, which we defined as an
equivalent), wewant aconvert : message sent to an instance of the Cont r ol | er.

1. Click on the Action tab in the Info window.

2. Add an action named "convert: . Interface Builder will add the": " for you if
you don't.

5.5.2 Definethe Model Class

Likethe Contr ol | er class, the Converter class-our model in MV C speak-doesn't
need to inherit any special functionality, so you can make it a subclass of NSCh| ect .
Because instances of this class won't communicate directly with the interface, there's no
need for outlets or actions.

1. Inthe Classes window, createthe Conver t er object, and make it a subclass of
NSChj ect by clicking on NSObject, hitting Return, and entering Convert er as
the subclass's name.

2. Save Val nVenu. ni b. Aswith any program, it's always agood ideato hit 3§-S
every now and then, so you won't lose your work.

http://www.it-ebooks.info/

www.it-ebooks.info

5.6 Connect the Model, Controller, and View

The last task that remainsin Interface Builder is to hook up the various parts of our
application so that each part can talk to the others.

5.6.1 Generate an I nstance of the Controller and M odel

When the application isfirst launched and the nib file is loaded, we want to create an
instance of both our controller and model classes. To do this:

1. Select Cont r ol | er inthe Classes tab of the nib file window.

2. Choose Instantiate from the Classes menu. The instance will appear in the Instances
view of the MainMenu.nib window, as shown in Figure 5-22.

3. Repeat the processfor the Conver t er class.
Figure 5-22. The Converter and Controller instances

@00 MainMenu.nib

f
Instances \ Classes Images Sounds

A 1. "=

Mainklenu

e

Winid i Camtrallar Cafivarnig

[Tl 0

5.6.2 Connect the Controller tothe Interface

Now you can connect the Cont r ol | er instance object to the user interface. By
connecting it to specific objectsin the interface, you initialize its outlets. Cont r ol | er
will use these outlets to get and set values in the interface.

1. Inthe Instances display of the nib file window, Control-drag a connection line from
the Cont r ol | er instance to thefirst text field, as shown in Figure 5-23.

http://www.it-ebooks.info/

www.it-ebooks.info

Figure 5-23. Connecting the Controller instanceto theratetext field

Cantredles {Cugiomi inla
Connectiang

Exchange Rave per Daodlar

Oatlers
Daollars 5o Capert £ 01 W EATE
dollarFielc
Amount in Other Currency """l_""" *
R R
 Convert
=00 MlainMenuw.nib
p . Source [restination
ImsLancas Claggag IS Sounds rataFaald WS T Faeldl #0§
A . Y iz E_i
_L/ -
Mainklern
= E
window Conoroler Canvernen

Dy czmnect

2. Interface Builder will bring up the Connections display of the Info window. Select
the action that correspondsto thefirst field, r at eFi el d.

3. Click the Connect button.

4. Following the same steps, connect the Cont r ol | er'sdol | ar Fi el d and
t ot al Fi el d outlets to the appropriate text fields.

To tell the controller that it istime to perform an action, we need to hook up the Convert
buttontothe Cont r ol | er.

1. Control-drag a connection from the Convert button to the Cont r ol | er instance
in the nib file window. Instead of dragging from the controller object to an interface
object, we are dragging a connection from a user-interface object to the controller.

2. Inthe Connections Info window, make sure that the target is selected in the Outlets
column, as shown in Figure 5-24.

Figure 5-24. Connecting the Convert button to the Controller

http://www.it-ebooks.info/

www.it-ebooks.info

R . Currency Copvener ! L5, WSRO Infa
Canmections ¥
Exchange Rate per Dollar; Cwtiers T
Godlars to Conwert: gt = Ll =
Formatter
Amaunt in Other Currency i

et b iy

S ain®Emu.nib
- ' . SourTE [restination

Instances | Llassas 1 Imapes Sounds target Caortroller. cormen

}1\ - = !

F = 5
[2 r L

MasMenu

‘Whinckoe Coraroller LCoremer . g

[hag nnmeck

3. Sdlect convert: in the Actions column.
4, Click the Connect button.
5.6.3 Connect the M odel to the Controller

The last connection isto hook up the instance of our Conver t er model classto the
Controller.

1. Inthe Instances view of the nib file window, Control-drag the Cont r ol | er
instanceto the Conver t er instance.

2. Connect the Convert er instancetotheconvert er outlet.

http://www.it-ebooks.info/

www.it-ebooks.info

5.7 Implement the Classes

Now we come to the part of this exercise where we take all of that work done in Interface Builder, generate the source
files for our classes, and finish the class implementations in Project Builder.

5.7.1 Generate the Source Files

To generate the source files, follow these steps:

1

2.

Go to the Classes display of the nib file window.

Select the Cont r ol | er class.

Choose Create Files from the Classes menu.

Verify that the checkboxes in the Create column next to the .h and .mfiles are selected.
Click the Choose button.

Repeat Steps 1-5 for the Convert er class.

. Savethenibfile.
A Y ou can aso create the files for a class by Control-clicking (or right-clicking if you have a
e two-button mouse) on the class name in the Classes menu and selecting the "Create files

[o for..." menuitem.

Now, we |leave Interface Builder for this application. Y ou'll complete the application using Project Builder.

5.7.2 Examine an Interface (Header) Filein Project Builder

When Interface Builder adds the header and source files to the Currency Converter project, it tries to put them in the
same group folder as other source filesin the same disk folder. Since the newly created files are class implementations,
move them to the Classes group if Interface Builder did not do so automatically.

1

2.

Click Project Builder's main window to activate it.

Select the Controller and Converter filesin the Groups & Fileslist, and drag them into the Classes group, as
shown in Figure 5-25.

Figure 5-25. Adding the sour ce files to the Classes group

http://www.it-ebooks.info/

www.it-ebooks.info

808 A Currenty Canverter - Contralber.h =3
"'(% i ‘Bl (@f @ Currency Col #]
o Lroups & Pl e B Find *, Build Run I Dabug
lq:l—.'lu'.; Convartdi o

= Classes - | g fl Conteallisn B] & <Be selactlod spmbol> & @ @
- hl Cesaraller, b k ¥ L ’
- m Coearolier.m
+ h] Carwerter.h i il .}
= M [esreimes. it = dunterfoce Controller @ HSDbject

L Ofher Sources] {
o M. m o [BOut Let i .

m M B [DOut et 10 comeTtar)

¥ Rasgrarces [BL t id col larFiela:
- b 3 bainMer nib L 1 rataf Leid;
=] [InfaPlist.strings i totalFie=ld;

E Framesarks

ML n yoormert o esndar
L Prosdiices

1) B i ik flah

il Targits

L ook at the Controller.h file that Interface Builder generated. Notice that in addition to being declared of typei d, our
variableshavean | BOut | et declaration. Thisisamacro that, in the compiler, doesn't evaluate anything. It isused as a
hint to Interface Builder's parser, telling it that the variable is an outlet. Y ou will also notice that theconver t : method
hasareturn type of | BAct i on. Thistypeisthesane asvoi d and also tells Interface Builder that the method serves
as an action that can be hooked up to user-interface elements and other objects. These declarations allow you to add
outlets and actions in the code and enable Interface Builder to parse them. We'll see thisin action in later chapters.

5.7.3 Add the Conversion M ethod

We need to add a method to the Conver t er classthat the controller object can invoke to perform our currency
conversion.

1. Start by declaringtheconver t Amount : at Rat e: method in Converter.h, as shown in Example 5-1. This

method declaration statesthat conver t Anount : at Rat e: takestwo arguments of typef | oat and returnsa
fl oat vaue.

Example 5-1. Converter.h header file

#i nport <Cocoa/ Cocoa. h>
@nterface Converter : NSObject

{
}

- (float)convert Anount: (fl oat)amt atRate:(float)rate;
@nd

2. Add the method implementation to the Converter.mfile, as shown in Example 5-2. This method simply
multiplies the two arguments and returns the result.

Example 5-2. Converter.m implementation file

#i nport "Converter.h"

@ npl ement ati on Converter
- (float)convert Anount: (float)ant atRate:(float)rate

{

}
@nd

return (ant * rate);

http://www.it-ebooks.info/

3. Update the "empty" implementation of theconvert :

for you, as shown in Example 5-3.

Example 5-3. Controller.m implementation file

www.it-ebooks.info

method in Controller.mthat Interface Builder generated

#inport "Controller.h"

#i nport "Converter.h" /1 a

@ npl enent ati on Controller

- (I BAction)convert: (id)sender

{
float rate = [rateField floatVal ue]; Il b
float amt = [dollarField floatVal uej; Il c
float total = [converter convertAnount:am atRate:rate]; /1 d
[total Field setFl oatValue:total]; Il e

}

@nd

The lines we added do the following things:

a. Importsthe Convert er classinterface.

b. Getsthevaue of ther at eFi el d outlet of the interface as a floating-point number. All text fields (and
other classes that inherit from NSCont r ol) can present the data that they contain in various forms,

including doubles, floats, Strings, and integers.

c. Getsthevaueof thedol | ar Fi el d outlet of the interface as a floating-point number.

d. Cdlstheconvert Anount : at Rat e: method of the Conver t er object instance.

e. Setsthevaueof thet ot al Fi el d outlet of the interface to the result obtained from the Convert er

object instance.

http://www.it-ebooks.info/

www.it-ebooks.info

5.8 Build and Run

When you click the Build and Run button, the build process begins. When Project Builder
finishes-and hopefully encounters no errors along the way-it displays Build succeeded on
its status line and starts the application.

To exercise the application, enter some rates and dollar amounts, and click Convert. Of
course, the more complex an application is, the more thoroughly you will need to test it.
Y ou might discover errors or shortcomings that necessitate a change in overall design, in
the interface, in a custom class definition, or in the implementation of methods and
functions.

http://www.it-ebooks.info/

www.it-ebooks.info

5.9 Exercises
1. Change the font used by the text labels on the application to Helvetica.

2. Change the color of text displayed inthet ot al Fi el d to blue.

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 6. Windows, Views, and Controls

All of the objects that you interact with on your computer screen are displayed within
windows. Thisincludes what we consider "normal” windows (those with titlebars and
controls), as well as menu items, pop-up contextual menus, floating palettes, sheets,
drawers, and the Dock.

http://www.it-ebooks.info/

www.it-ebooks.info

6.1 Windows and the Window System

Two interacting systems create and manage Cocoa windows. On one hand, Mac OS X's
window server creates awindow and displays it on screen. The window server is a process
that uses Quartz-the low-level drawing system-to draw, resize, hide, and move windows.
Asdepicted in Figure 6-1, the window server also detects users events (such as mouse

clicks or keyboard key presses) and forwards them to applications.

Figure 6-1. Cocoa and the window server
Mouseclict event NERNEL ek event L bl
Window List

o | Ui L ; Wirdowr server defermines
et which application owns the
wirdawr and forweards e
LS Erlik event

Cocoa Application (NSApp)

: {iw-lev! event forwarded
PffEr_Eﬂ'if o WS Window a5 an NSEvent

NSWindow

..................

On the other hand, the window created by the window server is paired with an object
supplied by the AppKit-an instance of the NS\W ndow class. Each physical window in a
Cocoa program is managed by an instance of NSW ndow or a subclass. As shown in
Figure 6-2, when an NSW ndow object is created, the window server creates the physical
window being managed. The window server references the window by its window number
and the NS\W ndow object instance by its own identifier.

Figure 6-2. NSWindow objects and window server windows

http://www.it-ebooks.info/

www.it-ebooks.info

Cocoa Application (NSApp) Cocoa Application (NSApp) Cocoa Application (N5App)
NaWindow W5sWindow N5Window
; 1 T
Fadaiw I Wieadaw 1) Wikdow 1D
\i Y L
B an Uik 8 @ @220 B WK ¢ Do edilgi S T
: —— ; - [T C STy T m
Dallas wa Con LiL .,IN." LA T
¥ Camer ¥ I i '- :
L
4 A é
e e e o o H e e o e e 5 é { ...
Window Nmber
Windeow List
Window Server

6.1.1 Window, View, and Application

Three classes explicitly define the functionality at the core of a running application:

NSW ndow, NSVi ew, and NSAppl | cat i on. Each class plays acritical rolein drawing
the user interface of the application and directing user events to the various parts of a
program. Each class inherits functionality from the NSResponder and NSChj ect
classes, as shown in Figure 6-3. The structure of their interaction is sometimes called the "

core program framework."

Figure 6-3. The core program framework

NSObject

N5Responder

NSWindow

N5View

NSApplication

http://www.it-ebooks.info/

www.it-ebooks.info

NSResponder

NSResponder isan abstract class that enables event handling in all classes that
inherit from it. It defines the set of messages invoked when different mouse and
keyboard events occur. It also defines the mechanics of event processing among
objectsin an application. We'll cover events in more depth in Chapter 8.

NSW ndow

An NSW ndow object manages each physical window on the screen. It draws the
window's frame area and responds to user actions that close, move, resize, and
otherwise manipul ate the window. The main purpose of an NSW ndowisto
display an application's user interface, or at least a part of it, in its content area. The
content area is that space below the titlebar and within the window frame.

NSW ndow allows you to assign a custom object asits delegate to participate in its
activities. This allows you to add application-specific window functionality to your
application without requiring knowledge of the NSW ndow classinternals.

NSVi ew

Any object you see in awidow's content area is an instance of a subclass of the
NSVI ew class. Each view owns a rectangular region associated with a particular
window. A view produces the image content for that region and responds to events
occurring within it.

Graphically, aview can be regarded as aframed canvas. The frame locates the view
in its superview, definesits size, and clips the drawing to its edges. The frame can
be moved around resized, and rotated in the superview. Within the frame is the
bounds of the view-the rectangle within which the view drawsitself.

Views draw themselves as an indirect result of receivingthe di spl ay message or
oneif its variants. This message leads to the invocation of aview's dr awRect :
method and the dr awRect : methods of all subviews of that view. The

dr awRect : method should contain all the code needed to redraw the view
completely.

NSAppl i cation

Every application has exactly one NSAppl i cat i on object instance to supervise
and coordinate the overall behavior of the application. This object dispatches events
to the appropriate windows, which, in turn, distribute them onto their views. The
application object manages its windows; it also detects and handles changes in their
status, aswell asits own active and inactive status. The application object is

http://www.it-ebooks.info/

www.it-ebooks.info

represented in each application by the global instance variable NSApp.
6.1.2 Key and Main Windows

Windows have numerous characteristics, the first of which being that they can be onscreen
or offscreen. Onscreen windows are layered on the screen in tiers managed by the window
server. Onscreen windows also can carry a status: key or main. Offscreen windows are
hidden or minimized to the Dock and are not visible on the screen.

Key window

The key window responds to key presses for an application and is the primary
recipient of messages from menus and dialog boxes. Usually a window is made key
when the user clicksit. Each application can have only one key window at atime.

Main window

The main window is the principle focus of user actions for an application. Often
user actionsin amodal key window (typically adialog box, such as the Font dialog
or an Info window) have a direct effect on the main window. Main windows often
have key status.

6.1.3 TheWindow Menu

Cocoa applications usually include a Window menu in the menu bar at the top of the
screen. The Window menu automatically lists the windows that have atitlebar, are
resizable, and can become the main window. When awindow's title is changed, that new
title is reflected in this menu. Figure 6-4 shows a Window menu in Project Builder, with

two open windows.

Figure 6-4. Window menu in Project Builder, with two open windows

http://www.it-ebooks.info/

Yo Froject Builder Fie E38 Formal Kavgition Find Proscl Beld Deboeg O% BES00 @ Help

TN W EEW. [DDy

"R\ ‘- ﬁ-L ""rh 'F.":'.rlr-a View]

¥ Croup & Film

v ERSeirg viae i A B A

[0 Clxis

eme 1] [Re@atn

*

E

¥ [Frameareeioa & Cravos b Fles
E ¥

Preae
F

E
| o
| 2
F

Edgr e Wi

[FAT
e e
A1 CialC Bl
Frdiabrhd
il

o, Lr

Zoom Window
Miramige W MR

Hide Toolhar
Luslomugs | oolsar,

i Virw. plsrs) Bring Al s Freal

® Line v Lirs Wipw phproj

-
&
a8
-

1 B gaiihe ol i L

B Taageti

517 g Wi, phipraj

B, lerd o beid o Hlem G §ikbg
ol ! Ppaoies him | | o

Froject Builder Release
Notes

il

www.it-ebooks.info

ol Not all applications have a Window menu, but it is automatically
“ provided by Cocoa, and you should always use it. Also note that
w! &. alist of an application's windows can be obtained by Control-

" clicking on the application'sicon in the Dock.

6.1.4 Pandls

A panel isaspecia kind of window that usually serves some auxiliary function in an
application. For example, much of the functionality of Interface Builder, such asthe view's
palette and inspector, isimplemented using panels. To support the roles they typically play,

panels differ from windows in the following ways:

. Toreduce screen clutter, an application's panels-except for attention panels-are
displayed only when the application is active. For example, when you have more
than one application running, only the panels for the active application are in the

foreground.

« Panels can become the key window, but never the main window. For example,
when working in Photoshop, you have a main window where you create and edit
images. The other panels, such asthe Layers panel, are open but not active (or key)
until they are clicked; the focus then changes to that panel.

The user can close a panel that isthe key window by pressing the Escape key (if the panel

has a close button).

http://www.it-ebooks.info/

www.it-ebooks.info

6.2 The View Hierarchy

Inside of each window-inside the area enclosed by the titlebar and the other three sides of
the frame-lies the content view . The content view isthe root, or top, view in ahierarchy of
views that belongs to the window. Like atree, one or more views may branch from the
content view. For example, each button, text field, and label in the Currency Converter
application from Chapter 5 is aview located within the content view of the window, as
illustrated in Figure 6-5. Enclosure determines the relationship between each view and its

subviews.

Figure 6-5. Currency Converter views contained by the content view

Fy | Currency Comverter

= t

—Itxchanqe Rate per &1 I

Teutfield views {Dollars to Convert | Textfield view
B wiewt | Iineg) e

Comtent yiev —

'-I Amount in Other Lurmm:'.-'l

Bucton view

The core program framework provides several ways for your application to access the
participating objects, so you need not define outlets or instance variables for every object in
the hierarchy.

. By sending the appropriate message to the NSApp global variable, you can obtain
the application's NSW ndow objects.

. You can get the content view of awindow by sending it thecont ent Vi ew
message. From the returned NSVi ew object, you can get al subviews of the view.

. You can obtain from an NSVi ew instance most of the objects that it references. For
example, you can discover its window, its superview, and its subviews.

The relationship between these parts of an application’'s view hierarchy is shown in Figure
6-6.

Figure 6-6. Hierarchical relationship between major view hierarchy components

http://www.it-ebooks.info/

lication
M;ﬁsnpp!

Window
(NSWindow)

Content view
(NSView)

Text Field
[NSView subclass)

Button
(NSView subdlass)

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

6.3 Coordinate Systems

Positioning of windows and views, as well as the correct propagation of events within
them, requires the use of a set of coordinate systems. These systems then help locate
objectsin relation to the various parts of the onscreen display. The following three types of
coordinate systems are used by Cocoa:

. Screen coordinates
« Window coordinates
. View coordinates

6.3.1 Screen Coor dinate System

The screen coordinate systemis the basis for al other coordinate systems. Think of the
entire screen as occupying the upper-right quadrant of atwo-dimensional coordinate grid,
as shown in Figure 6-7. The screen quadrant hasits origin in the lower-left corner. The
positive x-axis extends horizontally to the right, and the positive y-axis extends vertically
upward. Each unit in the coordinate system represents an on-screen pixel.

Figure 6-7. Screen coordinate system

T

=(500.0, 200.0)

* (0.0,0.0) x-auds

R - e R

-

(-200.0,-200.0) =

http://www.it-ebooks.info/

www.it-ebooks.info

- Although Figure 6-7 represents the coordinate system using a
- . single display device, the screen coordinate system isreally a
oA logical rectangular union of all the screen rectangles of all

physical frame buffers attached to the computer. The origin lies
at the lower-left corner of that unioned rectangle.

The screen coordinate system has just one function: to position windows on the screen.
When your application creates a new window, it must specify the window'sinitial size and
location in screen coordinates.

6.3.2 Window Coor dinate System

The window coordinate system defines the coordinates used within a single window on
screen. It differs from the screen coordinate system in only two ways.

. It appliesonly to a particular window. Each window has its own coordinate system.
. ltsoriginisat the lower-left corner of the window. If the window moves, the origin
and the entire coordinate system move with it.

6.3.3 View Coordinate System

For drawing, each view uses a coordinate system transformed from the window coordinate
system, or from its superview in the case of a contained view. This coordinate system has
itsorigin point in the lower-left corner of the view, as shown in Figure 6-8, making it
convenient for drawing operations.

Figure 6-8. Window and view coor dinate systems

http://www.it-ebooks.info/

www.it-ebooks.info

W-anis

A view's |ncation and dimensions are specified in
its superview's coondinate systam,

The lecation and dirmersions of the topmost view

in a windaow's view hierarchy are specified in the
window's hase conrdinate system,

LR R

_..-

P
o+
-
1

-1
]

& window's location and dimensions are specified

in kb screen's coordinate syskem, \

0.0, 0.0}
160,
\\.hm) /0, 160.)
The screen’s origin s always kcated at the " 60.0,155.0)

borttom-lefr comer of the sreen, and e — o, 0,0)e
dirmensions are detarmined by the screen’s (0.8.0.0) .
resolution (number of pixels along each axis). o S

This set of coordinate systems has several implications that are important in the layout and
drawing of user-interface elements:

. Subviews are positioned in the coordinates of their superview.

. Each view's coordinate system is a transformation of its superview's system.

. When aview is moved or transformed, all subviews are moved or transformed in
concert.

. Because aview hasits own coordinate system for drawing, drawing instructions
remain constant, regardless of any change in position of itself or its superview.

http://www.it-ebooks.info/

www.it-ebooks.info

6.4 Controls, Cdlls, and Formatters

Controls are the user-interface objects that enable usersto signal their intentions to an application
and control what happens. Cells are rectangular areas embedded within a control. Each control can
have one or more cells, allowing a single control to have multiple active areas. Figure 6-9 shows

the relationship between controls and cells.

Figure 6-9. Controlsand cells

) Tracking messaqes
anrﬂl paE ..--.u..q |1h.

object Drawing messages - Button

Controls and cells lie behind the appearance and behavior of most user-interface objects in Cocoa,
including buttons, text fields, diders, and browsers. Although they are quite different types of
objects, they interact closely. Controls are responsible for the following:

. Displaying the control to the user
. Accepting user events, such as clicking or typing
. Sending actionsto other objectsin response to a user event

A control usually delegates the first two responsibilities to cells. Cells, which are subclass instances
of the NSCel | class, let you display text or imagesin a view without the full overhead of an

NSVi ewsubclass. Thisalows for greater flexibility when creating a control, such as a spreadsheet
table, with many identical elements.

The controls that Cocoa provides fall into the categories listed in Table 6-1.

Table6-1. Cocoa's NSView controls

Control Description

Group together other views, including controls, in an area that can have a

Boxes border and title

Browsers Display alist of data and allow the user to select items

http://www.it-ebooks.info/

www.it-ebooks.info

Buttons Send an action message to atarget when clicked

Allow auser to enter avalue either by entering it directly into atext field or

Combo Boxes choosing it from a pop-up list of preselected vaues

Forms Group arelated set of text fields

Image Views Display asingleimage in aframe and, optionally, allows a user to drag an

imageto it
Matrices Group cells that work together in various ways, such as radio buttons
Outline Views Display hierarchical datato let the user expand or collapse rows

Show that a lengthy task is underway and, optionally, can display how much

Progress Indicators of that task is complete

Display arange of values and have an indicator, or knob, indicating the

Sliders current setting
Increment or decrement a value, such as a date or time, that is displayed
Steppers
next to them
Tab Views Group views on multiple pages together into one user-interface element
: Display a set of related records, with rows representing individual records
Table Views :)
and columns representing the attributes of those records
Text Fields Display text that a user can select or edit
Text Views Allow the editing of text

Controls act as managers of their cells, telling them when and where to draw and notifying them
when auser event occursin their areas. Thisdivision of labor, given therelative "weight" of cells
and controls, conserves memory and provides a great boost to application performance. For
example, amatrix of buttons can be implemented as a single control with many cellsinstead of asa

http://www.it-ebooks.info/

www.it-ebooks.info

set of individual controls.

A control does not need a cell associated with it, but most user-interface objects available in Cocoa
are cell-control combinations. Even a single button-from Interface Builder or programmatically
created-isacontrol (an NSBut t on instance) with an associated cell (a NSBut t onCel | instance).

The cellsin acontrol such as amatrix must be the same size, but they can be of different classes.
More complex controls, such as table views and browsers, can incorporate various sizes and types
of cells. Most controls that use asingle cell, such as NSBut t on, provide convenience methods so
you don't have to deal with the contained cell directly.

6.4.1 Cedllsand For matters

When looking at the contents of cells, it is natural to consider only text (NSSt r 1 ng) and images
(NSI mage). The content seems to be whatever is displayed. However, cells can hold other kinds of
objects, such as dates (NSDat e), numbers (NSNunber), and even application-supplied custom
objects, which are shown in the user interface as strings.

One way to make your application's user interface more attractive is to format the contents of fields
that display currencies and other numeric data. Fields can have fixed decimal digits, limit numbers
to specific ranges, have currency symbols, and show negative values in a special color.

Formatters are objects that translate the values of certain objects to specific on-screen
representations. Formatters can also convert aformatted string on a user interface into the
represented object. For example, Figure 6-10 shows how a date formatter translates the contents of

an NSDat e object into a specific string for display.

Figure 6-10. A date for matter

ol R -* ------------- » 29 July 1970

Translates between
pext and object

Y ou can create, set, and modify formatter objects programmatically or with Interface Builder.
Formatter objects handle the textual representation of the objects associated with the cells and
translate what is typed into a cell to the underlying object. Y ou can attach a formatter object to a
cell in Interface Builder or usetheset For mat t er : method of NSCel | to associate a formatter
with acell programmatically.

6.4.2 A Formatted Cell Example

To show formatters in action, we're going to create a simple application that shows the current date
and timein atext field. In Project Builder, create anew Cocoa Application (File —# New Project
—+ Application —# Cocoa Application) named "Simple Date", and saveit in your ~/

http://www.it-ebooks.info/

www.it-ebooks.info

LearningCocoa folder.
6.4.2.1 Open the main nib file
Begin by opening the application's main nib file in Interface Builder:

1. In Project Builder's Groups & Files pane, click on the disclosure triangle next to Resources
to reveal the MainMenu.nib file.

2. Double-click on the nib file to open it in Interface Builder.
A default menu bar and window will appear when the nib file is opened.
6.4.2.2 Create the user interface

Set the size and initial location of the application's main window by resizing and moving the
window in Interface Builder

1. Movethe window near the upper-left corner of the screen by dragging itstitlebar.

2. Make the window smaller using the resize control at the bottom-right corner of the window,
asshown in Figure 6-11.

Figure 6-11. Cocoa window with resize control

& a Windonw

4— fesize coniol

6.4.2.3 Add atext field
Now, add atext field object to the application's window.

1. Select the Views palette by clicking the second button from the left in the toolbar of the
Cocoa Views window, as shown in Figure 6-12.

Figure 6-12. Interface Builder's Views palette

http://www.it-ebooks.info/

www.it-ebooks.info

Ll Cocoa-Views

[&s

ot S Tes Celt

i~ .
S

— %l i

Buttan

“l
—l Field1

1 Switch 1.4
Field2

" Hatlio Lak=l Font Text

™ Radio ‘ small System Font Tex

Systern Font Text

2. Drag atext field object onto the window.

3. Resizethetext field to make it wider, using the handles on the text field, as shown in Figure
6-13.

Figure 6-13. Resizing atext field

e & Window

6.4.2.4 Create a controller

WEe'l create avery ssimple controller, My Cont r ol | er, which will be asubclass of NSCh| ect .
To defineit:

1. Click the Classes tab of the MainMenu.nib window.

2. Select NSObject from the list of classes.

3. Press Return to create a new subclass of NSObj ect , and renameit My Cont rol | er.
6.4.2.5 Define an outlet

Now the controller needs a way to send messages to the text field in the main window. Use
Interface Builder to create an outlet for that purpose.

1. Selectthe MiyControl | er classinthe Classes window.

http://www.it-ebooks.info/

www.it-ebooks.info

2. Open the Show Info window (Tools — Show Info, or Shift-3g-1), and select Attributesin
the pull-down menu.

3. Inthe Outlets tab, click the Add button, and add an outlet named t ext Fi el d (asshownin
Figure 6-14); enter the name, and press Return.

Figure 6-14. Adding an outlet

Ky oniroller Class I

Arrilianes

Language: ™ Ohjeciive

|awa

1 Owitler 1 Arfians

Ditlisr M Toypst
reatfiakd i v

6.4.2.6 Generate a controller instance

Asthefinal step of defining the controller in Interface Builder, create an instance of the
MyControl | er class.

1. Select My Cont r ol | er inthe Classes pane of the MainMenu.nib window.

2. Choose instantiate from the Classes menu (Classes —# |nstantiate MyController, or
Option-38 -1).
When you instantiate a class (that is, create an instance of it), Interface Builder switches to the
Instances pane and highlights the new instance, as shown in Figure 6-15. The instance is named

after the class.

Figure 6-15. I nstances pane showing a Controller object instance

http://www.it-ebooks.info/

www.it-ebooks.info

®:00 MainMenu.mib

¥ i
Instances Llasses Images Sounds

& [} E
Sk
Window M'::i oniroller
) In fact, the instantiate command does not generate a true instance of

My Cont rol | er. It creates aproxy object used within Interface Builder
for defining connections to other objectsin the nib file. When the
application is launched and the nib file's contents are loaded, the runtime
system creates atrue instance of My Cont r ol | er and uses the proxy
object to establish connections to other objects.

6.4.2.7 Connect the controller totheinterface

Now that you have created an instance of My Cont r ol | er, you can use it to declare a connection
between it and the text field you created earlier.

1. Inthe Instances panel of the MainMenu.nib window, Control-drag a connection line from
the My Cont r ol | er instanceto the text field. When the text field is outlined, as shown in
Figure 6-16, release the mouse button.

Figure 6-16. Connecting theinstance to the text field

http://www.it-ebooks.info/

www.it-ebooks.info

&80 MainMenu.nib

" instances | Classes | Images | Sounds

- il
A J{ -
I Sainklenu
C

Window M antraller

(R

2. Interface Builder brings up the Connections pane of the Show Info window, as shown in
Figure 6-17.

3. Sdectt ext Fi el d, and click the Connect button.

Figure 6-17. Connections pane of the Show Info window

Ky Controller fDusremi Inla
Connections s
Durtlets
“textfield
Source [tiratian

Lamnect

6.4.2.8 Generate the sour cefiles
Generate the source files so that we can add our controller code and run the application.

1. Go to the Classes tab of the MainMenu.nib file window.

http://www.it-ebooks.info/

www.it-ebooks.info

2. Selectthe MyControl | er class.

3. Choose Create Files from the Classes menu (Classes —# Create Filesfor MyController, or
Option-3B-F).

Interface Builder displays the dialog box shown in Figure 6-18.
Figure 6-18. The Create Files dialog box

2l MainMenu.nib

A

From Simple Date

LWa beuilcl

Fiuras i|,|_||._|.|:..:.

Previcias

Simple Date

Lo to |
T Pilis Pt ARG CArGETs

W MyControien) W Simple Date
\l' My CohEre

Add to Favaorites Cancel f Choose ¥

4. Verify that the checkboxes in the Create column next to the .h and .mfiles are sel ected.

5. Verify that the checkbox next to Simple Date is selected in the Insert into targets column.

6. Click on the Choose button.

7. Savethenibfile (File —» Save, or 3§-S).
Now that we've built the basic interface, we can leave Interface Builder and switch to Project
Builder to complete the application. Click on Project Builder'sicon in the Dock to leave Interface
Builder.

6.4.2.9 Statically type the outlet

By default, outlet declarations are dynamically typed using the | d keyword. You canusei d asthe
type for any object, meaning that the class of the object is determined at runtime. When you don't
need a dynamically typed object, you can-and should-statically type it as a pointer to an object. It
takes alittle extratime, but it is good programming practice. Static typing also alows the compiler

http://www.it-ebooks.info/

www.it-ebooks.info

to perform type checking, potentially saving you debugging time later.

When you look at the source code for MyController.h, note that generic outlets are declared as
follows:

| BQutl et id vari abl eName;

There are two ways to type outlets. Thefirst isto indicate the type in Interface Builder. Take
another look at Figure 6-14, and notice the type pull-down as part of thet ext Fi el d outlet

definition. Y ou can use the pull-down to select which type of object the outlet should be typed as.
The other way is to change the type in the header file. To do this, use the following steps:

1. In Project Builder, select MyController.h in the Other Sources folder in the left pane.

2. Change the declaration in MyController.h to match the code shown in Example 6-1. Don't
forget to add the pointer star!

Example 6-1. MyController header file with a statically typed outlet

/[* MyController */
#i mport <Cocoa/ Cocoa. h>

@nterface MyController : NSObject
{

}
@nd

| BOutl et NSTextField * textField;

6.4.2.10 I mplement the awakeFromNib method

When an application is launched, the NSAppl | cat i onlVai n function loads the main nib file.
After anib file has been completely unpacked and its objects connected, the runtime system sends
the awakeFr onNi b message to all objects derived from information in the nib file, signaling that
the loading processis complete. All object's outlets are guaranteed to be initialized when
awakeFronNi b iscalled. Thislets objectsin the nib file do any extra setup required before the
user or the rest of the application attempts to interact with them.

In this application, we'll use the awakeFr oniNi b method to print the current time to the text field
in the main window.

1. Intheleft pane, click on MyController.min the Other Sources folder.

2. Edit the MyController.m file to match the code shown in Example 6-2.

http://www.it-ebooks.info/

www.it-ebooks.info

Example 6-2. Adding the awakeFromNib method

#i nport "MyController.h"
@ nmpl enent ati on MyControl |l er

- (voi d) awakeFronNi b
{

}
@nd

[text Field set Obj ect Val ue: [NSCal endar Dat e date]] ;

3. Savetheproject (File — Save, or 38-9).

4. Build and run the application (38-R). Y ou should see awindow that resembles Figure 6-19.

5. Quit the application.

Figure 6-19. Simple Date application

260 Windaow

2002-03-30 16:46:17 -0800

6.4.2.11 Add the for matter
Wait aminute. . . our date looks really nerdy. Instead of this representation for the date, we want to
make a nicely formatted date. To do this, switch back to Interface Builder to perform the following

steps:

1. Drag adate formatter from the Views palette to the text field, as shown in Figure 6-20.

Figure 6-20. Adding a date formatter to a text field

http://www.it-ebooks.info/

Cox
s,
= Pt WS

T ‘_. " P)

I Bainnom
L)

Switch
Radio

) Radio ‘_',

www.it-ebooks.info

Tz 1 -
II" am
o
= Lep
—H Fietdt
1.5
Field2
Label Fesi Tt

Small Syatem Fant Test

System Fomt Text

2. Whilethetext field is selected, bring up the Show Info window (Shift-@g-1) if it isn't open

already.

3. Inthe Formatter pane of the Show Info window, specify the %« date format, as shown in

Figure 6-21.

Figure 6-21. Formatter pane

NSO wieFoamarier Inl

Farrmarter — |

Farmat Dharte
WL 521 Mar 30 165100 U
o, HE e, WY Satwirday, March 30, 2
B e, XY March 30, 2002
we NB XY 30 March 2002
e Ny 13730502

b ed, WY Sar 30, 20402
B WM March 16
wd Wb wY 30 Mar 2002
iH MRS 16:51-07

i M 1451

Custaan Formal

Dptioing

Allows natwral lamguage

" Detach Formatter

4. Savethenibfile (File — Save, or 38-5).

5. Return to Project Builder, and build and run (38-R) the project. Y ou should see something

like Figure 6-22.

6. Quit the application (Simple Date —# Quit NewApplication, or 38-Q).

Figure 6-22. Simple Date application using a formatter

http://www.it-ebooks.info/

060 Window

Saturday, March 30, 2002 16:52:28 US/Pacific

&

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

6.5 Targetsand Actions

The target/action pattern is part of the mechanism by which user-interface controls respond
to user actions, enabling users to communicate their intentions to an application. The target/
action pattern specifies a one-to-one relationship between two objects: the control (more
specifically, the control's cell) and its target. When a user clicks a user-interface control, it
sends an action message to the target, as shown in Figure 6-23.

Figure 6-23. Target/action pattern

Button clicked lpdates via
action putlet

BUTTON i | Mylontroller peeeesssees = 79 Ju|}.f 1970

The target/action relationship is typically defined using Interface Builder, in which you
select atarget object for a control, along with a specific action message that will be sent to
the target. Target/action relationships can also be set (or modified) while an application is
running.

6.5.1 Target/Action Example

To show target/action pattern in practice, we are going to modify the Simple Date
application we've already built.

6.5.1.1 Add a Refresh button

In Interface Builder, open the MainMenu.nib file, and add a button named "Refresh" to the
main window, using the following steps:

1. Inthe Cocoa-Views window, grab an NSBut t on object, and drag it to the main
window.

2. Change the name of the button by double-clicking on the "Button" nameto
highlight it, typing "Refresh”, then hitting Return to accept the new name. The
interface should now look similar to Figure 6-24.

Figure 6-24. Target/action example interface

http://www.it-ebooks.info/

www.it-ebooks.info

",:'I ":" Window

" Refresh

6.5.1.2 Define an action

When the user presses the Refresh button, we want the date to update itself. To do this, we
need to define an action on our My Cont r ol | er object that the button will call. Define an
action called r ef r esh: using the following steps:

1. Selectthe MyCont rol | er classin the Classes pane of the MainMenu.nib
window.

2. Inthe Attributes pane of the Show Info window, click on the Actions tab and then
on the Add button.

3. ChangenyAct i on: torefresh: andhit Return to add the action, as shown in
Figure 6-25.

Figure 6-25. Defining an action

KL antroller Class inlo
Arribunes i
L g e i Libjective L
[awa View in PR

W FTE] RN M enrrnller

1 ir]er | | Actian |

Actiam Mamg

refresh

add

6.5.1.3 Connect the button to the action

For My Cont r ol | er toreceive an action message from the button in the user interface,
you must connect the button to the controller. The button object keeps areference to its

http://www.it-ebooks.info/

www.it-ebooks.info
target using an outlet; not surprisingly, the outlet isnamed t ar get . To make this
connection:
1. Click on the Instances tab in the MainMenu.nib window.

2. Control-drag a connection from the Refresh button to the My Cont r ol | er
instance in the MainMenu.nib window, as shown in Figure 6-26. When the instance
is outlined, release the mouse button.

Figure 6-26. Creating a connection between the Refresh button and the

controller
& |:'_"| Window
 Ref :sh
il ainsenu I
¥
" Instances Classes Images Sounds

A %
A | -
fdainidenu
e
i A

Wairidaw My Csntiolie

3. Inthe Connections pane of the Show Info window, make sure target is selected in
the Outlets column.

4. Selectr ef r esh: intheright column, as shown in Figure 6-27.

Figure 6-27. Connecting to therefresh: method

http://www.it-ebooks.info/

www.it-ebooks.info

Lutlets

tara el refrashy:
=T Y LT

TIERIL

el eyl evy

Snurce e fratuan

5. Click the Connect button.
6. Savethe MainMenu.nib file (File — Save, or 38-9).
6.5.1.4 Update the sour cefiles

Since we made changes to the controller, the source files need to be updated so that we can
add our controller code and run the application.

1. Go to the Classes tab of the MainMenu.nib file window.
2. Selectthe MyControl | er class.

3. Choose Classes —# Create Files for MyController (Option-3g-F). Follow the
dialog boxes to save the files into the project.

4. Interface Builder will warn you that the file MyController.h aready exists. Click on
the Merge button to bring up the FileMerge tool, as shown in Figure 6-28. If you

don't see the window shown in Figure 6-28, ook for the FileMerge icon on your
Dock, and click it to bring the FileMerge window to the top.

Figure 6-28. Mergetool in action

http://www.it-ebooks.info/

www.it-ebooks.info

{..._':. r"l B MhyCantralles.h
ib_MyContraller.h - [irng MyControdler.h - flsers/duncan/Depot/Book/Le:
M Bylonkrol lsr &¢ Sb MpController &5
Fimgorl Do oa o e Pl b o, T , e
Airterfooe Bylonkrol l=r = MEDhjeck dlnterfoce WControl ler @ HS0Eject
[0k (et |0 EesiFieid; "% | IEOullet hW&TestField * teetField;
' =13 Sl
= [([B&ctiom prelreske g 1d semder) e — aend
Herw

M mwlonl ol er v
Fingort <o ooy Tooos e
dirdaciece Mylonbiol lar MSDject

D80Gk =t METexkFi=ld ¥ textFleldy
]

Berd

shakbus: 2 differerces (2 left, O right, 0 conflicis) Artlang ¥

. The FileMerge tool consists of three panes. The left pane is the newly generated
file from Interface Builder, the right pane isthe file in your project, and the bottom
paneis the result of the merge. We want to keep our edits that were statically typed
for thet ext Fi el d outlet. To do this, we select the #1 arrow, then "Choose right”
from the Actions pop-up at the bottom-right corner of the window.

. Save the MyController.h file from FileMerge (File — Save Merge ,or 38-S) and
then close the window.

. Returnto Interface Builder. Y ou will be prompted to merge the MyController.m
file; do so.

. Merge the Files (as shown in Figure 6-29) by selecting "Choose both (left first)" for
the first block of code and " Choose right" for the second block of code.
Unfortunately, at the time of writing this book, FileMerge isn't smart enough to
handle this merge on its own. If you encounter this problem, you'll need to add the
curly braces after ther ef r esh: method yourself.

Figure 6-29. Merging MyController.m

http://www.it-ebooks.info/

Be 5 Wyl pntrodier.m

i, MyComirgller.m - fimp sy Controller.m -

www.it-ebooks.info

fUsers Fduran fDepok ook Leanrl

Fwport “HyControlier .k Faport “lontrolier h*

dinplemenkation SController dinplemenkation Melontroller

e LD

— (i)

iy T -—

- e
i 1
1)

1]
L] L

Fimport “MAConbTol iET R

dimp imenktation MelontTol lar

213 Aemin et aa e 1 | Hol [Ao aTe Gate |

siabus: ¥ difference=s (% lefi. O righs. 9 confixs SLions

9. Savetheresulting merged file (File —» Save Merge, or 38-5), and quit the

FileMerge tool (§§-Q).

10. Savethenibfile (File — Save, or 3§-S).

There are other ways of adding outlets and actions to your source code and the nib files that

don't involve using the FileMerge tool. We'll see some of these other waysin later
chapters.

Making Outlet and Action Connections

Developers new to Cocoa sometimes get confused when making action and
outlet connectionsin Interface Builder. A general rule for determining which
way to draw aconnection line is to draw the connection in the direction that
messages will flow:

. Tomake an action connection, draw aline from a control object in the
user interface, such as a button or atext field, to the object instance that
should receive the action message.

. To make an outlet connection, draw aline from the object instance to
another object in the application.

Another way to clarify connectionsisto consider who needs to find whom. With
outlets, the object needs to find some other object, so the connection is from the

http://www.it-ebooks.info/

www.it-ebooks.info

first object to the second object. With actions, the control object needs to find an
object to send messages to, so the connection is from the control object to the
target object.

6.5.1.5 Implement the action method

Now switch back to Project Builder. Our next step isto edit the MyController.mfile and
insert the code for ther ef r esh: method, as shown in Example 6-3.

Example 6-3. Implementing the refresh: method

#i nmport "MyController.h"
@ npl enent ati on MyControll er
- (void) awakeFromNi b

{
[text Fi el d set Cbj ect Val ue: [NSCal endar Dat e date]];

- (IBAction)refresh: (id)sender
{

}
@nd

[text Fi el d set Obj ect Val ue: [NSCal endar Dat e date]];

1. Savethe changesto the nib file (File — Save, or §8-9).
2. Build and run the application (3§ -R).

When the application launches, you can refresh the date display by pressing the Refresh
button. Of course, the date won't change if you've selected to show only the date in the text
field. If you've opted to also display the current time, hitting the Refresh button should
update the time.

ol As we progress through the chaptersin this book, our examples
will contain more and more methods. It doesn't matter to the
compiler which order methods appear in your source files; they
can bein any order you want.

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

6.6 Exercises
1. Read the online documentation for the NSW ndowand NSVi ew classes.
2. Give thewindow of our Simple Date application atitle other than "Window".

3. Go back to the Currency Converter application in Chapter 5, and statically type the
rateFi el d,doll arFi el d,andt ot al Fi el d outlets.

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 7. Custom Views

Cocoa's default set of controls covers most common Ul needs, but it can't cover everything.
For example, you might want to create a drawing application and need a view that can have
lines and other shapes drawn into it. Or, you might want to create a custom graph of stock
data over time. Whenever you have these kind of needs, you will need to create a subclass
of NSVi ew: acustom view.

A custom view isresponsible for drawing content into, and handling events that occur
within, its bounds-the rectangular region given to it by its superview. Y ou can use any of
Cocoa's drawing tools to draw content into the view. In this chapter, we'll work through a
couple of basic custom-view examples to show you how everything works. Then, in the
next chapter, you'll build on what you learn in this chapter to create a custom view to
respond to user events.

http://www.it-ebooks.info/

www.it-ebooks.info

7.1 Custom View Creation Steps

When you make a custom subclass of NSVi ew and want to perform custom drawing and
handle events, the following procedure applies:

1. InInterface Builder, define a subclass of NSVi ew, then generate header and
implementation files.

2. Drag a Custom View object from the Views palette onto a window, and resize it.

3. With the Custom View object still selected, choose the Custom Class panel of the
Info window, and select the custom class. Connect any outlets and actions.

4. If needed, override the designated initializer (I ni t Wt hFr ane:) to perform any
custom initialization.

5. Implement the dr awRect : method to draw.

We will walk you through the steps outlined here to show you how to create customized
subclasses of NSVi ewfor your applications.

http://www.it-ebooks.info/

www.it-ebooks.info

7.2 Create a Custom View

To start working with views, we will make a custom view. In Project Builder, create a new Cocoa A pplication project
(File —# New Project —# Application —# Cocoa Application) named "Red Square”, and saveit in your ~/
LearningCocoa folder.

7.2.1 Open theMain Nib File
Begin by opening the application's main nib file in Interface Builder.

1. InProject Builder's Groups & Files pane, click on the disclosure triangle next to Resources to reveal the
MainMenu.nib file.

2. Double-click onthe nib file to open it in Interface Builder.
A default menu bar and window will appear when the nib file is opened.
7.2.2 Define a Subclass of NSView

To define aclass that will implement the custom functionality of our view, we need to define a subclass of the NSVi ew
class.

1. Click on the Classes tab of the MainMenu.nib window.

2. Find the NSVi ew classin the hierarchy of available classes. (Y ou may need to scroll through the browser to find
it.) Its complete path in the hierarchy isNSObj ect —# NSResponder —# NSVi ew.

3. Control-click on NSView, and select Subclass NSView from the pop-up menu to create a new subclass named
My Vi ew, as shown in Figure 7-1. (You can aso hit Return with NSVi ew selected to create a subclass

automatically.)
Figure 7-1. Creating the MyView subclass of NSView

&8 6 MalnMenu.nib

1

instances | Classes | Images | Sounds

rm) a e Seirch

Wy ey [
[

4. Generate the source filesfor My Vi ew from the Classes menu (Classes —# Create Filesfor MyView). (You can
also Control-click on My Vi ew and select Create Files for MyView from the Context menu.)

5. Interface Builder then displays adialog box.

6. Verify that the checkboxes next to MyView.h and MyView.m are selected in the Create column.

http://www.it-ebooks.info/

www.it-ebooks.info

7. Verify that the checkbox next to Red Square is selected in the Target column.

8. Click the Choose button to create the files.
7.2.3 Add a Custom View to the Main Window
Next, we need to create a place for our custom view to draw.

1. Drag a CustomView object from the Cocoa-Containers window (as shown in Figure 7-2) into the main window,
and resize it to occupy the entire window.

Figure 7-2. Drag a CustomView object from the Cocoa-Containers window into the project window

” Ta: H-H
Bax
Tab ! View

2. With the CustomView object still selected, choose the Custom Class pane of the Show Info window (Tools =4

Show Info, or Shift-3-1), and select the My i ew custom class. The name of the view will changeto My Vi ewto
confirm this change, as shown in Figure 7-3.

Figure 7-3. Setting the class for the custom view

Window Rylew Iuslomd info

The nib now has enough information to create an instance of the My /i ew class and to assign it to an area of the window.
Savethenibfile (File — Save, or 38-S), and return to Project Builder by clicking on itsicon in the Dock.

7.2.4 1mplement the Drawing Method

To draw into the view, we only need to implement the dr awRect : method of our My Vi ew class. We're just going to fill

http://www.it-ebooks.info/

www.it-ebooks.info

the view with ared square.

1. Open the MyView.m implementation filein Project Builder by clicking on the filename in the Other Sources
folder.

2. Edit it to match Example 7-1.

Example 7-1. Simple drawRect method

#i nmport "MyVi ew. h"

@ npl enment ati on MyVi ew

(voi d) drawRect : (NSRect) rect /'l a
{
[[NSCol or redCol or] set];
/Il b
NSRect Fi |l | ([sel f bounds]); Il ¢
}
@nd

The code we added in Example 7-1 does the following things:

a. Adds amethod declaration for the dr awRect : method. This method is called by the di spl ay method
of the NSVi ew class and takes asingle C structure (or struct), NSRect . This parameter is provided so that
you can just draw the part of the view that needs it-critical when dealing with large, complex views that
take time to redraw. In some cases-and thisis one of them-redrawing the entire view won't really be a
performance drag.

b. Setsthe color that Cocoa uses for subsequent drawing operations. Here we use a convenience method of
the NSCol or classto get ared color.

c. Cdlsthe NSRect Fi | | function, defined by the AppKit framework, and tellsit to fill the bounds of the
view.

3. Savethe project (File —# Save, or 38-5).

4. Build and run the project (Build —# Build and Run, or 38-R). Y ou should see awindow containing ared square,
as shown in Figure 7-4.

Figure 7-4. Red Square displayed

http://www.it-ebooks.info/

www.it-ebooks.info

888 Window

Our view looks like it works just fine. However, we have a dight problem. Resize the window and observe how the red
sguare is anchored to the bottom-left corner of the window and moves down as the window is stretched and resized.
Ideally, we'd like to have the square fill the window no matter how the user resizesit.

5. Quit the Red Square application (§g-Q) before moving on to the next step.

e Why does the view stay anchored to the lower left-hand corner of the window? The answer
o liesin the fact that Cocoa's coordinate system starts at the lower-left corner. This behavior
! 4. takesprogrammerswho are used to a coordinate systembased on the upper-right corner (such
' as Carbon-based applications) a bit of time to adjust to.

7.2.5 Autosizing of Views
To ensure that our view occupies the whole window, no matter how it is resized:
1. Bring the MainMenu.nib file to the foreground in Interface Builder.

2. Select the My Vi ew component in the interface.

3. Select Size from the pull-down menu of the Show Info window, and click once on the vertical and horizontal lines
so that they appear to have springs in them, as shown in Figure 7-5.

Figure 7-5. Setting the Autosizing behavior of a view

http://www.it-ebooks.info/

www.it-ebooks.info

ICE Vidw Frami
Layout Rect
Battam fLeft 1 ' Width|Height ¥

x; 20 wo 440

Setting the Autosizing to these settings means that the view will grow and shrink as necessary to keep the distance from
the edges of its parent view (the content view of the window) constant. Think of the springs as making the inside of the
view "springy" so that it can stretch in size, while the straight lines ensure that the distance between the view and the edge
of its container remains constant. |If you wanted the view to remain a constant size in the middle of the window's content
view, you could turn the straight lines to springs and vice versa.

4. Savethenibfile (3§ -9).

5. Switch back to Project Builder, and build and run (3€-R) the project. Now when you run the program, you can
resize the window to any size you want, and the red sguare expands or contracts as needed.

At this point, we're done with the Red Square application. Close the project in both Interface Builder and Project Builder
before moving on to the next section.

Drawing with Colors

In Red Square, we usethe set method of the NSCol or classto indicate that all subsequent drawing should
be performed with the red color. However, this glosses over how colors work in Cocoa. An NSCol or object
represents a color composed of multiple components and sometimes opacity (otherwise known as alpha or
transparency). These components can exist in multiple color spaces:

. Device RGB, where the primary components are red, green, and blue as generated by a device. Since
monitors, printers, and other output devices operate differently, colors defined in this space will vary
from deviceto device.

. Cadlibrated RGB, where the primary components are red, green, and blue in a consistent, abstract
color space that can be translated to display with the same approximate colors on any output device.
Thisis the recommended color space for most work.

. Cadlibrated HSB, where the primary components are hue, saturation, and brightness.

. CMYK, where the primary components are cyan, magenta, yellow, and key (or black). This color
spaceis used by traditional four-color printing presses.

. Grayscale, where the primary component is white.

To get acolor that is defined by one of these color spaces, the NSCol or provides the following class
methods:

+ col or Wt hDevi ceRed: gr een: bl ue: al pha:

http://www.it-ebooks.info/

www.it-ebooks.info

col orWthCal i brat edRed: gr een: bl ue: al pha:

col orWthCalibratedHue: sat urati on: bri ght ness: al pha:
col or Wt hDevi ceCyan: magent a: yel | ow. bl ack: al pha:

col orWthCali bratedwWite: al pha:

+ + + +

Each of these methods takes float values for the various components between 0. 0 and 1. 0. For example, to
create ayellow color, you would use the following message on NSCol or :

NSCol or yel l ow = [NSCol or col orWthCalibratedRed: 1.0
green: 1.0
bl ue: 0.0

al pha: 1. 0] ;

http://www.it-ebooks.info/

www.it-ebooks.info

7.3 Drawing into a View: Behind the Scenes

Beforethe NSVi ewclasssdi spl ay method, or one of its variants, invokes a

drawRect : method on a NSVi ew subclass, there is abit of work that is performed
behind the scenes. Core Graphics (CG) calls are needed to set up Quartz with information
about the view, including the graphics context in which it draws, the coordinate system and
clipping paths it uses, and other graphics state information. The NSVi ew method that does
thisis| ockFocus . Thereisacompanion method that undoes the effects of

| ockFocus, called unl ockFocus.

Focusing modifies the graphics state by doing the following:

. Making the view's window the current graphics context
. Creating aclipping path around the view's frame
. Making the CG coordinate system match the view's coordinate system

To produce proper results, all drawing code invoked by aview must be bracketed by
invocations of these methods. The di spl ay method, and its variants, of the NSVi ew
class perform these duties automatically, so don't worry about locking focusin the

dr awRect method. However, if you define some methods that need to draw in aview
without going through the di spl ay methods, you must first send al ockFocus message
to the view in which you are drawing before performing any drawing; then you can send
theunl ockFocus message as soon as you are done.

Only one view at atime can have focus. If focusis aready locked onto another view when
the! ockFocus method isinvoked, the previous view's lock is put onto a stack, so focus
can be restored to it when the lock of the current view isreleased with the unl ockFocus

message.

http://www.it-ebooks.info/

www.it-ebooks.info

7.4 Draw Stringsintoa View

To continue working with drawing into views, we will create an application that renders a string into a custom NSVi ew
subclass. In Project Builder, create a new Cocoa Application project (File —# New Project —# Application —# Cocoa
Application) named "String View", and save it in your ~/LearningCocoa folder.

7.4.1 Create a Custom View

Asin the Red Square application, a new custom view class needs to be created. Follow the same directions as before to
accomplish the following tasks:

1

Open the MainMenu.nib file.

Define a subclass of NSVi ewnamed My Vi ew.

Generate the source filesfor My Vi ew.

Add a CustomView to the main window.

Assign the My Vi ew class to the CustomView from the Custom Class pull-down menu of the Info window.
Set the Autosizing attributes of the view so that the view fills the window when the window is resized.

Savethe nibfile, and return to Project Builder.

7.4.2 Implement the Drawing M ethod

Once again, we implement the dr awRect : method of our My Vi ew class.

1

Open the MyView.m implementation file in Project Builder, and edit it to match Example 7-2.

Example 7-2. Drawing a string into a view

#i mport "MyVi ew. h"
@ npl ement ati on MyVi ew

- (voi d)drawRect: (NSRect)rect

{
NSRect bounds = [self bounds]; /'l a
NSString * hello = @Hello Wrld!'"; I
NSMut abl eDi ctionary * attribs = [NSMut abl eDi ctionary dictionary]; // c
[[NSCol or whiteCol or] set]; /1 d
NSRect Fi I | (bounds) ; Il e
[hel | o drawAt Poi nt : NSMakePoi nt ((bounds. si ze. wi dt h/ 2), [f

(bounds. si ze. hei ght/ 2))
Wi thAttributes:attribs];
}

@nd

http://www.it-ebooks.info/

www.it-ebooks.info

The code we added implements the same dr awRect : method that was overridden in the Red Square application
(Example 7-1) and does the following things:

a. Getsan NSRect structure containing the bounds of the view.

b.

Initializes an NSSt r i ng containing the string that we want to draw into the view.

Creates an empty dictionary object (a Cocoa collection object like those we covered in Chapter 4) that will
be needed for the dr awAt Poi nt: wi t hAt tri but es: methodinlinef.

Sets the active drawing color to white.
Callsthe NSRect Fi | | functionto fill the view. Thiswill paint the entire view white.

Cdlsthedr awAt Poi nt:wi t hAt tri but es: method onthehel | o string. This drawsthe string at a
point that is half the width and half the height of the view. We give this method an empty attributes
argument to tell the system not do anything specia when the string is drawn.

2. Savetheproject (3§ -S).

3. Build and run the project (38-R). Y ou should see the string drawn in the window, as shown in Figure 7-6.

Figure 7-6. A Hello World string drawn into a view

886 Window

Halla Warlg

Note that the string isn't perfectly centered in the view. Thisis because the drawing point that the string uses to
draw itself onto the view is at the lower-left hand corner of the bounding box of the string. This follows the same
logic as the screen, window, and view coordinate systems.

4. Quit the String View application (38 -Q).

7.4.3 Drawing Strings with Attributes

Y ou'll notice that when we drew our "Hello World!" string, it was drawn with asmall Helveticafont. You'll often want to
draw stringsin other fonts and sizes. Do this by setting attributes that will be used when drawing astring. We'll talk much
more about string attributes in Chapter 11. For now, we just use the attributes needed to set the font and color of our string.

http://www.it-ebooks.info/

www.it-ebooks.info

1. Modify thedr awRect : method in MyView.m to match Example 7-3:

Example 7-3. Setting font attributes

- (void)drawRect: (NSRect) rect

{

}

NSRect bounds = [sel f bounds];
NSString * hello = @Hello Wrld!'";

NSMut abl eDi ctionary * attribs = [NSMut abl eDi ctionary dictionary];

[attribs set oject:[NSFont fontWthNanme: @ Ti nes" si ze: 24]
f or Key: NSFont At t ri but eNane] ;

[attribs set Qbject: [NSCol or redCol or]
f or Key: NSFor egr oundCol or Att ri but eNane] ;

[[NSCol or whiteCol or] set];
NSRect Fi | | (bounds);
[hel | o drawAt Poi nt: NSMakePoi nt ((bounds. si ze. wi dt h/ 2),
(bounds. si ze. hei ght/2))
W thAttributes:attribs];

The code we added in Example 7-3 does the following things:

a. Obtains afont object for the Times font with a size of 24 points and setsit intotheat t r i bs dictionary.

b. Obtainsared color object and setsitintotheat t r i bs dictionary.

2. Build and run (38-R) the application. Y ou should see the string drawn into the window with our attributes, as seen
in Figure 7-7.

Figure 7-7. Drawing a string with attributes

a8a6 Window

We're now done with the String View application. Close the project in both Project Builder and Interface Builder before

moving on.

http://www.it-ebooks.info/

www.it-ebooks.info

7.5 Draw Pathsintoa View

Next in our exploration of drawing into views, we are going draw some linesinto a custom NSVi ew subclass. In Project Builder,
create a new Cocoa Application project (File —# New Project —# Application —# Cocoa Application) named "Line View", and
save it in your ~/LearningCocoa folder.

7.5.1 Create a Custom View
Asbefore, anew custom view class needs to be created. Perform the following tasks:
1. Open the MainMenu.nib file.
2. Define asubclass of NSVi ew named My Vi ew.
3. Generate the source filesfor My Vi ew.
4. Add acustom view to the main window.
5. Assignthe My Vi ew classto the CustomView.
6. Set the Autosizing attributes of the view so that the view fills the window when the window is resized.
7. Savethenib file, and return to Project Builder.
7.5.2 Implement the Drawing M ethod

Once again, we will implement the dr awRect : method of our My Vi ew class. Thistime we will usethe NSPoi nt structure to
keep track of the various points of the view between which we want to draw lines.

3 The NSPoi nt structure is defined by the Foundation Kit as the following:
s
“. & typedef struct _NSPoint {
’ fl oat x;
float v;
} NSPoi nt ;

1. Open the MyView.m implementation file in Project Builder, and edit it to match Example 7-4.

Example 7-4. Drawing a string into a view

#inmport "MyVi ew. h"
@ npl enent ati on MyVi ew

- (void)drawRect: (NSRect)rect

{
NSRect bounds = [sel f bounds];
NSPoi nt bottom = NSMakePoi nt ((bounds. si ze.wi dth/2.0), 0); /Il a
NSPoi nt top = NSMakePoi nt ((bounds. si ze.w dth/2.0), bounds. si ze. hei ght); /Il b
NSPoi nt | eft = NSMakePoi nt (0, (bounds. size. height/2.0)); Il ¢
NSPoi nt ri ght = NSMakePoi nt (bounds. si ze. wi dt h, (bounds. size.height/2.0)); // d

[[NSCol or whiteCol or] set];

http://www.it-ebooks.info/

www.it-ebooks.info

[NSBezi erPath fill Rect: bounds]; /Il e
[[NSCol or bl ackCol or] set];
[NSBezi er Pat h st rokeRect: bounds]; /1 f
[NSBezi er Pat h st rokeLi neFronPoi nt:top toPoint:botton; Il g
[NSBezi er Pat h st rokeLi neFronPoint:right toPoint:left]; /1 h
}
@nd

The code we added in Example 7-4 does the following things:
a. Createsan NSPoi nt halfway along the bottom of the view
b. Createsan NSPoi nt halfway along the top of the view
c. Createsan NSPoi nt hafway up the left side of the view

d. Createsan NSPoi nt halfway up the right side of the view

@

Draws a path that encompasses the entire view and fills that path with the current drawing color (white)

—h

Draws a path that encompasses the entire view and draws a line along that path in the current drawing color (black)

Draws a path from the NSPoi nt aong the top of the view to the NSPoi nt aong the bottom of the view

@«

h. Draws apath from the NSPoi nt along the right side of the view to the NSPoi nt along the |eft side of the view
2. Savethe project (3§ -S).
3. Build and run the application (gg-R). Y ou should see the lines drawn in the view as shown in Figure 7-8.

Figure7-8. The Line View application in action

apa Window

Now quit the Line View application (38 -Q) before going on to the next example.
7.5.3 Draw an Oval Path

To finish the chapter, we're going to modify the MyView.m used in the Line View application and draw an oval path in the view. To
accomplish this task, you need to add one line to the MyView.mfile, as shown in Example 7-5.

Example 7-5. Drawing an oval path

http://www.it-ebooks.info/

www.it-ebooks.info

#i mport " MyVi ew. h"
@ npl enent ati on MyVi ew

(voi d) drawRect : (NSRect) r ect

{
NSRect bounds = [sel f bounds];
NSPoi nt bottom = NSMakePoi nt ((bounds. si ze.wi dth/2.0), 0);
NSPoi nt top = NSMakePoi nt ((bounds. si ze. wi dth/2.0), bounds. size. hei ght);
NSPoi nt | eft = NSMakePoi nt (0, (bounds. size.height/2.0));
NSPoi nt right = NSMakePoi nt (bounds. si ze. wi dt h, (bounds. si ze. height/2.0));
[[NSCol or whiteCol or] set];
[NSBezi erPath fill Rect: bounds];
[[NSCol or bl ackCol or] set];
[NSBezi er Pat h strokeRect: bounds];
[NSBezi er Pat h st rokeLi neFronPoi nt:top toPoint:botton;
[NSBezi er Pat h strokeLi neFronPoint:right toPoint:left];
[[NSBezi er Pat h bezi er Pat hWt hOval | nRect : bounds] stroke];
}
@nd

The single line of code creates a oval path the size of the bounds of the view, then drawsit using the st r oke method. Save the
project (38-8), then build and run the application (gg-R). Y ou should see something that looks like Figure 7-9.

Figure 7-9. Line View with an oval path drawn

aas Windeow

http://www.it-ebooks.info/

www.it-ebooks.info

7.6 Exercises

1. Definethered color in Red Square by usingthecol or Wt hCal | br at edRed:
green: bl ue: al pha: method.

2. Draw the string from String View into the Line View project, noticing where the
string is drawn.

3. Vary the width of the linesdrawn by using theset Def aul t Li neW dt h:
method of NSBezi er Pat h.

4. Use Project Builder's "Find" feature to look up occurrences of NSBezi er Pat hin
your project; then useit to find the occurrences of NSBezi er Pat h in the AppKit
headers.

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 8. Event Handling

Graphical interfaces are driven by user events- mouse clicks and keystrokes. Most of an
application's time is spent waiting for the user to tell the application what to do next.
However, arunning application can aso receive events not originating from the user
interface, such as packets arriving over a network interface or timersfiring periodically. In
Cocoa, both types of events result in a message sent to an object in your application, as
depicted in Figure 8-1.

Figure8-1. A Cocoa application recelving events

! appiications
Operating Application
Eem
s Monifored
part
Drawing code
L
Timed entries

This chapter focuses on events-both user- and program-generated-and how you intercept,
handle, and coordinate them in Cocoa.

http://www.it-ebooks.info/

www.it-ebooks.info

8.1 Events

Eventsin Cocoa are represented by instances of the NSEvent class. An event object can
be queried to discover its window, the location of the event within the window, and the
time the event occurred (relative to system startup). Y ou can also find out which, if any,
modified keys (such as Command, Shift, Option, and Control) were pressed. An event also
contains the type of event it represents. There are many event types, falling primarily into
the following categories:

Keyboard events

Generated when akey is pressed or released or when amodified key changes. Of
these event types, key-down events are the most useful. When you handle a key-
down event, you can determine the character or characters associated with the event
by calingthechar act er s method on the event object.

Mouse events

Generated by changes in the state of the mouse button (down and up) and during
mouse dragging. Optionally, mouse events can also be generated when the mouse
moves without any button depressed.

Tracking-rectangle events

Generated by the window server when the mouse enters or exits a
programmatically set area (atracking rectangle) in awindow. Thisletsan
application change either the cursor or the content that the mouse is currently over.
For example, when you move the mouse over the window control buttons, you
generate events triggered by the mouse entering and exiting a rectangular region
around the control. This lets the control highlight itself. Also, an application usually
changes the cursor to an I-beam when the mouse is moved over editable text.

Periodic events

Generated by timers to notify an application that a certain time interval has elapsed.
An application can request that periodic events be placed in its event queue at a
certain event frequency. Thisis useful for applications that want to perform some
task at regular intervals, such as updating the frames of an animation or checking
email every few minutes.

8.1.1 The Event Cycle

http://www.it-ebooks.info/

www.it-ebooks.info

Every application has a central object named NSApp, which is an instance of the

NSAppl I cat i on class. At the core of its responsibilities is the management of the run
loop . A run loop monitors the various sources of events and decides which object is
responsible for handling each event. It then sends a message, passing to the object an
NSEvent object instance to describe the particulars of the event. The event message
passes from NSApp to the appropriate window, to aview (commonly a control) within the
window, and eventually to the target object.

Thisishow abutton "knows" that it has been clicked. The application forwards mouse
click eventsto it. The button object can then either process the event directly or, more
commonly, passit on to a custom object that you define through the target/action pattern or
delegation. When the handling objects are finished responding to the message, control
unwinds and returnsto NSApp, where the run loop processes the next event.

This cycle, also known as the event cycle, usually starts at launch time when the application
sends a stream of Quartz commands to the window server for it to draw the application
interface. The application then beginsits main run loop and begins accepting input from
the user. When users click or drag the mouse or type on the keyboard, the window server
detects and processes these actions, passing them to the application as events.

Events sent to the application by the window server are placed on a queue in the order they
are received. On each cycle of the run loop, NSApp processes the topmost event in the
gueue, as shown in Figure 8-2. When NSApp finishes processing the event, it gets the next

event from the queue and repeats the process again and again until the application
terminates.

Figure 8-2. The event queue

NSEvent [=---m| NSApplication [:
N5Event
: Y
NsEvent | —
‘;:mr v B| MNsEvent
HSView IR
8.1.2 Responders

Recall that when we introduced the core program framework of NSW ndow, NSVi ew, and
NSAppl I cat i on inChapter 6, we mentioned that each of these classes inherits

functionality from the NSResponder class, as shown in Figure 8-3.

http://www.it-ebooks.info/

www.it-ebooks.info

Figure 8-3. The core application framework

NSObject

N5Responder

| |
NSWindow NSView NSApplication

The NSResponder class defines the default message-handling behavior of all event-
handling objectsin an application. The responder model is built around the following three
concepts:

Event messages

Messages that correspond directly to an input event, such as a mouse click or akey
press.

Action messages

M essages describing a higher-level command to be performed, suchascut : or
paste:.

Responder chain

A series of responder objects to which an event or action message is applied. When
agiven responder object doesn't handle a message, that message is passed to the
next object in the chain.

Responder chains allow responder objects to delegate responsibility to other objectsin the
system. The seriesin aresponder chain is determined by the interrel ationships between the
application's view, window, and its NSApp object. For aview, the next responder is
usually its superview. The next responder of awindow's content view is the window itself.
From there, the event is passed to the NSApp object.

For action messages, the responder chain islonger. Messages are first passed up the
responder chain to the window. Then, if the previous sequence occurred in the key
window, the same path is followed for the main window. After that, the message is passed
to the NSApp object.

http://www.it-ebooks.info/

www.it-ebooks.info

8.1.3 First Responder

Each window in an application keeps track of the object in its view hierarchy with first
responder status, which isthe view that first responds to keyboard events for that window.
For example, in TextEdit, the new document window isthe first responder, asit isthefirst
to receive events from the keyboard. By default, awindow isits own first responder, but
any view within the window can become the first responder when the user clicksit with the
mouse. If the view cannot handle the event, the event is passed on to the next object in the
responder chain.

In a desktop environment where multiple windows can be open at any given time, a user
selects a window with the mouse to make it active. When this happens, that window
becomes key, and the window's first responder becomes the target of any events generated
by the user. If adifferent window is selected, it becomes key, and its first responder
becomes current. If no object has been selected, or if the window has no controls, the
window isits own first responder.

Using Interface Builder, or programmatically, you can configure an

I nitial FirstResponder sothat when awindow appears, thefirst logical control
capable of using keystrokes is brought into focus as the first responder. Recall that in
Chapter 5's Currency Converter application, we set the first text field to be the initial first
responder.

Views and controls can reject first responder status. For example, aview displaying a static
image probably shouldn't accept first responder status. A responder can indicate that it
doesn't want to accept first responder status by implementing the

accept Fi rst Responder method and returning NO.

8.1.4 Event Routing

An event isrouted based on itstype. The NSApp object sends most event messages to the
window in which the user action occurred. A mouse event is then forwarded to the view in
the window's view hierarchy within which the mouse was clicked. Key events are routed to
the first responder. If the view can respond to the event-that is, if it can accept first
responder status and define an NSResponder method corresponding to the event
message-it handles the event. If the view cannot handle an event, the event is forwarded to
the next responder in the responder chain.

The NSW ndow class handles some events itself, such as window-moved, window-resized,
and window-exposed events, and doesn't forward them to aview. NSApp also processes a
few events, such as application-activate and application-deactivate events.

http://www.it-ebooks.info/

www.it-ebooks.info

8.2 Dot View Application

To illustrate event handling, we'll build an application using a custom NSVi ew subclass that responds to a mouse
click by drawing a colored dot. Working through this example will let you see how custom event handling works,
while reinforcing the work we did with NSBezi er Pat h in the last chapter. In addition, we'll use the Slider and
Color Well controlsfor the first time.

In Project Builder, create anew Cocoa Application project (File —# New Project —# Application —# Cocoa

Application) named "Dot View", and save it in your ~/LearningCocoa folder. Then open the MainMenu.nib filein
Interface Builder.

8.2.1 Createthe DotView Class

Creating the functionality of this application will utilize many of the same skills presented in previous chapters. We
will start shortening the descriptions of how to perform tasks that we've performed before so that we can provide
more details on new topics as they are introduced. If you can't remember how to do something, you should use the
procedures presented in previous chapters to help you out. Create the Dot Vi ew class using the following steps:

1. Create asubclass of NSVi ew called Dot Vi ew.
2. Open the Show Info window (Tools —# Show Info).

3. Add an outlet named col or V&l | to Dot Vi ewusing the Info window, and set itstype to NSCol or V&l |
using the drop-down box in the Type column of the Outlet display, as shown in Figure 8-4.

Figure 8-4. Adding the colorWell and slider outletsto DotView

o w Class Info
Astribute
Larguige - Dibqective L
Jya
_ — Classkama Dearyiaw
=86 MainMenu.nib
| 4 Ceutlets | 2 Actions
" E— i
Instances | Classes | Images | Sounds = ==
:EI o e b ool o' NSCodarell '
LRl View
alidar A5 ¥
ASKNiIbObiect E-
ASKNiIBO et
Dotiew
i Blmspectar
L,
4
Remove Add

4. Addanoutlet named sl | der to Dot Vi ew, and set itstypeto NSSI | der .

5. Add an action named set Radi us: to Dot Vi ew.

http://www.it-ebooks.info/

www.it-ebooks.info

6. Add an action named set Col or: to Dot Vi ew.

7. Click onthe Dot Vi ew subclassin the Classes tab, and generate its source files (Classes —# Create Filesfor
Dot View).

8. Savethe project (File — Save, or 3§-S).
8.2.2 Createthe Interface
To create our interface, perform the following steps:
1. Changethetitle of the main window to "Dot View". To do this:

a. Click on the main window, and the title of the Show Info window should change to "NSWindow
Info".

b. Select Attributes from the pull-down menu.

c. Inthe Window Titlefield, change "Window" to "Dot View".
2. Drag aCustomView view from the Containers Pa ette onto the Dot View window.
3. Assignthe Dot Vi ew class to the CustomView.

a. Click on the CustomView view.

b. IntheInfowindow, scroll up and select DotView from the Class list; the name of the view will
change from CustomView to DotView.

4. Drag a Slider from the Other Palette onto the Dot View window, and place it as shown in Figure 8-5.
5. Drag aColor Well from the Other Palette onto the Dot View window, and placeit as shown in Figure 8-5.

Figure 8-5. The Dot View user interface

a &) Dot View

http://www.it-ebooks.info/

8.2.3 Connect the Controlsto DotView

Create the following connections using Interface Builder.

www.it-ebooks.info

1. Control-drag a connection from the slider to the Dot Vi ew. Make the target/action connection to the

set Radi us: method in the Connections pane of the Info window.

2. Control-drag a connection from the color well to the Dot Vi ew. Make the target/action connection to the

set Col or : method.

3. Control-drag a connection from the Dot Vi ewto the slider. Make the outlet connectiontothes! i der

outlet.

4. Control-drag a connection from the Dot Vi ew to the color well. Make the outlet connection to the

col or V&l | outlet.

Save (38—8) the nib file, and return to Project Builder, where we will finish the application.

8.2.4 Definethe DotView Header

Our next step isto finish defining the DotView.h header file. Edit the source to match that of Example 8-1. The code

that you need to add to the Interface Builder code is shown in boldface.

Example 8-1. DotView.h
/* Dot View */
#i nport <Cocoa/ Cocoa. h>

@nterface DotView : NSView

{
| BOut | et NSCol orVell * col or\Wel | ;
| BQut| et NSSIider * slider;
NSPoi nt center;
NSCol or * col or;
fl oat radi us;
}

- (I BAction)set Color: (id)sender;
- (I BAction)setRadi us: (i d)sender;

@nd

This code defines the following functionality:

1. Definesan NSPoi nt structure that we'll use to store the center of the dot that will be drawn

2. Defines the color of the dot

3. Definestheradius for the dot

8.2.5 Definethe DotView Class

111
Il 2
/1 3

http://www.it-ebooks.info/

www.it-ebooks.info

Now that we have defined the header, it's time to add the code for the implementation of the Dot \/i ewclass. The
code for this classistoo long to fit nicely on one page, so we're going to approach thisin two steps. First, Example 8-

2 shows the skeleton of our class, with all the methods to implement shown in boldface. Asyou can see, you will be

asked to insert code from later examples as we build the Dot View application. The sections that follow will provide
the necessary code, along with explanations of what that code will do.

First, enter the boldface text from Example 8-2 into your DotView.mfile, and insert the appropriate code from
Example 8-3 through Example 8-10 as you work through the following sections. A complete version of how your
DotView.mfile should look is shown in Example 8-11.

Example 8-2. Skeleton code for DotView.m

#i nport " Dot Vi ew. h"
@ npl enent ati on Dot Vi ew

- (id)initWthFrame: (NSRect) frane

{

/'l Insert code from Exanple 8-3
}

- (voi d)awakeFromNi b

{

/'l Insert code from Exanple 8-4
}

- (void)deal |l oc

{

/'l Insert code from Exanple 8-5
}

- (voi d)drawRrect: (NSRect) rect

{

/'l Insert code from Exanple 8-6
}

- (BOCOL) i sOpaque

{

/' Insert code from Exanple 8-7
}

- (voi d) nouseDown: (NSEvent *)event
{

/'l Insert code from Exanple 8-8
}

- (I BAction)set Col or: (id)sender
{

/'l Insert code from Exanple 8-9
}

- (I BAction)set Radi us: (id)sender
{

http://www.it-ebooks.info/

www.it-ebooks.info

/'l Insert code from Exanple 8-10
}

@nd
8.2.5.1 Implement theinitWithFrame: method

Thei ni t Wt hFranme: method isthe designated initializer for NSVi ewand its subclasses (see Section 3.6.2.1in
Chapter 3 for arefresher of what this means). Add thei ni t W t hFFr ane: method, as shown in Example 8-3.

Example 8-3. The designated initializer method

- (id)initWthFranme: (NSRect) frane

{
self = [super initWthFrane:frane]; /Il 1
center.x = 50.0; /] 2
center.y = 50. 0; /Il 3
radi us = 20.0; /1 4
color = [[NSCol or redCol or] retain]; /Il 5
return self;)

}

This code performs the following tasks:
1. Startstheinitialization process by calling the designated initializer of the NSVi ew class.
2. Setsthe x-coordinate of the center of the dot to 50. O.
3. Setsthe y-coordinate of the center of the dot to 50. 0.
4. Setstheradius of thedot to 20. 0.

5. Setstheinitial color in which the dot will be drawn to red. Thisline also retains the color so that it will be
ablefor use later. Refer back to Section 4.3 in Chapter 4 if necessary.

6. Returnssel f, the newly initialized view object.
8.2.5.2 Implement the awakeFromNib: method

Asintroduced in Chapter 6, the awakeFr oniNi b: method is called when the interface has been fully unpacked

from the nib file and all connections have been made. At this point, we want to set the initial state of the dider and
color well controls. Add the awakeFr ormiNi b: method as shown in Example 8-4.

Example 8-4. Finish setting up the view

- (voi d)awakeFromNi b

{
[col orVel | setCol or:color]; Il 1

[slider setFloatVal ue:radius]; Il 2

}

This code performs the following tasks:

http://www.it-ebooks.info/

www.it-ebooks.info

1. Setsthe color of the color well to the color set up in the initializer. In this case, the default color will be set to
red. (For reference, seeline 5in Example 8-3.)

2. Setstheinitial value of the dider to the radius we defined in the initiaizer (line 4 from Example 8-3).
When this method compl etes, the application will be displayed to the user.
8.2.5.3 Implement the dealloc method

Thedeal | oc method is called when the view is disposed of, giving it a chance to clean up its memory usage. Add
the deal | oc method as shown in Example 8-5.

Example 8-5. DotView deallocation method

- (void)deal |l oc

{

[col or rel ease]; 11
[super deall oc];

}

This code performs the following tasks:
1. Releasesthe NSCol or object that we've retained in the object instance

2. Cdlsthedeal | oc method of the parent NSVi ew class so that any cleanup performed by the super class
can be performed

8.2.5.4 Implement the drawRect: method

Thedr awRect : method iswhere the view draws itself to the screen. Add the dr awRect : method as shownin
Example 8-6.

Example 8-6. Drawing the interface

- (void)drawRect: (NSRect) rect

{
NSRect dot Rect; /] 1

/1 Draw t he background
[[NSCol or whiteCol or] set]; Il 2
NSRect Fil | ([sel f bounds]);

/'l Set the location of the dot
dotRect.origin.x = center.x - radius; /Il 3
dotRect.origin.y = center.y - radius;

[/ Define the size the dot
dot Rect.size.width = 2 * radi us; /] 4
dot Rect . si ze. height = 2 * radi us;

/! Set the default col or
[col or set]; /] 5

http://www.it-ebooks.info/

www.it-ebooks.info

/1 Draw t he dot
[[NSBezi er Pat h bezi er Pat hWt hOval | nRect : dot Rect] fill]; /Il 6

}

The code performs the following tasks:
1. Declaresan NSRect structure that defines the rectangle into which our dot will be drawn.
2. Setsthe current drawing color to white (whi t eCol or) and draws the background of the view.

3. Determines the origin of the rectangle into which our dot will be drawn. Because we have to determine the
rectangle of the dot by specifying its origin rather than its center, and we want the center of the dot to be the
location of our center NSPoi nt , we have to offset the origin appropriately. This code finds a point offset
towards the origin of the view's coordinate system that will place the dot's center exactly where the user
clicked.

4. Definesthe size of the rectangle into which our dot will be drawn. Since the code in step 3 determined the
lower-l€eft corner of the rectangle, we simply need to size the rectangle to be the diameter (2 * r adi us) of
the dot.

5. Setsthe current color of Dot Vi ewto the active drawing color, based on the color we defined in line 5 of
Example 8-3.

6. Creates an oval Bezier path insidethe dot Rect rectangle and fillsit with the default color.
8.2.5.5 Implement theisOpaque method

The Quartz graphics engine is designed to draw multiple layers of content quickly with various levels of
transparency. However, no matter how much performance the engineers at Apple manage to squeeze out of the code,
the Quartz engine can operate faster if it knows that a view doesn't need to be composited with its background. The

i sOpagque method of NSVi ew lets this optimization be performed. Add thei s Opaque method as shown in
Example 8-7.

Example 8-7. Telling Cocoa that our view is opaque

- (BOQL) i sOpaque
{

}

return YES

If we return NOto this method, Quartz will composite anything drawn by our view with the contents of views behind
it. Since we return YES, Quartz doesn't need to perform this operation and can save a bit of time.

8.2.5.6 Implement the mouseDown: method

Overriding NSResponder methodsin aview isthe best way to handle events for the view. One such method is
nmouseDbDown: , which isinvoked when the user presses the mouse button. All of the NSResponder event-handling
methods receive an NSEvent object instance as an argument. This event contains the mouse location where the click
occurred in the coordinate system of the window.

Add an implementation of this method to match, as shown in Example 8-8.

http://www.it-ebooks.info/

www.it-ebooks.info

Example 8-8. Handling mouse-down events

- (voi d) nouseDown: (NSEvent *)event

{
NSPoi nt event Location = [event |ocationl nW ndow ; /11
center = [self convertPoint:eventlLocation fronView nil]; /] 2
[sel f set NeedsDi spl ay: YES] ; /1 3
}

This code performs the following tasks:

1. Getsthe location of the mouse click from the event. The location of a mouse click is expressed in terms of the
coordinate system of the window in which the click occurred.

2. Convertsthe location of the event from the window coordinate system to the coordinate system of the view.
When called withani | view parameter, it trandates the point from the window coordinate system to which
the view belongs. If you call this method with aview object, the coordinates will be converted into the
coordinate system of that view. In this case, we need the coordinates converted from the coordinate system of
the window.

3. Setsaflagindicating that the view needs to be redrawn. The redraw will be done automatically by the NSApp
object after the event is handled and the run loop has exited our code.

8.2.5.7 Implement the setColor: action method

This method is called by the color well whenever the user changes the color of the dot. This method assumes that the
sender isacontrol capable of returning a color. Edit theset Col or: method as shown in Example 8-9.

Example 8-9. Changing the color with which we draw

- (I BAction)set Col or: (id)sender

{
NSCol or * newCol or = [sender color]; /11
[newCol or retain]; Il 2
[col or rel ease]; /Il 3
col or = newCol or; Il 4
[sel f set NeedsDi spl ay: YES] ; /l'5
}

This code performs the following tasks:
1. SetsthenewCol or variableto the color obtained from the sender of the event.
2. Retainsthe newCol or object.

3. Releasestheold col or object. Remember, as presented in Chapter 4, that we release the old object after
retaining the new one so that there will be no problemsiif the two objects are actually the same.

4. Setsthecol or variabletothenewCol or object.

5. Setsaflag indicating that the view needs to be redrawn to display the new color defined by the user. The
redraw will be done automatically by the AppKit after the event is handled.

http://www.it-ebooks.info/

www.it-ebooks.info

8.2.5.8 Implement the setRadius: action method

This method is called by the dider whenever the user moves the slider left or right to change the size of the dot. This
method assumes that the send is a control capable of returning a floating-point number. Edit the set Radi us:
method as shown in Example 8-10.

Example 8-10. Changing the size of our dot

- (I BAction)set Radi us: (i d) sender
{

radi us = [sender fl oatVal ue]; /11
[sel f set NeedsDi spl ay: YES] ;

}
This code performs the following tasks:
1. Setsther adi us variableto afloat value (f | oat Val ue) obtained from the slider.

2. Setsaflagindicating that the view needs to be redrawn to display the newly resized dot, based on the
movement of the slider. The redraw will be done automaticaly by the AppKit after the event is handled.

When you've completed entering all of the code from Example 8-2 through Example 8-10, your DotView.mfile
should look like the code shown in Example 8-11.

Example 8-11. The complete DotView.m file

#i nport " Dot Vi ew. h"
@ npl enent at i on Dot Vi ew

- (id)initWthFranme: (NSRect) frane

{
self = [super initWthFrane:frane];
center.x = 50.0;
center.y = 50.0;
radi us = 20. 0;
color = [[NSCol or redColor] retain];
return self;
}
- (voi d)awakeFromNi b
{
[colorVel| setColor:color];
[slider setFloatVal ue:radius];
}
- (void)deal |l oc
{
[col or rel ease];
[super deall oc];
}

(voi d)drawRect : (NSRect) r ect

http://www.it-ebooks.info/

www.it-ebooks.info

{
NSRect dot Rect;
[[NSCol or whiteCol or] set];
NSRect Fil | ([sel f bounds]);
dotRect.origin.x = center.x - radius;
dotRect.origin.y = center.y - radius;
dot Rect.size.width = 2 * radi us;
dot Rect . si ze. height = 2 * radi us;
[col or set];
[[NSBezi er Pat h bezi er Pat hWt hOval | nRect : dot Rect] fill];
}
- (BOQL) i sOpaque
{
return YES;
}
- (voi d) mouseDown: (NSEvent *)event
{
NSPoi nt eventLocation = [event |ocationl nWndow];
center = [self convertPoint:eventlLocation fronView nil];
[sel f set NeedsDi spl ay: YES];
}
- (I BAction)setCol or: (id)sender
{
NSCol or * newCol or = [sender color];
[newCol or retain];
[col or rel ease];
col or = newCol or;
[sel f set NeedsDi spl ay: YES];
}
- (I BAction)set Radi us: (i d)sender
{
radi us = [sender fl oatVal ue];
[sel f set NeedsDi spl ay: YES];
}
@nd

Once your DotView.mfileis complete, save the project (File — Save, or 3§-S), and then build and run the Dot
View application (Build — Build and Run, or 3@-R). You should see something that looks like Figure 8-6.

Figure 8-6. Drawing dotswith the Dot View application

http://www.it-ebooks.info/

www.it-ebooks.info

868 Dot View

Perform the following actions on the application to seeif the code that we added works:

. Click anywhere in the view, and you'll see the dot move to the point that you clicked. Each time you click the
mouse, amouseDown event is sent to the view, resulting in the mouseDown: method being called.

. Movethe dider left and right, and watch the size of the dot get smaller or bigger, respectively. Notice that the
slider issues events to the application as it moves, allowing you to see the results of the action dynamically.

. Click on the color well, and pick anew color for the dot from the palette that appears. Just like the dlider, the
color well responds dynamically.

Note that when you resize the application, the view doesn't autosize as we'd probably like. Exercise 6 at the end of
this chapter (Section 8.5) adds this functionality.

http://www.it-ebooks.info/

www.it-ebooks.info

8.3 Event Delegation

In an object-oriented application, an object often must know what's going on with other objects in the system. One of
the patterns used extensively in Cocoais delegation. Think of delegation as a means by which an object's behavior can
be modified without needing to create a custom subclass.

A delegate is a helper object that receives messages from another object when specific events occur. An object sends
reguests to its delegate, allowing the delegate to influence its behavior and aid in decision-making.

For an object to delegate responsibility, it must declareadel egat e outlet, along with a set of delegate messages that
will be sent to it when "interesting" things happen. To become a delegate, an object must implement one or more of the
delegate methods. There are several types of delegation messages, depending on the expected role of the delegate:

. Some messages are purely informational, occurring after an event has happened. These allow a delegate to
coordinate its actions with the delegating object.

. Some messages are sent before an action will occur, allowing the delegate to veto or permit the action.

. Other delegation messages assign a specific task to a delegate, such asfilling a browser with cells.

Asan example, take a child who istold by afriend to act silly. Depending on the circumstances, he may or may not do
as hisfriend suggests. If his parents are around, the child might ask his parents (or at least glance at one of the parents
to seeif they arelooking) if he should act silly before doing so. In this case, the child is delegating the decision of
whether to act silly in front of his parents. The parent then has the opportunity to approve or deny the request to act
silly. Figure 8-7 shows this relationship, albeit abstractly.

Figure 8-7. Delegation in action

a(l;'iillr: shouldhctSilly
n —h
Child Parent

yes o fi

Friend

Y ou can set a custom object as the delegate of a Cocoa framework object by making a connection in Interface Builder,
or you can set it programmatically by using the set Del egat e: method. Y our custom classes can also define their
own delegate variables and delegation protocols for client objects. Just remember that delegates are not retained by the
objects that del egate messages to them.

To show delegation in action, we will modify our Dot View application to respond to arequest to close the
application's window. We will create and add a delegate that, when awindow sendsawi ndowShoul dCl ose
message to it, will create an alert box asking the user if it is okay to close. To create the alert box, Cocoa provides the
NSRunAl ert Panel function. This function has the following signature;

I nt NSRunAl ert Panel (NSString * title,

NSString * nessage,
NSString * defaul t ButtonLabel,
NSString * alternateButtonLabel,
NSString * ot herButtonLabel,
) [l printf style args for nessage

Table 8-1 provides abrief summary of the parameters for this function.

http://www.it-ebooks.info/

www.it-ebooks.info

Table 8-1. NSRunAlertPanel parameters

Par ameter Description

title Thetitle of the sheet, displayed near the top of the sheet in abold font.

Mg

An optional message string that appears near the bottom of the sheet. The string can contain
pri nt f -style arguments such as %) ¥s, and % .

def aul t Button The labdl for the sheet's default button, typically "OK".

al t ernat eBut t on | Thelabel for the sheet's alternate button, typically "Cancel”.

ot her Button Thelabd for athird button. If you passni | , only two buttons will appear on the sheet.

8.3.1 Create a Delegate

Open the Dot View project in Project Builder, if you don't already have it open, and open the MainMenu.nib filein

Interface Builder. Perform the following steps to create a delegate class and to assign an instance of it as a delegate to
the window:

1. Create anew subclass of NSObj ect caled MyDel egat e.

2. Instantiate My Del egat e (Classes —# Instantiate MyDelegate).

3. Inthe Instances pane of the MainMenu.nib window, Control-drag a connection from the Window icon to the

MyDel egat e object icon, as shown in Figure 8-8.

Figure 8-8. Control-dragging from Window to MyDelegate

FEW i i AT

L BAn BTG AR

48

515
Outlers

i W Y
Instances | Classes | Irages | Ssunds Selagats

imtialFirsResponde

i e E toolbar
L "
[

MainMenu

LELS
] SourceE Destiration

Wi yhelaqate

Cannect

http://www.it-ebooks.info/

www.it-ebooks.info
1. Make the connection to the delegate outlet of the window by clicking on the Connect button in the Info
window.
2. Savethenibfile (3§ -S).
3. Createthefilesfor the My Del egat e class, and add them to the project.
a. Click on the Classes tab in the MainMenu.nib window.
b. Select MyDelegate.
c. Select Classes —# Create Filesfor MyDelegate from the menu bar.
Return to Project Builder, and edit MyDelegate.m to match the code in Example 8-12.
Example 8-12. MyDelegate.m

#i nport " MyDel egat e. h"

@ nmpl enent ati on MyDel egat e

- (BOOL) wi ndowShoul dC ose: (NSW ndow *) sender /11
{
int answer = NSRunAl ertPanel (@C ose", @Are you certain?", [2
@C ose", @Cancel”, nil);
swtch (answer) { /Il 3
case NSAl ert Def aul t Ret urn:
return YES;
defaul t:
return NG
}
}
@nd

The code we added performs the following tasks:

1. Implementsthewi ndowshoul dCl ose: method. When awindow has a delegate that implements this
method, it asks the delegate if it should close before doing so.

2. Calsthe NSRunAl er t Panel function, which will open an aert dialog box that asks the user's permission to
close the window.

3. Returns YES or NO depending on the result from the alert dialog box. If the alert dialog box returns a value that
matches the constant NSAI er t Def aul t Ret ur n, then the window will be closed.

Now save the project (SE—S), and build and run the application (3E—R). When you try to close the application window,
you will see something that looks like Figure 8-9. Notice what happens when you hit the Cancel button on the alert

box. Notice that the alert only comes up when you close the window. If you quit the application, the alert panel will
not appear. A different delegate method, the appl i cat i onShoul dTer m nat e: method of the
NSAppl | cat i on class, is needed to enable this functionality. Exercise 4 at the end of the chapter (Section 8.5) will

do so.

Figure 8-9. Dot View asking permission to close

http://www.it-ebooks.info/

www.it-ebooks.info

®aeae Dot Wiew
Close
A‘ fre you certain?

" Cancel f Close N

-

8.3.2 Delegation Using Sheets

Anather example of delegation appears in the implementation of Aqua's sheets-a new type of dialog box that is
attached to a document window's titlebar. Sheets slide out from the window title, making their relationship to a
document clear. Sheets are modal only for the window to which they are attached, so you can proceed to other tasksin
an application before dismissing them.

Adding support for sheets is more complicated than using a standard dialog box, because the function that displays an
aert sheet-NSBegi nAl er t Sheet -isasynchronous. In other words, it does not wait for the user to dismiss the sheet
before returning control to the caler. Instead, it returns control immediately after presenting the sheet. To discover the
result of the user's interaction with the sheet, you must pass a reference to a delegate object, along with a method
selector to invoke as a callback when the sheet is dismissed. When the sheet finished, the callback method will be
invoked and passed a result code, indicating which button the user pressed.

The NSBegi nAl er t Sheet function has the following signature:

voi d NSBegi nAl ert Sheet (NSString * title,
NSString * defaul t ButtonLabel,
NSString * alternateButtonLabel,
NSString * otherButtonLabel,
NSW ndow * docW ndow,
i d nodal Del egat e,
SEL di dEndSel ect or,
SEL di dDi sm ssSel ect or,
voi d * contextl nfo,
NSString * nessage,
) [l printf args for nessage

Thislooks a bit daunting at first, but it'sreally not as difficult to use asit might look. Table 8-2 provides a brief
parameter summary for NSBegi nAl ert Sheet .

Table 8-2. NSBeginAlertSheet parameters

http://www.it-ebooks.info/

www.it-ebooks.info

Parameter

Description

title

Thetitle of the sheet, displayed near the top of the sheet in abold font.

def aul t Butt on

Thelabel for the sheet's default button, typically "OK".

al t er nat eBut t on

Thelabel for the sheet's aternate button, typically "Cancel".

ot her Butt on

Thelabel for athird button. If you passni | , only two buttons will appear on the sheet.

docW ndow

A reference to the window to which the sheet will be attached.

nodal Del egat e

A reference to the object that will respond when the user dismisses the sheet.

di dEndSel ect or

A sdlector for amethod implemented by the nodal Del egat e. The method will be
invoked when the modal session is ended, but before the sheet is dismissed.

di dDi sm ssSel ect or

A selector for amethod implemented by the nodal Del egat e. The method will be
called after the sheet is dismissed. It isuseful for any extra cleanup that might be
necessary. Pass NUL L if you don't need this functionality.

contextlInfo

Additional datato passtothe nodal Del egat e asaparameter of thedi dEnd and
di dDi sm ss methods.

nmeg

An optional message string that appears near the bottom of the sheet. The string can
contain pr i nt f -style arguments such as %@) %, and % .

Edit the MyDelegate.m code, replacing thewi ndowShoul dCl ose: method and adding the sheet Cl osed:
method, as shown in Example 8-13.

Example 8-13. Changing MyDelegate.m to use sheets

#i npor t

"MyDel egat e. h"

@ nmpl enent ati on MyDel egat e

- (BOOL) wi ndowShoul dC ose: (NSW ndow *) sender

{
NSString * nsg = @ Should this wi ndow cl ose?"; /11
SEL sel = @el ector(sheet d osed: returnCode: contextlnfo:); Il 2
NSBegi nAl ert Sheet (@ Cl ose", [l title /13
@ K", /1 default [abel
@ Cancel ", /1 alternate button | abel

nil, /1
sender, /1

ot her button | abel
docunent w ndow

http://www.it-ebooks.info/

return NG

www.it-ebooks.info

sel f, /1 nmodal del egate

sel, /'l selector to method
NULL, /[l dismss selector
sender, /] context info

nsg, [l message

nil); [l params for nseg string

Il 4

- (voi d) sheet C osed: (NSW ndow *) sheet
returnCode: (i nt)returnCode
contextInfo:(void *)contextlnfo

if (returnCode == NSAl ertDefaultReturn) { /15
[(NSW ndow *) context I nfo cl ose];

}
}

@nd

This code performs the following tasks:

1. Creates astring that will be displayed in the sheet.

2. Obtains a selector to the method that calls the sheet back when finished. In this case, we want the
sheet Cl osed: ret urnCode: cont ext | nf o: method (which we definein step 5) called.

3. Calsthe NSBegi nAl er t Sheet function with awhole set of arguments describing what the sheet should
display and what object and methods it should call when it is done.

4. Returns NO so that the application's run loop can continue. The window will remain open, but a sheet will be

attached to it.

5. Checks the value returned using the equality (==) operator from the sheet - which checksto see if two values
are equal to each other - and closes the window or not, depending on its value.

N

Too often, newcomersto C (and many not-so-newcomers) make the error of using the
assignment operator (=) when they mean to use the equality (==) operator. Using the
assignment operator in a check like thiswill usually result in an expression that islegal,
but will not work as expected. Such errors can be subtle and hard to catch.

Save the project (§€-S), and then build and run the application ($§-R). Now when you try to close the window (-
W), you should see something like Figure 8-10.

Figure 8-10. Aqua sheetsin action

http://www.it-ebooks.info/

088 Dot View
Close
.,g Sheuld this window clese?
E Cancel] FF%

|

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

8.4 Notifications

Another way to communicate events between objects in Cocoais viaanotification. A notification is a message broadcast to all
objectsin an application that are interested in the event that the notification represents.

Notifications can a so pass along relevant data about the event. Notifications differ from delegation in that notification happens
after the object has performed the action instead of before. The object receiving a notification doesn't get a chance to say
whether or not an action will be taken. Also, an abject can have many notification observers, but only one delegate.

Using our child/friend/parent example again, once the child has acted silly, there might be a set of friends who will want to
know about it. Through natification, our child can tell his friends that he acted silly, as shown in Figure 8-11.

Figure 8-11. Notification

Friend Child Parent

|
l—attedi-lr,- actedSilly acredSilly 1

v

Friend Friend Friend

It would be impractical for everyone who wanted to know that the child had acted silly to register her interest directly with the
child. The child would have to implement the functionality needed to keep track of al the interested friends and send
notifications to them in turn. Luckily, Cocoa has provided a set of classes to help us with this. Here's the way the notification
process, shown in Figure 8-12, works in Cocoa:

1. Objectsinterested in an event that happens elsewhere in an application-say, the addition of arecord to a database-
register themselves with a notification center (an instance of the NSNot i f i cat i onCent er class) as observers of
that event. During the registration process, the observer specifies that a method should be invoked by the notification
center when the event occurs.

2. The object that adds the record to the database (or some such event) posts a notification (an instance of the
NSNot i fi cati on class) to the notification center. The notification object contains atag that identifies the
notification, the ID of the object posting the notification, and, optionally, adictionary of supplementa data.

3. The notification center then sends a message to each registered observer, invoking the method specified by each
observer and passing the notification.

Figure 8-12. Notifications

’—. Friend
Friend actedilyNotification | Motification »| Friend

o center L:
Friend

8.4.1 How Notifications Work

A class that posts notifications defines the names of those notificationsin its header file as static NSSt r 1 ng objects. For
example, the NSW ndow class defines a set of 16 notifications in its header file that allow other objects to monitor changesin
the window's status:

http://www.it-ebooks.info/

www.it-ebooks.info

APPKI T_EXTERN NSStri ng
APPKI T_EXTERN NSStri ng
APPKI T_EXTERN NSStri ng
APPKI T_EXTERN NSStri ng
APPKI T_EXTERN NSStri ng
APPKI T_EXTERN NSStri ng
APPKI T_EXTERN NSStri ng
APPKI T_EXTERN NSStri ng
APPKI T_EXTERN NSStri ng
APPKI T_EXTERN NSStri ng
APPKI T_EXTERN NSStri ng
APPKI T_EXTERN NSStri ng
APPKI T_EXTERN NSStri ng
APPKI T_EXTERN NSStri ng
APPKI T_EXTERN NSStri ng
APPKI T_EXTERN NSStri ng

NSW ndowDi dBeconeKeyNot i fi cati on;
NSW ndowDi dBeconeMai nNot i fi cati on;
NSW ndowDi dChangeScr eenNoti fi cati on;
NSW ndowDi dDeni ni aturi zeNoti ficati on;
NSW ndowDi dExposeNot i fi cati on;

NSW ndowDi dM ni aturi zeNoti fication;
NSW ndowDi dvbveNoti fi cati on;

NSW ndowDi dResi gnKeyNoti ficati on;
NSW ndowDi dResi gnMai nNot i fi cati on;
NSW ndowDi dResi zeNoti ficati on;

NSW ndowDi dUpdat eNot i fi cati on;

NSW ndowW | | Cl oseNoti fi cati on;

NSW ndowW | | M ni aturizeNotification;
NSW ndowW | | MoveNot i fi cati on;

NSW ndowWw | | Begi nSheet Noti ficati on;
NSW ndowDi dEndSheet Noti fi cati on;

L S R N S T I N N N N R

An object that wants to receive one of these notifications must use the notification name when registering with the notification
center.

8.4.2 Notificationsin Action

To show how to work with notifications, we will add some functionality to our Dot View application delegate to listen to
notifications that NSW ndow generates when sheets are used. Edit the MyDelegate.m file, adding the code shown in Example 8-
14. The order of methods in a source-code file doesn't matter; however, you usualy seei ni t methods towards the top of a
class implementation.

Example 8-14. Adding a notification handler to Dot View

(id)init

{

NSNoti ficationCenter * center = [NSNotificationCenter defaultCenter]; 111

[center addOoserver:self Il 2

sel ector: @el ect or (sheet Di dBegi n:)
name: NSW ndowW | | Begi nSheet Not i fi cati on
object:nil];

return self;
}
- (voi d)sheet Di dBegi n: (NSNoti fication *)notification
{

NSLog(@ Notification: %@, [notification nane]); /1 3
}

The code that we added performs the following functionality:

1. Obtainsthe default notification center for the application. All applications have a default notification center available to
them.

2. Addsthe My Del egat e instance object as an observer requesting that the sheet Di dBegi n: method be called
whenever an NSW ndowW | | Begi nSheet Not i fi cat i on isreceived by the notification center. Passing ni | as
the object parameter indicates that our object is interested in notifications from any window. If we want to limit the
notifications to just a particular window, we can pass a reference to that window here.

3. Logs amessage whenever thesheet Di dBegi n: method is called.

Save the project (ag-S), and then build and run the application (ag-R). When you run Dot View and try to close the window,
the sheet will appear with the following message in the console pane of Project Builder:

http://www.it-ebooks.info/

www.it-ebooks.info

2002-04-01 12:07:47.837 Dot View 800] Notification: NSWndoww || Begi nSheet Notifi cation

Obviously, you wouldn't display notifications like thisto users of your applications. Rather, you would use them inside your
application to coordinate various activities.

8.4.3 Memory-M anagement Considerations

Notification centers do not retain observer objects, so you should be careful to remove any observers before they are
deallocated. Thisisto prevent the notification center from sending a message to an object that no longer exists. My Del egat e
registersitself asan observer initsi ni t method, so the object should removeitself initsdeal | oc method. Add the

deal | oc method implementation to MyDelegate.m, as shown in Example 8-15.

Example 8-15. Removing an object from the Naotification Center

- (void)deal |l oc

{
[[NSNoti ficationCenter defaultCenter] renoveCbserver:self];
[super deall oc];

}

If an object registers another object with the notification center without releasing it after removing it from the notification
center, the application will leak memory. Therefore, any object that registersitself, or another object, with the notification
center should remove itself or the registered object from the notification center before it is deallocated.

http://www.it-ebooks.info/

www.it-ebooks.info

8.5 Exercises

1. Allow the dot in the Dot View application to follow a mouse drag so that the user
can interactively place the dot. Hint: usethe nouseDr agged: method defined in
the NSResponder class.

2. Set theinitia position of the dot in the Dot View application to the center of the
view instead of the coordinates (50.0,50.0).

3. Optimizetheset Radi us: method so that set NeedsDi spl ay isonly caled if
the original value and the new valuefor r adi us variable are not the same.

4. Implement the NSAppl | cat | on delegate method of
appl i cationShoul dTer m nat e: todisplay aconfirmation dialog box when
the user triesto quit the application.

5. Changetheinitia color of the dot from red to some other color.

6. Change the Dot View Application so the size of the view changesiif the user resizes
(or maximizes) the window. What happens to the slider and color well when the
window isresized?

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 9. Models and Data Functionality

In the previous four chapters, we covered the front end of Cocoa applications, windows
and views, and how you can use controllers behind them. Now we turn our attention to the
back end-the model-and how the data functionality of an application works.

To take full advantage of Cocoa's data-handling mechanisms, we must first explain two
concepts that we didn't cover when we first introduced Objective-C and the Foundation Kit
(see Chapter 4): protocols and key-value coding. After covering these topics, we deal with
how to connect a user interface to an underlying data model and how that model can be
saved and opened.

http://www.it-ebooks.info/

www.it-ebooks.info

9.1 Protocols

Many pieces of Cocoa functionality make use of an Objective-C language feature called a
protocol. A protocol issimply alist of method declarations. A classis said to conformto a
protocol when it provides implementations of the methods that a protocol defines.

To help explain the concept of a protocol, think of the similarities between awaiter at a

restaurant and a vending machi ne. Even though the waiter and the vending machine are
nowhere close to being similar objects from an inheritance standpoint, they can both
implement methods related to serving food and taking money. Roughly, we could describe
a protocol implemented by these two objects as the following methods:

t akeOr der
ser veFood

t akeMoney

r et ur nChange
conpl ai nTo

Of course, a vending machine doesn't usually serve very tasty or nutritious food and doesn't
respond very well, if at al, to complaints. Additionally, you usually have to give vending
machines money before they will take your order. But let's not get caught up too much in
the details of our analogy. At avery basic level, the vending machine and waiter aren't all
that different from each other-at |least from the point of view of the person getting food.
And note that it is easy to take this protocol and find other food-service situations in which
it applies, such as getting a donut from the local convenience store.

In object-oriented programming, protocols are useful in the following situations:

. To declare methods that other classes are expected to implement. Thislets
programs define methods that they will call on objects but that other developers
will actually implement, and thisis crucial to loading bundles and plug-ins.

. Todeclare the public interface to an object while concealing its class. Thislets
more than one implementation of an object "hide" behind a protocol and prevents
users from using unadvertised methods.

. To capture similarities among classes that are not hierarchically related. Classes
that are unrelated in most respects might need to implement similar methods for use
by similar outside components. Protocols help formalize these relationships while
preserving encapsulation.

Objective-C defines two kinds of protocols: informal and formal. An informal protocol
uses categoriesto list agroup of methods but doesn't associate them with any particular

http://www.it-ebooks.info/

www.it-ebooks.info

class or implementation.

Categories

Categories are Objective-C constructs that allow you to add methods to existing
classes. Thislets you add functionality to undefined classesin away that is
different than inheritance. For example, the dr awAt Poi nt : method that we
used on NSSt r i ng in Chapter 7 is not defined in the Foundation Kit. Instead,

the AppKit defines it as a category that adds methods to the NSSt r 1 ng class so
you can draw stringsinto views.

A detailed discussion of categoriesis beyond the scope of this book. For more
information on categories, see the Object-Oriented Programming and the
Objective-C Language book installed with the Developer Toolsin the /

Devel oper/Documentation/Cocoa /ObjectiveC folder.

A formal protocol, on the other hand, binds the list methods to a type definition that allows
typing of objects by protocol name. Additionally, when a class declares that it implements
aformal protocol, all of the methods of the protocol must be implemented.

(' buncan waited tables for many years whilein college and is thankful that nobody tried to tip
him over in order to get more food or money out of him.

http://www.it-ebooks.info/

www.it-ebooks.info

9.2 Key-Value Coding

Key-value coding is akind of shorthand. It is defined by an informal protocol used for accessing instance variables (also
known as properties) indirectly by using string names (known as keys), rather than directly through the invocation of an

accessor method? or asinstance variables. The key-value coding informal protocol (more accurately, the
NSKeyVal ueCodi ng protocol) is available for use by any object that inherits from NSChj ect . Several Cocoa components,
aswell asits scripting support, take advantage of key-value coding.

The two basic methods for manipulating objects using the key-value coding protocol are as follows:
val ueFor Key:

Returns the value for the property identified by the key. The default implementation searches for a public accessor
method based on the key name given. For example, if the key name given is price, amethod named pri ce or

get Pri ce will beinvoked. If neither method is found, the implementation will look for an instance variable named
pri ce and accessit directly.

t akeVal ue: f or Key:

Sets the value for the property identified by the key to the value given. For our example of price, the default
implementation will search for a public accessor method named set Pr i ce. If the method is not found, it will attempt
to accessthe pr i ce instance variable directly.

Key-Value Coding and Primitive Types

The methods in the NSKey Val ueCodi ng protocol work only with objects. Therefore, if you have properties
that deal in numbers, you need to use the NSNunber classinstead of primitive typessuchasi nt, f | oat , and
doubl e.

9.2.1 A Key-Value Coding Example

To show key-value coding in action, we will create asimple example based on aFood! t emclass. By now, you should be
familiar with what you'll see in this example, except for how we use key-value coding. Perform the following steps:

1. Create anew Foundation Tool in Project Builder (File —# New Project —# Tool —# Foundation Tool) named
"keyvaluecoding”, and saveit in your ~/LearningCocoa folder.

2. Create anew Objective-C class named Food| t em(File —# New File —# Cocoa —# Objective-C Class), as
shown in Figure 9-1. Be sure to create both the .h and .mfiles.

Figure 9-1. Creating the Foodltem class

http://www.it-ebooks.info/

www.it-ebooks.info

- Assistant

m New Objective-C class

File Name: Foodltem.m

"'_'F Also create “Fooditerm.h

Location: ~/LearningCocoa/keyvaluecoding Choase...
Add to Project: keyvaluecoding)
Targets: W@ keyvaluecoding
Cancel Previous f Finish

3. Edit the Foodltem.h file as follows:

#i mport <Foundati on/ Foundati on. h>

@nterface Foodltem: NSObject {

NSString * nane; /Il a

NSNunber * price; /Il b
}
- (NSString *)nane; Il c
- (void)setNanme: (NSString *)aNane; /1 d
- (NSNunber *)price; Il e
- (void)setPrice: (NSNunber *)aPri ce; Il f
@nd

This code adds the following things:

a. Thenane instance variable of type NSSt r i ng. Thisvariable will store the name of the food item.
b. Thepri ce instance variable of type NSNurmber . This variable will store the price of the food item.
c. Accessor method that returns the nane of the food item.
d. Accessor method that allows the name of the food item to be set.
e. Accessor method that returnsthe pr i ce of the food item.
f. Accessor method that allows the price of the foot item to be set.

4. Edit the Foodltemmfile asfollows:

#i nport "Foodltem h"

http://www.it-ebooks.info/

@ npl enent ati on Foodltem

- (id)init
{
[super init];
[self setNane: @New | teni];
[sel f setPrice:[NSNunber nunber Wt hFl oat: 0.0]];
return self;
}
- (NSString *)nane
{
return nane;
}
- (void)setName: (NSString *)newNane
{
[newName retain];
[nane rel ease]
name = newNane;
}
- (NSNunber *)price
{
return price;
}
- (void)setPrice: (NSNunber *)newPrice
{
[newPrice retain];
[price rel ease];
price = newPri ce;
}
@nd

The code we added performs the following tasks:
a. Initializes the object with some default values.

b. Implements the nane accessor method.

www.it-ebooks.info

/] a

Il b

/Il c

/Il d

/Il e

c. Implementsthe set Nane: accessor method. Notice that we retain the new object, release the old one, then set
the nane variable to the new object, in accordance with the rules we discussed in Chapter 4.

d. Implementsthe pri ce accessor method.
e. Implementstheset Pri ce: accessor method.
. Edit the main.mfile (located in the Sources folder in Project Builder's |eft pane) as follows:

#i nport <Foundati on/ Foundati on. h>
#i nport "Foodltem h"

int main (int argc, const char * argv[]) {
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
Foodl tem * candyBar = [[Foodltemalloc] init];

http://www.it-ebooks.info/

www.it-ebooks.info

[candyBar takeVal ue: @ Aero" forKey: @nane"];
Il a
[candyBar takeVal ue: [NSNunber nunmber Wt hFl oat: 1. 25] forKey: @price"]; // b

NSLog(@item nane: %@, [candyBar val ueForKey: @ nane"]); /Il c
NSLog(@ price: %@, [candyBar val ueForKey: @price"]); /1 d
[candyBar rel ease]; Il e

[pool release];
return O;
The code that we added performs the following tasks:

a. InstructsthecandyBar object to set the nane instance variable to Aer 0.3

b. Instructsthe candyBar object to set thepr i ce instancevariableto 1. 25. We usethe NSNunber classto
wrap primitive types for use as objects in collections and in key-value coding.

c. InstructsthecandyBar object to return the object assigned to the nane variable and printsit using the
NSLog function.

d. Instructsthe candyBar object to return the object assigned to the pr i ce variable and printsit out using the
NSLog function.

e. ReleasesthecandyBar object.
6. Savethe project (§§-S), and then build and run the application (Build —# Build and Run, or 38-R).
The following output appears in Project Builder's console:

2002- 04- 10 15:31:57.584 Key Val ue Codi ng[1382] item nanme: Aero
2002- 04- 10 15:31:57.585 Key Val ue Codi ng[1382] price: 1.25

Key Val ue Codi ng has exited with status O.

Obvioudly, for areal program of this length, using key-value coding is overkill compared to setting and retrieving the instance
variables directly through accessor methods. Where key-value coding comesinto its own isfor hooking up model objects-
those that implement logic and/or store data-to the generic view objects that Cocoa provides.

Some of Cocoa's view components let you define an identifier attribute. When the identifier attribute is set to a property key
name for amodel object, the component can automatically get, display, and set the value of the property without having to
know anything about its implementation. We're going to see how this works with table views in the next section.

We're now done with this example application. Close the project in Project Builder before moving on.

(21 Accessor methods, along with properties, were introduced in Chapter 3.
Bl aerois avery tasty chocolate bar made in Europe by Nestlé. Y ou can occasionally find themin the U.S. at specialty stores.

http://www.it-ebooks.info/

www.it-ebooks.info

9.3 Table Views

Table views are objects that display data as rows and columns. In atable view, arow typically maps to one object in
your data model, while a column maps to an attribute of the object for that row. Figure 9-2 shows a table view and

its component parts.

Figure 9-2. Table view mapped to an object model

0006 Menu
I Item Name Price
A ——Chimichanga .95
B——Steak Fajitas 10.95

Foodltem
gl | Hame Chimichanga
i Price £.95

DataSource
: Food ltem
Wshmray il Name | Sreak Fajitas
|!I [T - E F'I'i-:l' I':l.'}i
"

In Model-Viewer-Controller (MVC) terms, a data source is a controller object that communicates with a model
object (typicaly an array) and the view object. Thisrelationship is shown in Figure 9-3.

Figure 9-3. A data source asa controller between a model and a view

age iz

Toor ST [T
T—— Y Data source
Chemichanga B85 :
Steak Fajitas 10,85 e ahject * > Model

To have their data displayed properly, model objects must implement a couple of methods from the
NSTabl eDat aSour ce informal protocol:

- (i nt)nunmber O Rowsl nTabl eVi ew. (NSTabl eVi ew *)t abl eVi ew,

- (id)tabl eView (NSTabl eView *)tabl eVi ew
obj ect Val ueFor Tabl eCol um: (NSTabl eCol unm *)t abl eCol utm row: (i nt)row,

The first method allows the table view to ask its data source how many rows of data are in the data model. The
second method is used by the table view to retrieve an object value from the data model by row and column.

http://www.it-ebooks.info/

www.it-ebooks.info

9.4 Table View Example

To show how table views and models go together, we'll build asimple application to keep track of food itemsin a
form that might be used to generate a menu. In Project Builder, create a new Cocoa Application project (File —#
New Project —# Application —# Cocoa Application) named "Menu", and save it in your ~/LearningCocoa folder.
Then open the MainMenu.nib file (located in the Resources folder of Project Builder's |eft pane) in Interface Builder.

9.4.1 CreatetheInterface
To create the interface, perform the following steps:

1. Titlethe main window "Menu" in the Window Title field of the Info window (Tools —# Show Info, or

Shift-38-1).

2. Drag atable view object (NSTabl eVi ew) from the Cocoa-Data views palette, as shown in Figure 9-4.

Figure 9-4. Adding a table view object to theinterface

W i clra Crces-Dals

3. Resizethetable view to fill the window.

4. Change the Autosizing attributes so that the table view will always occupy the entire window, as shown in
Figure 9-5.

Figure 9-5. Changing the size attributes of the table view

http://www.it-ebooks.info/

Wi i

n L Lgiermang

1 S4n lose
Samnta Clara

1 San Frarmgison

4 Fala Ao
San Carlas

b Lo Latos
SUnyva e

8 Mo ATal i

9.4.2 Configurethe Table Columns

www.it-ebooks.info

it Kacl

The next step is to configure the columns by adjusting their width, giving them titles, and, most importantly,
assigning identifiersto the columns so Cocoa's key-value coding can operate.

1. Make the width of the columns equal. Select the leftmost column (you may have to double-click), hold the
cursor over the right edge of the column so that it turnsinto a pair of horizontally opposed arrows, then drag

the column edge so the column view is divided in half.

2. Double-click on the header bar for the left column and type Item Name, then press Tab to move to the header

bar for the right column.

3. Type Price as the header for the right column, then press Tab to select the left column.

4. Edit the Identifier field for the left column in the Attributes pane of the Info panel so it reads name, as shown

in Figure 9-6.

Figure 9-6. Editing theidentifier attribute of a table column

hem Mame "rice

b

A

\" Eelitakls
W Resizabie
Kerainer

http://www.it-ebooks.info/

www.it-ebooks.info

s
wh

kg

Don't confuse the Column Title field, located at the top of the Attributes panel,
with the Identifier field at the bottom of the window. These serve two entirely
different purposes. The Column Title field is for the benefit of your users and
should contain the title you've assigned to that column in steps 2 and 3. The
Identifier isan internal programmatic name that refers to the name of the property
that should be displayed in the column.

5. Repeat for the right column, assigning it an Identifier of price.

9.4.3 Declar e the Data Sour ce Class

A data source can be any object in your application that supplies the table view with data.

1. Create asubclass of NSChj ect , and nameit MyDat aSour ce.

2. Ingtantiate the My Dat aSour ce class (Classes —# Instantiate MyDataSource).

3. Draw a connection from the table view object to the My Dat aSour ce object in the Instances window. Make
sure that you have selected the table view, not its surrounding scroll view before you draw the connection.
The table view will turn adarker shade of gray when selected.

4. Selectthedat aSour ce outlet in the Connections pane of the Info window, as shown in Figure 9-7, and
click the Connect button.

Figure 9-7. Connecting the table view to MyDataSour ce

Menu

HilshleView inln

Price Connections

Dutlers
TAFgRT
Cornerview
dataSource
lelagare
formatrer
menw

TR ey

Source Destination

L1108

Comnect

)
Instances | Classes| | Images | Sounds

A J_ B

L ETAS T AT

| @

Window MyDatatource

http://www.it-ebooks.info/

www.it-ebooks.info

5. Click on MyDat aSour ce in the Classes tab of the MainMenu.nib window, and create the interface files
(Classes —# Create Files for MyDataSource).

6. Save (3B-S) the nib, and return to Project Builder.
9.4.4 Createthe Data Source

The back end of our table will consist of two classes: the My Dat aSour ce classthat we defined in Interface Builder
and the same Food| t emclass that we created earlier in this chapter.

1. Addthefilesfor the Food! t emclassto the project. Using the Finder, locate the Foodltem.h and Foodltem.m
files (in the ~/LearningCocoa/Key View Coding directory), and drag them into the Other Sources folder of the
Groups & Files panel in Project Builder. When the sheet appears to confirm your copy, ensure that the " Copy
items" checkbox is selected, and then click the Add button, as shown in Figure 9-8.

Figure 9-8. Adding our Foodltem classfilesto the Menu Project

g s r < phan

== | AN A =y L

= em = s g 5 'E.- B Copy lievna ik sl stimaiion gum s Feider § radad
[| Pl b v B EIE

TE O e

w Cruae Foidur Fofurmcan jar sny acded faiice re

- H

o Has

2. Open the MyDataSource.h file, and edit it to match the following code:

#i nport <Cocoa/ Cocoa. h>

@nterface MyDat aSource : NSCbj ect
{

}
@nd

NSMut abl eArray * itens;

The code we added in the header file smply declaresasingle array, named | t ens, asan instance variable.
We will hold the many items to be displayed in the user interface of our application in this array.

3. Open the MyDataSource.mfile, and edit it to match the following code:

#i nport " MDat aSour ce. h"
#i nport "Foodltem h"

@ nmpl enent ati on MyDat aSour ce
- (id)init
{

http://www.it-ebooks.info/

www.it-ebooks.info

[super init];

/[l Some initial data for our interface
Foodltem* chim = [[Foodltemalloc] init]; /1l a
Foodltem * fajitas = [[Foodltemalloc] init];

[chim setNanme: @ Chi m changa"];

[chim setPrice:[NSNunber nunber WthFl oat: 8.95]];

[fajitas setNane: @ Steak Fajitas"];

[fajitas setPrice:[NSNumber numnber Wt hFl oat: 10. 95]] ;

items = [[NSMut abl eArray alloc] init];

[itens addObject:chini];

[Itenrs addObject:fajitas];

[chim release];

[fajitas rel ease]; /Il b
return self;

}
- (i nt)nunber O Rowsl nTabl eVi ew. (NSTabl eVi ew *)t abl eVi ew
{
return [itens count]; /1l c
}

- (id)tabl eVi ew. (NSTabl eVi ew *)t abl eVi ew
obj ect Val ueFor Tabl eCol um: (NSTabl eCol unm *)t abl eCol umrm
row. (i nt)row

{
NSString * identifier = [tableColum identifier]; /1 d
Foodltem* item = [itens objectAtlndex:row; /Il e
return [item val ueForKey:identifier]; [l f

}

@nd

The code that we added performs the following tasks:
a. Creates a couple of sample menu items and puts them into an NSVut abl eAr r ay instance.
b. Releasesthe food items, now that they are stored safely in the array.

¢. Returnsthe number of | t ens in the food items array. Thislets the table view know how many rows
contain data.

d. Getsthei denti fi er of thecolumn for which the table view wants data.
e. Obtainsthefood i t emthat is at the specified index in the array.

f. Returns the value of the food item object that matches the property name of thei denti fi er
obtained from the table column.

4. Savethe project (File —# Save, or 38-8), and then build and run the application (Build —# Build and Run,
or 38-R). Y ou should see something like Figure 9-9.

Figure 9-9. The Menu application in action

http://www.it-ebooks.info/

www.it-ebooks.info

888 Menu
Tesn Mame Price
Chirmichanga 5.95
Steak Fajrtas 10.95%

Play with the application alittle bit: resize the window; resize the individual table columns; reorder the table columns
by dragging around the column headers. Quit the application (%-Q) when you are done.

9.4.5 Allow Modification of Table Entries

When playing with our Menu application so far, you could select the itemsin the table, and you could even edit them.
But when you try to complete editing an item name or a price by hitting Return or exiting the table cell, the edit
doesn't take. To let the user edit the fields, a third method must be implemented to save changes back to the data
source:

- (void)tabl eVi ew. (NSTabl eVi ew *)t abl eVi ew

(
set Obj ect Val ue: (i d) obj ect
f or Tabl eCol umm: (NSTabl eCol utm *) t abl eCol unm
row. (i nt)row,

Add the following method to our MyDataSource.mfile after thet abl eVi ew:
obj ect Val ueFor Tabl eCol um: r ow: method:

- (void)tabl eVi ew. (NSTabl eVi ew *)t abl eVi ew
set Obj ect Val ue: (i d) obj ect
f or Tabl eCol umm: (NSTabl eCol uim *) t abl eCol unm
row. (i nt)row

NSString * identifer = [tableColum identifier]; /11
Foodltem* item = [itens objectAtlndex:row; Il 2
[item takeVal ue: obj ect forKey:identifer]; /1 3

}

The code that we added does the following things:
1. Getsthei denti fi er of the column for which the table view wants to set data.
2. Obtainsthefood i t emthat is at the specified index in the array.
3. Setsthe property of the food item that matchesthei dent i fi er that we obtained in step 1.

Now savethe project (File —% Save, or 38-5). Before you can build and run the application to test the editing
features, you first need to ensure that you have quit out of any running Menu application. Build and run the app again
(Build —# Build and Run, or 3E—R) from within Project Builder. Y ou should now be able to edit the fieldsin the
table and have those changes made in the underlying data model.

9.4.6 Adding Entriesto the M odel

With an application like Menu, adding entries to the model can be useful. The following steps guide you through the
process of adding this functionality to the application:

http://www.it-ebooks.info/

www.it-ebooks.info

1. We're going to add a button to the interface. To enable a new row to be added when this button is pushed,
welll need to add an action newBut t onPressed: and anoutlett abl e to MyDat aSour ce. An easy way
to do thisisto add the declarations yourself in the code. In Project Builder, edit the MyDataSource.h file to
match the following code. The code you need to add is shown in boldface.

#i nport <Cocoa/ Cocoa. h>
@nterface MyDat aSource : NSObj ect

{
NSMut abl eArray * itens;

| BQut | et NSTabl eVi ew * t abl e;

}
- (1 BAction)newButtonPressed: (id)sender;

@nd
2. Savethe header file (File —# Save, or 3§-S).

3. InInterface Builder's Classes pane, select My Dat aSour ce, and reload the source file (Classes —+ Read
MyDataSource.h). This causes Interface Builder to reparse the header file and pick up the new outlet and
action.

4. Resizethe table view to make room for a button.
5. Drag abutton from the Cocoa-Views panel onto the interface, and change its name to New Item.

6. Select the table view, and reset its Autosizing attributes as shown in Figure 9-10.

Figure 9-10. Adding a button to Menu

a 8 M enu (s o WSEunren Infa

hem Mame Price

Cupertino ™ Lock View Frame
San Jose
Sanra Clara
San Francisog Bettom /Laft
Palo Alto
San Carlos
Los Gatos
Sunnyvale

Laweiiar Ry al
T | width/Height
w: | 2B we | &7

v

Aulasizing

Mountain View
Redwood City %

o ~d O W e W R

a

Mew ltem

7. Control-drag a connection between the My Dat aSour ce object in the Instances tab of the MainMenu.nib
window and the table view. Connect it to the t abl e outlet, as shown in Figure 9-11.

http://www.it-ebooks.info/

www.it-ebooks.info

Figure 9-11. Connecting the table view to the table outlet

Menu [&] 0 MyDatataurcs Kustcm) Iefa

Cannactissa w
[T M TP -
Cuperting Outlets
Sam Jose el Lt

Samta Clara

=]

San Francisco
Pala Alte

Sanm Carlos

Los Catos
Sunriyiale
MaunLain Wiew
Redwnnd Ciry

= o0 =g AN A e B

Source Destinaesn
bl HETahleWiew dnem |

£ Mo meen

Diaccmne|

BE6 | Mainkdenu.mib

imstances | Classes | Images | sounds |

A] | EE

[

el ain e nu
[ToT. n
Wi MyDaassurce

8. Control-drag a connection between the New Item button and the My Dat aSour ce object in the Instances tab.
Connect it to thenewAct | onPr essed: button, as shown in Figure 9-12.

Figure 9-12. Connecting the button to the data source

D’ D Menu =] 4] R wimen Irlo
Connections T
Eem Kame Price
o Cuperting Chutlers. Actians
1 San Jose :'r'::ll_" " nmwBulleaProvied. ¢
F Samia Clara ";w] §
1 San Francifco N —
4 Palo Alto
3 tan Carlos
b Los Catas
7 Sunmyvale
B MouriLain Yiew — A
! Redwood City targes MyDaasource. nEWE

7 Discomnect

o Mainktena.nib

I instances 1 Classes | Images T Sounds |

P

FldirRae il

9. Savethenibfile (File —# Save, or Bg-S), and return to Project Builder.

http://www.it-ebooks.info/

www.it-ebooks.info

10. Edit the MyDataSource.mfile, adding the newBut t onPr essed: method shown in the following code:

- (1 BAction)newButtonPressed: (NSEvent *)event {

Foodltem* item= [[Foodltemalloc] init]; /Il a
[itens insertQbject:item atlndex:0]; Il b
[Itemrel ease];

[tabl e rel oadDat a] ; /Il c
[tabl e sel ect Row. 0 byExt endi ngSel ecti on: NO ; /1 d

}

The code we added performs the following tasks:
a. Createsanew i t emobject.
b. Insertsthe new i t emobject into our data model array.

c. Instructs the table view to reload its data. Thiswill cause the table view to call the
nunber Of Rows| nTabl eVi ew. method again and load all the rows from the model.

d. Selectsthe row we just added into the table. This highlights the new row, so the user of the
application can edit it.

11. Savethe project files (File —# Save, or 33—8), and then build and run the application (Build —# Build and
Run, or gg-R). When you press the New Item button, a new row should be created, as shown in Figure 9-13.

Figure 9-13. Adding a new entry to our application

868 Menu
tem Mame Price
Mew lberm 0
Chimichanga 5.95
Steak Fajitas 10,6%

" Mew ltem

To edit the new fields, simply click in either column, and enter a new food item and price.

http://www.it-ebooks.info/

www.it-ebooks.info

9.5 Saving Data: Coding and Archiving

Virtually all applications need to make some of their objects persistent. In user-speak, this means that all applications need a
way to save their data. For example, the Menu application doesn't save the state of the data model, so all changes arelost as
soon as you quit the application. Cocoa applications typically use coding and archiving to store document contents and other
critical application datato disk for later retrieval. Some applications may also use coding and archiving to send objects over
anetwork to another application.

Coding, asimplemented by the NSCoder class, takes a connected group of objects, such as the array of food itemsin our
sampl e application (an object graph), and serializes that data. During serialization, the state, structure, relationships, and
class memberships are captured. To be serialized, an object must conform to the NSCodi ng protocol (consisting of the
encodeW t hCoder: andi ni t Wt hCoder : methods).

Archiving, asimplemented by the NSAr chi ver class (which extends NSCoder), extends this behavior by storing the
seridized datain afile.

9.5.1 Adding Coding and Ar chiving to the Menu Application

To show how to archive objects, we will modify our Menu application to save and load files that contain the list of food
items. To do this, we need to hook up the File —#% Open and File —% Save menu items, add the save and open sheet
functionality, and make sure that the Food| t emclass can be archived.

1. In Project Builder, open Foodltem.h and modify the @ nt er f ace declaration asfollows. Adding <NSCodi ng>
declares that the Song class conforms to the coding protocol.

#i nport <Foundati on/ Foundati on. h>

@nterface Foodltem : NSObject <NSCodi ng> {
NSString * nane;
NSNumber * pri ce;

NSCodi ng appearsin brackets to signify that the Food| t e minterface implements the coding protocol. If you were
to read this declaration aloud, it would sound like: "Food| t emextends from the NSChj ect class and implements
the NSCodi ng protocol."

2. Open the Foodltem.mfile, and add the NSCodi ng methods after thei ni t method as follows:

(id)initWthCoder: (NSCoder *)coder

{
[super init];
[sel f set Name:[coder decodeObject]]; /Il a
[self setPrice:[coder decodeOhject]]; Il b
return self;

}

- (voi d) encodeW t hCoder : (NSCoder *)coder

{

[coder encodeObject:[self nane]]; /Il ¢
[coder encodeObject:[self price]]; /1 d

http://www.it-ebooks.info/

www.it-ebooks.info

}

The code we added performs the following tasks:
a. Decodesthe next abject from the coder 's data stream and sets the nae instance variable.
b. Decodes the next object from the coder 's data stream and setsthe pr i ce instance variable.
¢. Encodesthe nane instance variable to the coder 's data stream.
d. Encodesthe pr i ce instance variable to the coder 's data stream.
3. Open MyDataSource.h, and add the following two action methods:

#i nport <Cocoal/ Cocoa. h>
@nterface MyDat aSource : NSObj ect

{
NSMut abl eArray * itens;

| BQut | et NSTabl eVi ew * tabl e;

- (I BAction) newButt onPressed: (i d) sender;
- (I BAction)save: (id)sender;

- (I BAction)open: (id)sender;

@nd

4. Save the source files, and then open the MainMenu.nib file in Interface Builder.

5. Reparse the MyDataSource.h filein Interface Builder. To do this, click on the MyDat aSour ce object in the Classes
tab, and then select the Classes —# Read File MyDataSource.h menu option.

6. Click on the File menu of the MainMenu.nib - MainMenu window to reveal the menu options.

7. Control-drag a connection from the File —# Open... menu item to the My Dat aSour ce instance in the Instances
tab, as shown in Figure 9-14. Connect it to the open: target.

Figure 9-14. Connecting the Open... menu item to MyDataSour ce

http://www.it-ebooks.info/

8.

10.

www.it-ebooks.info

[&] MainMenu_nib - MainMenu 888 PR e m s
r .|
NewApplication Iﬂ Edit Window Help Lennections ¥

Maw N Cuthets

Oaen target = newBution®ressed
apen
e

Save As.., T®S

Revert

Page Setup... oEP

Brint ®p Fource D stirakian

J MainMenu.nib

M instances T Classes I Imanges I Sounds |

A 1 =

B pMe i

. ‘. - - r {Fm“l “

Window MyDacasource

Control-drag a connection from the File —# Save menu item to the My Dat aSour ce instance. Connect it to the
save: target.

Savethenibfile (File — Save, or 38-S), and return to Project Builder.
Addthesave: and open: methodsto MyDataSource.m, aswell as two helper methods, as shown here:

#i nport " MyDat aSour ce. h"
#i nport "Foodltem h"

@ npl enent ati on MyDat aSour ce

(I BActi on)save: (id)sender
{
NSSavePanel * savePanel = [NSSavePanel savePanel]; /'l a
SEL sel = @el ector(savePanel Di dEnd: r et ur nCode: context I nfo:); /'l b
[savePanel begi nSheet ForDi rectory: @~/ Docunent s" /Il ¢
file:@nenu.itens"
nodal For W ndow: [t abl e wi ndow]
nodal Del egat e: sel f
di dEndSel ect or: sel
contextInfo:nil];

- (voi d)savePanel Di dEnd: (NSSavePanel *)sheet
returnCode: (int)returnCode
context | nfo:(void *)context

if (returnCode == NSCKButton) { /1 d
[NSArchi ver archi veRoot Cbject:itens toFile:[sheet filenane]];

}

- (1 BAction)open: (id)sender

http://www.it-ebooks.info/

www.it-ebooks.info

NSOpenPanel * openPanel = [NSOpenPanel openPanel]; Il e
SEL sel = @el ector (openPanel Di dEnd: r et ur nCode: context I nfo:);
[openPanel begi nSheet For Di rectory: @~/ Docunent s"
file:nil
types: nil
nodal For W ndow. [t abl e wi ndow]
nodal Del egat e: sel f
di dEndSel ect or: sel
contextlnfo:nil];

- (voi d) openPanel Di dEnd: (NSOpenPanel *)sheet
ret urnCode: (i nt)returnCode
contextlnfo:(void *)contextlnfo

if (returnCode == NSOKButton) {
NSMut abl eArray * array; Il f
array = [NSUnarchi ver unarchiveCbjectWthFile:[sheet filenane]];
[array retain];
[itenms rel ease];
itens = array;
[tabl e rel oadDat a] ;

}
@nd

The code that we added does the following things:

a. Creates anew Save panel-Cocoas standard user-interface widget for selecting where afile should be saved.
The way we use the Save panel uses delegation in amanner similar to the sheet we added to the Dot View
application (Chapter 8).

b. Obtainsthesel ect or for the calback method that the Save panel should use when the user has selected
the file to which data will be saved.

¢. Instructs the Save panel to display itself as a sheet attached to the current window. My Dat aSour ce doesn't
have a direct reference to the window to which the sheet should be attached, but since it does have a
referencetothet abl e, we can simply ask thet abl e for thew ndow object.

d. Archivesthei t ers array to the given file if the callback method gets a status code indicating that the user
selected the file to which to save.

e. Creates anew Open panel-Cocod's standard user-interface widget for selecting files to open. Open panels
work very much like save panels.

f. Unarchivesan ar r ay object from the file selected by the user; this releases the old array assigned to the
i t ens variable and assigns aretained instance of thenew i t ens.

11. Now save the project (File —# Save, or 3g-S), and then build and run the application (Build —# Build and Run,

or 38-R).

Add afew itemsto your list of food items, then save (38-S), and you should see the save dialog sheet slide out from the
titlebar of the application window, as shown in Figure 9-15.

Figure 9-15. Saving our menu list

http://www.it-ebooks.info/

www.it-ebooks.info

e Windaw

Save as. menu.items

Where Documents 1 fal
Applications -~ iChats
Depot Microsoft User Data

BE Desktop
Documents Ly

LearningCocoa

B Library
= Mowies ha
& Mlusic
Pictures i
Public v
Fr : EIL
Mew Folder Add to Favorites

Cancel f Save)

Quit the application, restart it (38-R), and then open (8-O) the data file you just saved. All the changes you made should
show up. Make sure to quit (3€-Q) the application when you are done.

http://www.it-ebooks.info/

www.it-ebooks.info

9.6 Using For matters

The next task for the Menu application is to add a formatter to the Price column so that the
amounts of our food items are shown using a currency format.

1. Open MainMenu.nib in Interface Builder.

2. Drag acurrency formatter (NSNurmber For mat t er) from the Cocoa-Views
palette to the price column, as shown in Figure 9-16.

Figure 9-16. Adding a number formatter to the Menu application

Sre—yTE—— Pircc i‘u *I—lll-u..“I_.”“I‘:h-'.-l-I T I ‘--:

" Mew e

3. Inthe number-formatter inspector, set up the format to use the currency settings
shown in Figure 9-17.

Figure 9-17. The number formatter inspector

http://www.it-ebooks.info/

www.it-ebooks.info

0 M KMSkumberFormaiter Indo
Farenatter -

Pagirhee Meqarive
5 049 54 5,9%0.095 E
1 5,595,550 -4 9,958.99
b 0,595.50 i
T TS] LN b i

Appearance Samples

Paossi e Yt i i

Positive: § &080,00
Zero: % 000

Megative: -% &.820,00

Aanimusm
Pell i AT
Crptions
| Megative in | Localize
W add 1000 Separatars [, <—>»

£ petach Farmatter

4. Savethenibfile.

Return to Project Builder, and build and run the application (Build —# Build and Run, or
3B -R). The menu interface should look like Figure 9-18.

Figure 9-18. Menu with the prices nicely formatted

886 benu
Heen Mame Price
Enchilada 5 4.95
Chimichanga ¥ 8.95
Sreak Fajitas 3 10.95

" New item

http://www.it-ebooks.info/

9.7 Sorting Tables

www.it-ebooks.info

Thelast thing we will add to our Menu application is the ability for the contents of the table to be sorted when atable
column header is clicked. To do this, we will rely upon the ability of Cocoa collections to be sorted using comparators.
We will add comparison methods to the Food| t emclass so that an instance object can say that it should be sorted either

before or after another instance.

1. InInterface Builder, set the data view as the delegate of the table view by Control-dragging a connection between
the table view and the My Dat aSour ce instance object and connecting it to the delegate outlet, as shownin

Figure 9-19.

Figure 9-19. Making the data sour ce act asthe table view's delegate

":" "'l Maitd
o Mase Frs
2 5
Mew Hem
f ¥~
InStances Classas T el Stiunds
lh\l - % = ﬁ
L]
P = ™
LFLHLL

i ract v

MyTatakaurce

- Te -
: Te HH
; « Lot
Bution . Sep
| — el
™ swarch ‘. 1.2
Feeld2
® iadio Labsd Fors Tast
Radia ‘: Zmall Sysiem Fom Tewn
Sysmem Font Texo
FET sl H Y k=]
Canreciiany
Curlers

largel

CETE I iEw
daladduics L
ot ke gane Ls
forrmatier

delegats

D grirearion
by Tuia S
Wylistabowrte

DBuncorneck

2. Savethenibfile (File — Save or 38-S), and return to Project Builder.

Open the Foodltem.m file, and add the following two methods to the file after the other methods:

- (NSConpari sonResul t) conpar eNane: (Foodltem *) item
{ return [nanme conpare:[item nane]];

}

- (NSConpari sonResul t) conparePrice: (Foodltem *) item
{ return [price conpare:[itemprice]];

}

These methods perform the following actions:

/] a

Il b

http://www.it-ebooks.info/

www.it-ebooks.info

a. Thismethod returns a comparison result by using the conpar e: method of the NSSt r i ng classto
compare the narne of the given object with the nane of the current instance.

b. This method returns a comparison result by using the corpar e: method of the NSNumber classto
comparethe pr i ce of the given object with the pr i ce of the current instance.

3. Open the MyDataSource.m file, and add the following method:

- (void)tabl eVi ew. (NSTabl eVi ew *)t abl eVi ew
di dd i ckTabl eCol um: (NSTabl eCol unm *)t abl eCol umtm

{
NSString * identifier = [tableColum identifier]; /1 a
if ([identifier isEqual ToString: @nanme"]) {
[itenms sortUsingSel ector: @el ect or(conpareNane:)]; /'l b
} else {
[itenms sortUsingSel ector: @el ector(conparePrice:)]; /Il ¢
}
[tabl e rel oadDat a] ; /1 d
}

This method does the following things:
a. Obtainsthei denti fi er from the column so that we know with which property to sort.
b. Tellsthei t ens array to sort itself using the corpar eNane: method of each item in the array.
c. Tellsthei t ens array to sort itself using the conpar ePr i ce: method of each item in the array.
d. Tellsthet abl e view that the underlying data has changed and that it needs to reload itself.

Build and run the application (Build —# Build and Run, or 3§-R). Add afew items to the Menu, and then sort by name,
then price, and see the results.

http://www.it-ebooks.info/

www.it-ebooks.info

9.8 Exercises

1. Changethetitle of the left column from Item Name to Food Item.

2. Add the code necessary to display a confirmation dialog box when the user triesto
quit the application.

3. Examine the code in the Menu application for memory management problems.

http://www.it-ebooks.info/

www.it-ebooks.info

Part |11: Document-Based Applications

Many applications today, such as word processors and web browsers, are
built around the concept of a document. Creating an application that can
handle multiple documents is tedious at best. Luckily, Cocoa allows an
application to handle multiple documents with ease. This part of the book
uses an extended tutorial that covers use of Cocoa's built-in multiple-
document architecture, as well asits text-handling abilities.

Chaptersin this part of the book include:

Chapter 10

Chapter 11

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 10. Multiple Document Architecture

So far, our examples have centered on applications that have asingle GUI. However, in
reality many of the applications we use day-in and day-out-such as word processors and
web browsers-are based around the idea of a document. They provide aframework for
viewing or generating identically-contained, but uniquely-composed, sets of data that can
be stored in files.

A document-based application must perform the following tasks:

« Create new documents

. Open existing documents stored in files

. Save documentsto user-designated files and locations

. Revert to previously saved documents

« Close documents, usually after prompting the user to save changes

. Print documents and allow the page layout to be modified

« Monitor and set the document's edited status, as well as reflect that status to the
user

. Manage document windows, including setting window titles

Cocoa provides a multiple-document architecture, helping you take care of these tasks
easily. Using this architecture drastically ssimplifies the work developers must do to
implement a multidocument application. Once you understand how this architecture works,
you can have a multidocument application up and running in minutes,

This chapter begins with an overview of Cocoa's multiple-document architecture and then
presents an in-depth look at the classes that make up this architecture. The final part of the
chapter guides you through the process of creating a simple multiple-document text-editing
application.

http://www.it-ebooks.info/

www.it-ebooks.info

10.1 Architectural Overview

From a user's perspective, a document is a unique body of information contained in its own
window. The window gives the user an areain which to edit the document. Users can
create an unlimited number of documents and save each to a separate file.

From a Cocoa programming perspective, a document is managed by an instance of the
NSDocument class, which, along with NSDocurment Cont r ol | er and

NSW ndowCont r ol | er, provides the functionality for a document-based application.
Objects of these classes divide and orchestrate the work of creating, saving, opening, and
managing the documents that an application creates. They are tiered in a one-to-many
relationship, as depicted in Figure 10-1.

Figure 10-1. Document ar chitecture class relationships

Info.plist| o= | yspocumentController

lﬂwns and manages

N5Document

lﬂwns and manages

N5WindowController

lﬂwm and manages

NSWindow

Document-based applications have one instance of the NSDocunent Cont rol | er class,
which creates and manages many potential NSDocurnent objects (one for each new or

http://www.it-ebooks.info/

www.it-ebooks.info

open document). In turn, an NSDocunent object creates and manages one or more
NSW ndowCont r ol | er objects, one for each of the windows displayed for a document.

In addition to these three AppKit classes, the multiple-document architecture uses
information in the application'sinfo property list (saved as Contents/Info.plist in the
application's bundle - we'll discuss bundles more in Chapter 13) to determine the types of
data with which the application can work. The information is stored in the property list as
an array of document types. Each document-type entry in the array includes the following
information:

. The name of the document type.

. Anarray of filename extensions, such as .rtf and .txt, which correspond to a
document's data type.

. Anarray of Mac OS-style type identifiers, such as TEXT and Pl CT, which also
correspond to a document's data type.

. A string that determines the role of the application when interacting with data. An
application can be an Editor or aView for agiven type.

. Theclass name of the NSDocunent subclass that handles the data type in your
application.

Project Builder provides a simple user interface for creating and editing entriesin an
application's document type array. Even though there's usually no need to modify the
property list directly, the document controller uses the information from the info property
list to do the following things:

. Filter out inappropriate file types automatically, allowing users to select only files
that the application can handle when an open dialog box is presented

. Instantiate the appropriate NSDocunment subclass for a document's data type when
adocument is opened

10.1.1 The Document Object

The primary job of a document object-an instance of an NSDocunent subclass that you
provide as part of your application-is to represent, manipulate, store, and load the data
associated with a document. Based on the document types it claims to understand (as
specified in the application'sinfo property list), a document object must be prepared to do
the following things:

. Provide other objects in the application that the data displayed in its window(s).
The document object must provide the datain any of the formats supported by the
application.

. Load datainto internal data structures and display it in windows. The document
object must accept the datain any format supported by the application.

. Store document datain afile at a specified location in the filesystem.

. Read document data stored in afile.

http://www.it-ebooks.info/

www.it-ebooks.info

With the assistance of its window controllers, a document-object instance manages the
display and capture of the datain its windows. The document-object instance associated
with the key window is made the first responder to action messages indicating that a user
wants to save, print, revert, or close a document. A fully implemented document object
knows how to track its edited status, print document data, and perform undo and redo
operations. Asyou'll seein the examplesin thisand later chapters, these behaviors aren't
provided completely by default, but the NSDocunent class goes along way to assist you
in implementing each.

For edited-status tracking, the NSDocunent class provides an APl for updating a
document change counter. For undo/redo operations, NSDocunent createsan
NSUndolManager when oneis requested, which responds appropriately to the Edit —#
Undo and Edit —# Redo menu commands, updating the change counter when undo and
redo operations are invoked.

Every application that takes advantage of the AppKit's document-based application
architecture must create at least one subclass of NSDoc unent . The architecture requires
that you override some methods of the NSDocunent class. These methods must be
implemented:

- (NSString *)w ndowNi bNane;

Called by the document controller to determine the name of the nib file that
contains the user interface to view and edit the document.

- (voi d)wi ndowControl | er Di dLoadNi b: (NSW ndowControl [er *)
aControll er;

Called once the window controller has loaded the nib file and all of the user
Interface connections have been made. This provides an opportunity for any
initialization that needs to be performed.

- (NSDat a *)dat aRepresentati onO Type: (NSString *)aType;

Must be implemented to create and return document data of a supported type,
usually in preparation for writing that datato afile asan NSDat a object.

- (BOQL) | oadDat aRepresentati on: (NSData *)data: (NSString *)
aType;

Must be implemented to convert an NSDat a object (that contains the document
data of a particular type) into the document's internal data structures so that the
document is ready to display its contents. The NSDat a object usually results from

http://www.it-ebooks.info/

www.it-ebooks.info

the document reading a document file.

o A common mistake made by novice Cocoa programmersis to
treat the document object as a model, though it'sreally a

w! #&. controller object that adapts between the view of the document
itself and whatever model is being used to hold the
representation.

The NSData Class

NSDat a and NSVUt abl eDat a provide object-oriented wrappers for byte
buffers. They let simple allocated buffers take on the behavior of first-class
Cocoa objects. They are typically used for data storage and are also useful in
applications that rely on Distributed Objects. For more information, see
Overview of Programming Topic: Binary Data, in /Devel oper/Documentation/
Cocoa/TasksAndConcepts/ProgrammingTopics/BinaryData.

10.1.2 The Document Controller

The primary job of an application's document-controller object

(NSDocunent Cont rol | er) isto create and open documents, as well as to track and
manage these documents. The document controller maintains alist of document objects
and tracks the current document (the document whose window is currently key). It is
hardwired to respond appropriately to certain application events, such as when the
application starts up, when it terminates, when the system powers off, and when documents
are opened or printed from the Finder. For example, when a user chooses New from the
File menu, the document controller does the following things:

1. Allocates an instance of the NSDocunment subclass specified in the first entry of
the application’'s document type array

2. Initializes the instance by invoking the subclasssi ni t method

When the user chooses Open from the File menu, the document controller does the
following things:

1. Displaysthe Open pandl, filtering the file list using the data type(s) from the
application’'sinfo property list, and gets the user's selection

2. Usesthetype information from the file and data to allocate an instance of the

http://www.it-ebooks.info/

www.it-ebooks.info

appropriate NSDocunent subclass

3. Initializes the object by invokingitsi ni t Wt hCont ent sOF Fi | e: of Type:
method, which loads the contents of the file into the document instance

When the user chooses Save or Save As from the File menu, the document controller does
the following things:

1. If needed (if the document has not been saved before, or if the user chooses Save
As), displays the Save panel and gets the user's selection

2. Usesthe typeinformation from the filename that the user gave and requests the
data from the application using the dat aRepr esent at i onOf Type: method

3. Storesthe datain the returned data object into the filesystem

In a document-based application, many of the application's menu items are aready
connected to the document controller. These methods are implemented by the
NSDocunent Control | er classand arelisted in Table 10-1.

Table 10-1. Target/action configuration for default multidocument application

First responder action implemented by

File menu command NSDocumentController

New newDocunent :
Open openDocunent :
Save saveDocunent :
Save As saveDocunent As:
SaveTo saveDocunent To:

Save All saveAl | Docunent s:

http://www.it-ebooks.info/

www.it-ebooks.info

Close cl oseDocunent :
Revert revert Docunment ToSaved:
Print pri nt Docunent :
Page L ayout runPagelLayout :

The default document-controller behavior provided by the NSDocument Contr ol | er
classisusualy sufficient for most situations; you shouldn't need to subclass it unless you
need to provide aternative functionality for the methods listed earlier.

10.1.3 The Window Controller

A window controller, an instance of the NSW ndowCont r ol | er class, manages one
window associated with a document. If a document has multiple open windows, each
window has its own instance of NS\W ndowCont r ol | er . For example, a document
might have a main data-entry window and awindow that lists records for selection. Each
window would have its own window controller. When a document has multiple window
controllers, only one of them is considered the primary window controller. When the
primary window is closed, the document and all other windows are closed.

When requested by the NSDocunent class, awindow controller loads the nib file
containing awindow and displays it. The window controller assumes responsibility for
managing the nib file.

When a document is closed, the window controller is responsible for properly closing
windows, as well as freeing any top-level objects instantiated by the nib file. Thisincludes
the window itself and any additional objects added to the nib.

Most of the time, you can use the default window controller provided by the AppKit. Some
applications may want to subclass NSW ndowCont r ol | er to move the user-interface-
specific logic out of the NSDocunent subclass. The Sketch sample applicationin/

Devel oper/Examples/AppKit uses this technique. Another situation that would make
subclassing desirable isif you wanted to support multiple views onto a document; for
example, in a 3D modeling application you would want to present various views of the
model.

10.1.4 Memory M anagement

http://www.it-ebooks.info/

www.it-ebooks.info

The multiple-document architecture automates much of the memory management for
documents and their associated window and document controllers. One of the document
controller's responsibilitiesis to ensure that a document is open and using memory only if
it has awindow open on the screen. When awindow closes, it tellsits window controller
that it is closing. The window controller, in turn, tellsits document that it is closing. The
document notes that the window controller is closing, removes the window controller from
itslist of window controllers, and releasesit. Asthisisthe only place the window
controller is retained, the window controller gets released and deall ocated as a resullt.

http://www.it-ebooks.info/

www.it-ebooks.info

10.2 Building a Document-Based Application

It is possible to put together a document-based application without writing very much code. If your requirements are minimal,
the AppKit provides you with default window-controller and document-controller instances. Y ou are | eft with the task of
composing the document interface, implementing a subclass of NSDocument , and adding any other custom classes or
behavior required by your application.

To show how the pieces of the document-based architecture fit together in practice, we will create avery simple text editor. By
the time we're finished with this example, which consists of arelatively small amount of code, we'll have created an
application that-without Cocoa's help-might have taken days or weeks to construct and debug.

10.2.1 Document-Based Application Template

Project Builder provides atemplate named "Document-based Application” to expedite the development of these kinds of
applications. This project type provides the following things:

The application's main nib file

This nib contains a standard Cocoa application menu bar. The menu itemsin the File and Edit menus are already
connected to the appropriate first responder action methods in the document controller.

A nib file for the application's document

This nib file contains a single window to which other Ul elements can be added. A subclass of NSDocunent , named
My Docunent , has been created, has an outlet to the document window, and has been made File's Owner of the nib
file.

A skeletal NSDocument subclass implementation

The project includes MyDocument.h and MyDocument.m files, matching the definition of the NSDocunent subclass
in the document's nib file. The MyDocument.m file contains commented starter implementations of important methods
(called "stubbed-out" methods) that will help you implement the functionality needed.

A document-type entry in the application's info property list

In the Application Settings pane of the Targets display is a simple user interface for modifying the application's Info.
plist file. The provided file contains placeholder values for global application keys, as well as the document type array.

10.2.2 Createthe Project
To get started working on building our text editor:
1. Launch Project Builder, and choose New Project from the File menu (File —% New Project).
2. Select Cocoa Document-based A pplication from the application type dialog box, as shown in Figure 10-2.

Figure 10-2. Creating a document-based application

http://www.it-ebooks.info/

www.it-ebooks.info

6 Assistant
ﬂ Mew Project
Empry Project
Application
Appletoript Application
Appletonpt Docuwment- hased Applicatian

AppleSonpt Droplet

Carhon Applicatian

Carbon Application iMib Based)

Cocoa Applicatan

Cocoa Document-based Application
Cocoa-Java Application

Cocoa-Java Document-based Application

Bumdle

Carbion Burdle

CFPlugin Buridie

Ciacoa Bumdle .
Framework v

Cancel Mext

3. Namethe project "Simple Text Edit", and save it into your ~/LearningCocoa folder.
10.2.3 Examine the Document Interface

Double-click on the MyDocument.nib file (located in the Resources folder of the Groups & Files panel in Project Builder), so
you can examine the interface in Interface Builder. The nib fileis quite simple, as shown in Figure 10-3. Thereisonly asingle

window with a default text string.

If you select the File's Owner instance and bring up the Inspector (Tools — Show Info, or Shift-3g-1), you'll notice in the
Attributes pane that File's Owner is set to correspond to an instance of My Docunent . Also, in the Connections pane, you'll
see an outlet with a connection to the window.

Switch back to Project Builder, and double-click on the MainMenu.nib file to open it in Interface Builder. Click through the
menu items with the Connections inspector open, as shown in Figure 10-4, and notice how many of the application's menu

items have aready been connected to appropriate first responder action methods. These methods are implemented by the
application's document controller (an NSDocumnent Cont r ol | er instance).

Figure 10-3. MyDocument.nib in Interface Builder

http://www.it-ebooks.info/

www.it-ebooks.info

-] = Werdow [&] 4] [ETHREN] (=]
R — o Ter M -
= [Ten| Taz |} »
T T ¢ lomn Dwe o
i . E oA ke uru-.m
o e inianr 10
o s whphiking prce. aed &
- _— e padiiad e w
i Erowser
e
=l
S
B # #]
“Your document contents here -
Ao Ty ek
Hee s
' Lesh vemw Frarse
Lapawn Rt i
Brraim Lefr Y aorh Bligm 4
R w269
T [RFF]
AETHIng

Dot N il

instamces | Classes | Images | Sounds |

e L m'

Figure 10-4. Examining prebuilt connections

5] MainManu,nib - Mainkenu 606 ssMenulien Info
i NewApplication II! Edit ‘Window Help] Cannactions =
New 4] -
Open... L 18] m"—m...._-... —
Opan Recent b e - [|re
rEaLme
Close W ravertDocament Tobay
R
Save As_, {r% rurPa g Ly
Rewert runToclbarC ustomiza
saveAlDocuments &
.I' Page Setug... ONP L saveDocument: e
~ Print... ®r :
Cinstances | Crasses—y-1mages=y-sounas seuree bestintian
— LadgEt FirstRics ponder. savilod
p FT I
A~ L =
MainMenu
[" Discoanser)

10.2.4 Examine the Document I mplementation

Return to Project Builder, and open MyDaocument.m, located in the Classes folder of the Groups & Files pane. Examine the
skeletal implementation of this NSDocunent subclass, and you'll see that the four methods that must be implemented already
have a skeletal implementation, as shown in Example 10-1.

Example 10-1. Skeletal NSDocument subclass implementation

#i nport "MyDocunent. h"
@ npl enent ati on MyDocunent

- (id)init

{
[super init];
if (self) {

http://www.it-ebooks.info/

www.it-ebooks.info

/1 Add your subclass-specific initialization here.
/1 1f an error occurs here, send a [self dealloc] nessage and return nil.

}
return self;
}
- (NSString *)w ndowNi bNanme
{
/1l Override returning the nib file nane of the docunent
/1 If you need to use a subclass of NSW ndowController or if your
/1 docunent supports nultiple NSWndowControllers, you should renpve
/1 this nethod and override -nakeW ndowControllers instead.
return @ MDocunent"”;
}
- (voi d)wi ndowControl | er Di dLoadNi b: (NSW ndowControl l er *) aController
{
[super wi ndowControl | er Di dLoadNi b: aController];
/1 Add any code here that need to be executed once the w ndowControll er
/'l has | oaded the docunment's w ndow.
}

(NSDat a *) dat aRepresentati onOf Type: (NSString *)aType

/1 Insert code here to wite your docunment fromthe given data.
/1 You can al so choose to override -fil eWapperRepresentationO Type:
[l or -witeToFile:of Type: instead.

return nil;
}
- (BOOL) | oadDat aRepresentati on: (NSData *)data of Type: (NSString *)aType
{
/'l Insert code here to read your docunent fromthe given data.
/'l You can al so choose to override -1 oadFil| eW apper Represent ati on: of Type:
[l or -readFrontFile: of Type: instead.
return YES;
}
@nd

Save the project (File — Save, or §8-S), and then build and run the application (Build — Build and Run, or 3-R).
Now you can experiment with the document-based application.
1. Create new document windows (File — New, or 38-N), and close them (File — Close, or 8-W).

2. Next, try saving a document window (File — Save, or 38-S). Notice that a dialog box asks you to select alocation
in which to save the document. Choose alocation and hit OK. Another dialog box says that the file could not be saved.
Thisisbecause the default dat aRepr esent at i onOf Type: method returnsni | instead of avalid NSDat a
object, because no default file type has been specified.

3. Now quit the application (NewApplication —# Quit, or 38-Q).

Next, we'll implement the functionality needed to turn this skeleton into a full-blown text editor that allows usto save and
open text files.

10.2.5 Compose the I nterface

http://www.it-ebooks.info/

www.it-ebooks.info

In this section, you'll define the look and feel of the application's document. Just modify the default nib file (created by Project
Builder's template) by adding atext view that will allow the user to view and edit text.

1. Open MyDocument.nib in Interface Builder, if it isn't already open.
2. Remove the default text object that says"Y our document contents here."

3. Drag an NSText Vi ewto the window from the Cocoa-Data views pane of the palette, as shown in Figure 10-5.

Figure 10-5. Dragging a text view onto the document window

]

4. Move and resize the text view so that it occupies the entire window, as shown in Figure 10-6.

Figure 10-6. Resizing and setting the attributes of the text view

U -:_:. Window NEEcredlView Inlo

Layeat Rt =
Borram Laf a8 widnh Heighy al
w20 we | 306

v 20 he | 232

Atasizing

5. With the text view selected, bring up the Size pane in the Inspector. Change the Autosizing options so that the view
will follow changesin the windows size.

6. Switch back to Project Builder, open MyDocument.h, and add a declaration for the text view's outlet by inserting the
boldface text shown in Example 10-2.

Example 10-2. Adding the textView outlet to the NSDocument subclass
#i nport <Cocoa/ Cocoa. h>

@nterface MyDocunent : NSDocunent
{

http://www.it-ebooks.info/

10.

11

www.it-ebooks.info

| BOut | et NSTextView * textView
}

@nd

Save (38-S) MyDocument.h.

Bring Interface Builder to the front, and drag MyDocument.h from Project Builder's Group & Fileslisting into the
Instances pandl of Interface Builder's MyDocument.nib window. This gives Interface Builder the opportunity to parse

the outlet, so you can use it for connections.

In Interface Builder's Instances pane, Control-drag a connection from the File's Owner instance (thisis aproxy for a
MyDocunent instance) to the text view.

Connect thet ext Vi ew outlet to the view by clicking on the Connect button in the Info window.

Do not generate an instance of MyDocunent to make this connection. The document-
"‘@ based application framework makes an instance automatically, which is assigned to the
File's Owner object. At runtime, the File's Owner will be an instance of My Docunent .

Save (3§ -S) thenib file.

10.2.6 M adify the Info Property List

The Applications Settings pane of the target window allows you to create and modify avariety of application-wide properties.
Critical values, like the name of the executable and the name of the main Cocoa class, are provided by default. Many of the
other properties are important for a full-fledged application, but they can remain unset for this simple example. You'll learn
more about these properties later in the book. For now, don't worry about them.

Our Simple Text Edit application will handle only one kind of data: text. It's very simple to modify the application’'sinfo
property list to add support for this document type.

1

In Project Builder, select the Targets pane in the main window.
Select the default (and only) target named Simple Text Edit.

Select the Info.plist Entries —¢ Simple View —3 Document Typesin the outline, as shown in Figure 10-7.

Modify the default document type entry. Rename DocumentType to Text, and replace the quoted question marks with
txt in the Extensions field and with TXT in the OS typesfield. Once you've entered this information, click on the
Change button.

Figure 10-7. Editing a document type

http://www.it-ebooks.info/

www.it-ebooks.info

808 Simple Text Edit - Target: Simale Text Edi
N W - N Simgle Tet Edit :
i, Ming b, Bl i & Aur i Comioesg
ang il 2 0 Tarner- Timede Test Fobl &
£ Simale Tewt bz [) Targes: Simple Text Edi &
Bulld Shyles F - . -] o
i .'. ? Target “Simple Text Edit” of Project "Simple Text Edit
& Shrgle Tewt Edin || Sewwary ¥ Document Types
'1 Seitings
| Simple
s her [hrpasa o Tvpey
] Texr Editor mar ™
i
-
2
[i
| Infa pliat Enkres
= Simple View
- Baslc Information
- Doy Irformath Dacersern Type nformatian
ko
f Cocoa-Sgecific Marme: Tear Ride Ldrinr
] Cocoa bywa-Seeci|
2 Purt Jawa-Sgeci R =
.EII | ¥ r T
i LRL Types
ExpisT Wiew ooe Fil fia Package
Build Phases

Hieaders
Bundli Rekdnrca| add [Fy—— CRange
Souncas

Framewarcd & Li|

Simple Teao Edic exived normally

These settings allow the document architecture to recognize .txt files as files that can be opened by our application, instructing
the system to use an instance of the My Docunent classto open those files. In addition, the system will alow only files saved
fromaMyDocunent instance to have the extension .txt.

10.2.7 Implement the MyDocument Class
Now, we implement the My Docunent class to support reading and writing text data.

1. InProject Builder, click vertical Filestab, then select the MyDocument.h file from the Classes folder in the Groups &
Files pandl.

2. Addthedat aFr onfi | e instance variable as shown:

#i nport <Cocoa/ Cocoa. h>

@nterface MyDocunent : NSDocumnent

{
| BQut | et NSText Vi ew * textView,
NSDat a * dat aFronFil e;

}

@nd

This variable will hold areference to the raw dataloaded from afile.

Open MyDocument.m. The following steps will fill in the methods of the skeleton source file from Example 10-1. We'l fill in

the stubbed methods in a different order than they appear in the file so that we can have each step build on top of the previous
one. In addition, we'll show the code without the comments-it's your choice whether to leave them in your application.

1. Implement the| oadDat aRepr esent at i on: method so that text data can be loaded from the filesystem into the
document. When a new document is created, this method is called before the nib is fully loaded and al of the
connections have been made. Because of this, the connection to the text view won't be made yet. In this method, we
arejust going to storethe dat a object into the dat aFr onti | e variable.

http://www.it-ebooks.info/

www.it-ebooks.info

- (BOQL) | oadDat aRepr esent ati on: (NSData *) data of Type: (NSString *)aType
{

dataFronfFile = [data retain];
return YES;

}

2. Implement the dat aRepr esent at i onOf Type: method so that the document can save its contents. The
NSText Vi ew class can present its data as a string that we can encode into a data object.

- (NSDat a *) dat aRepresentati onOf Type: (NSString *)aType

{
NSString * text = [textView string];

return [text dataUsi ngEncodi ng: NSUTF8St ri ngEncodi ng] ;
}

3. Implement thewi ndowCont rol | er Di dLoadNi b: method so that text data can be loaded into the text view.

- (voi d)w ndowControl | er Di dLoadNi b: (NSW ndowController *) aController

{
[super wi ndowControl |l er Di dLoadN b: aController];

if (dataFrontile){
NSString * text = [[NSString alloc]initWthData: dataFronFile Il a
encodi ng: NSUTF8St ri ngEncodi ng] ;
[textView setString:text]; Il b
[text rel ease];

}
[textView set Al |l owsUndo: YES] ; Il c

}

The code we added does the following things:
a. Createsastring fromthedat aFr onfi | e object.

b. Setsthe string that servesasthet ext Vi ew's model to the string that we just created for the dat aFr onti | e
object.

¢. Enables Undo and Redo functionality that is already built into the NSText Vi ew class. With this enabled, text
changes can be undone and redone. The Undo Manager can keep an unlimited number of undosin its stack. As
well, the document can keep track of the edited status of the application.

4. Addadeal | oc method at the end of the MyDocument.mfile (before the @ nd statement) to clean up the
dat aFr onti | e object.

- (void)deal |l oc

{

[dataFronFil e rel ease];
[super deall oc];

}

5. Savethe project (38-9), clean it (Build —* Clean),™) and then build and run the application (Build —* Build and
Run, or 38-R). Try the following:

a. Type some text into the running application. Use Cut and Paste to edit the text.

b. Save the document. Note the filename appears in the window's titlebar. Make sure that the "Hide Extension”
checkbox is not clicked so that you can see the extension of the file in the Finder and other applications.

http://www.it-ebooks.info/

www.it-ebooks.info

c. Play with the spell checker.
d. Close the document window (File — Close, or §-W).

€. Open the document you saved in step 2 in TextEdit (/Applications) to see how Mac OS X's default text editor
handles the data created by the Simple Text Editor application.

f. Quit TextEdit.

Cocoa's multiple-document architecture, as well as the capabilities built into the NSText Vi ew class, provides the
functionality that users expect Cfrom atext editing application. We've ssmply glued these features together by adding just a
few lines of code.

A bug in Project Builder (up to and including version 2.0.1) requires you to clean the project so that the new Info.plist settings can
be incorporated into the application.

http://www.it-ebooks.info/

www.it-ebooks.info

10.3 Exercises

1. Read the Apple developer documentation on the NSDocurnent Contr ol | er and
NSDocument classes.

2. Add the ahility for the editor to read and write Property List (plist) files.

3. Try torevert (File —# Revert) functionality. Can you explain why it doesn't seem
to work?

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 11. Rich-Text Handling

In Chapter 10, we showed how Cocoa's multiple-document architecture takes care of many

of the tasksinvolved in building a document-centric application, and we used a simple text
editor as an example. Cocoa's text-handling ability goes much further by supporting
multiple fonts, various paragraph styles, embedded images, undo, drag-and-drop, and even
spell checking. It can handle differences in text directionality and provides sophisticated
typesetting capabilities, such as the ability to control kerning between characters.

In this chapter, we are going to examine the functionality of NSText Vi ewand the other
classes that compose the text system. We'll then dive into code and add the following
functionality, one step at atime, to arich-text editor:

. Enable the font menu

. Work with attributed text

. Register undo actions

. Enable the text menu

. Handle embedded images

. Add agpecia feature that we'll save for last

That'salot of ground to cover, so let's get going!

http://www.it-ebooks.info/

www.it-ebooks.info

11.1 Cocoa's Text System

Cocoastext system, which underlies the functionality we worked with in Chapter 10,
consists of three API layers, as shown in Figure 11-1. Y ou can see the same Model-View-

Controller (MVC) paradigm we've talked about previously in the design of the text system.
At thetop layer isthe NSText Vi ewthat provides the on-screen view of text.

Figure 11-1. Threelayers of the Cocoa text system

On screen view NSTextView
NSTextContainer
Controller layer
N5layoutManager
Back end model N5TextStorage

At the bottom layer, the NSText St or age class gives programmatic access to the text.
This allows you to search for text and manipulate paragraph and character styles without
incurring the overhead of laying out the text for display.

In the middle layer arethe NSLayout Manager and NSText Cont al ner classes, which
control the way text islaid out on-screen or on the printed page. An NSText Cont al ner
object defines aregion where text can be laid out. Typically, thisis arectangular region,
but subclasses can support other shapes. If acontainer's areaisinset from the text view's
bounds, a margin appears around the text. An instance of the NSLayout Vanager class
displays the text contained in an NSText St or age object, rendering text in an

NSText Vi ewsdisplay according to the areas defined by NSText Cont al ner objects.

For most uses, the API provided by the NSText Vi ewclassisal that you need to learn to
enable rich-text functionality in your applications.

11.1.1 Supported Text Data Types

Cocoa's text system supports the following types of data that can be read, displayed, and
saved:

http://www.it-ebooks.info/

www.it-ebooks.info

A simple string

Aswe saw in Chapter 10, you can set and read the contents of atext view to and
froman NSSt r i ng instance. Thisisthe easiest way to deal with plain text files.

Data asrich text

The Rich Text Format (RTF) is a standard created by Microsoft for representing
text with multiple fonts and colors. RTF is supported by many word processors
(including the TextEdit application that comes with Mac OS X) as an interchange
format, but serves quite well as a primary document format. Files saved in RTF
format will be assigned an .rtf extension.

Data asrich text with images

Standard RTF files can also contain attachments, such as images, audio clips, and
even QuickTime movies, which are embedded in the file. These files, known as
RTFD (the"D" stands for directory) use atype of package format, or directory, in
which the embedded files of the RTF document are stored. The package will
contain the RTF file (e.g., text.rtf), along with any associated attachments (e.g.,
fuzzball .tiff). When the fileis saved, it will be assigned an .rtfd extension.

11.1.2 Working with File Wrappers

Because RTFD files are not simple files, but are composed of many filesin a directory
structure, thedat aRepresent at i onOf Type: and| oadDat aRepr esent at 1 on:
of Type: methodswill not read them. To handle complex file types that consist of
bundled directories, Cocoa provides file wrappers. File wrappers can be of three distinct

types:

. A directory wrapper that holds a directory and al the files and subdirectories within
it

. A regular file wrapper that holds the contents of asinglefile

. A link wrapper that represents a symbolic link, or alias, in the filesystem

The NSDocument class provides the following methods for loading data from, and saving
datato, file wrappers:

- (BOQL) | oadFi | eW apper Represent ati on: (NSFi | eW apper *)
wr apper of Type: (NSString *)type

L oads the document data contained by the given file wrapper into the receiving
NSDocunment object

http://www.it-ebooks.info/

www.it-ebooks.info

- (NSFi | eWapper *)fil eWapper Representati onOf Type: (NSStri ng
*)type

Returns afile wrapper object that represents the contents of the document for a
given document type

In fact, the NSDocunent implementation of these methods actually calls the
dat aRepr esent ati onO Type: and| oadDat aRepr esent ati on: of Type:
methods that we used in the Simple Text Edit application in Chapter 10. By overloading

the file wrapper load and save methods, we can support RTFD.

http://www.it-ebooks.info/

www.it-ebooks.info

11.2 Creating a Rich-Text Editor

To show how to work with rich text, we're going to create a new project similar to the Simple Text Edit application. The big
difference isthat the application we'll build in this chapter will work with rich-text files instead of just plain text. We'll make afew
changes to the recipe aong the way; but not too much has changed, so welll zip through the parts that we've aready covered. Refer
back to Chapter 10 if you need help with any of the steps.

To get started:

1

2.

3.

4.

5.

10.

11.

Launch Project Builder, and choose New Project from the File menu (File —# New Project).
From the New Project window, select Application —# Cocoa Document-based A pplication.
Name the project "RTF Edit", and save it into your ~/LearningCocoa folder.
Compose the Ul by opening the MyDocument.nib file in Interface Builder and performing the following steps:
a Remove the default text field.
b. Drag an NSText Vi ewfrom the Views palette to the application's window.
c. Resizethetext view so that it occupies the entire window.
d. Change the Autosizing options so that the view will follow changesin the window's size.
In Project Builder, open MyDocument.h from the Classes directory, and add a declaration for the text view's outlet.

#i nport <Cocoal/ Cocoa. h>

@nterface MyDocunment : NSDocumnent
{

}
@nd

| BQut | et NSTextView * textView

. Save (File — Save, or 3§ -S) MyDocument.h, and then drag it onto I nterface Builder's MyDocument.nib window so that

Interface Builder can pick up the change to thefile.

. Control-drag a connection from the File's Owner object (remember, thisis a proxy for the My Docunent instance at

runtime) to the NSText Vi ewwe added in step 4, and connect it to thet ext Vi ewoutlet.

. Save (File — Save, or 8§ -S) thenibfile.

. In Project Builder, open the active target (Project —# Edit Active Target, or Option-3g-E), and select the Info.plist Entries

— Simple View —# Document Typesitem in the outline.
Modify the default document type entry as shown in Figure 11-12. Simply click on the "DocumentType" entry to select it,

rename "DocumentType" to "Rich Text", enter the values (rtf for Extension and RTF for OS types) into the Document Type
Information area, and click Change to apply these settings.

Open MyDocument.h, and add the dat aFr onti | e instance variable to hold the raw RTF dataloaded from afile.

#i mport <Cocoal/ Cocoa. h>

@nterface MyDocunment : NSDocumnent
{

http://www.it-ebooks.info/

www.it-ebooks.info

| BQut | et NSText View * textView,
NSAttributedString * rtfData;

}
@nd

Figure 11-2. Setting the application settingsfor RTF Edit. Don't for get to hit the Change button!

aoce RTF Edlit - Targes RTF Edit
£ #A 5 B =3]
NAB % RTF Edlt :
- W, Find %, Busddl B Ruin i Debug
wTargens @
= RTE it 2| OO0 & Targes KTF Edn 2 20
Build 5 E - 1t 1 "
Lo @ Target "RTF Edit" of Project "RTF Edit
wExeiulablii
- & ATE Edit Summary T Document Types
E ¥ Seitings
g wSimake iew
: Caneral Sattings Narie Aol ElErching 5 Tyess
Irstallation Sectings Rich Team Edimor et RTF
COC Campiler Serming
£ Linker Saitings
E Predin Header
Saarch Paths
2 Java Compler Setting
= Java Ascheve Settings
- Expirt View
¥ Info.plist Ewirlies
W Simoke ‘Wi
= Rale Infarmation
b Dixplay Imformation Docurnent Type lslarmaticn
. kcon
.E Ceesa-fpnsific Name: Rich Text Role- | Editor 1]
B Cocoa Jave-Specfic
i; Pure Java-Spaeifie Extensions:
2 I 05 typms- ETF
i LML Types
ExaeeT Vigw Tooe fike ! File Paszage
¥ Build Phases = -
Hsders Document Class: WyDocument
Bundla Resourcai f acd 0 [Resrowe " Chaage "
Sources
= Frameworis & Librad
alw

12. Open MyDocument.m, and remove the| oadDat aRepresent ati on: of Type: and
dat aRepresent ati onO Type: methods. We are removing them now because later on we will load RTFD datafrom a
directory, and we will need the functionality that the file wrapper version of these methods will give us.

13. Implement the| cadFi | eW apper Represent ati on: of Type: .method:

- (BOCQL) | oadFi | eW apper Represent ati on: (NSFi | eW apper *)w apper
of Type: (NSString *)type

{
rtfData = [[NSAttributedString all oc]
ini t Wt hRTF: [w apper regul arFil eContents] docunmentAttributes:nil]; Il a
if (textView) ({
[[textViewtextStorage]
repl aceChar act er sl nRange: NSMakeRange(0, [[textView string] length])];
withAttributedString: rtfData];
[rtfData rel ease];
}
return YES;
}

The code we added does the following things:
a. Createsanew NSAt t ri but edSt ri ng based on the RTF contents of the file wrapper.
b. If thereisat ext Vi ewinstead, we will load the RTF straight into it.
14. Next,implementthef i | eW apper Represent ati onO Type: method so that the document can save its contents.

- (NSFi | eWapper *)fil eWapperRepresentationO Type: (NSString *)type

http://www.it-ebooks.info/

15.

16.

17.

www.it-ebooks.info

{
NSRange range = NSMakeRange(O,[[textView string] |ength];
NSFi | eW apper * wapper = [[NSFi | eW apper all oc]
i nitRegul arFil eWthContents:[textView RTFFronRange: range]];
return [w apper autorel ease];
}

Finally, implement thewi ndowCont r ol | er Di dLoadNi b: method.

- (voi d)wi ndowControl | er Di dLoadNi b: (NSW ndowControl | er *) aController

{
[super wi ndowControl | er Di dLoadNi b: aControl |l er];

if (rtfData) { Il a
[[textView textStorage]
repl aceChar act er sl nRange: NSMakeRange(0, [[textView string] length]);
Wi thAttributedString:rtfData];
[rtfData rel ease];

}
[textView set Al | owsUndo: YES] ; /Il b

}

The code we added does the following things:
a. If thereis RTF datawaiting, it isloaded into the text view.
b. Setsthetext view to alow for undo actions to be performed.
Save the project (File — Save, or 3§-S).

Build and run (Build — Build and Run, or 38-R) the application. Y ou should see the text editor as shown in Figure 11-3.
Y ou should be able to save and open rich-text files with it.

Figure 11-3. RTF Edit in action

8086 uUntitled

Thiz i= some rich inxt

http://www.it-ebooks.info/

www.it-ebooks.info

11.3 Enabling the Font Menu

Text views are already wired to work with the AppKit's font system, which is defined by the
NSFont Panel and NSFont Manager classes. The font manager keeps track of the
currently selected font, while the font panel lets users change the current font. When a user
enters text into atext view, the view stores the text into the underlying text-storage object
with attributes matching the current font.

The font manager, font panel, and an associated Font menu are set up using Interface Builder.
To add font-handling functionality to our RTF Edit application, perform the following tasks:

1. Open MainMenu.nib in Interface Builder.

2. Open the Cocoa-Menus palette, and drag a Font menu to the MainMenu menu bar.
Drop it between the Edit and Window menus, as shown in Figure 11-4.

Figure 11-4. Adding the Font menu to RTF Edit

MainMenu.nil - MainMen.
Mewhpplication File Edit m Windaw Help
Shaow Fonts =®T

Boeld F]

talic 3
Urdderline =y

T '. r % [T L Y

Ligature F = [Tl = 1
Baseling 2 = T | W Te: pee
Show Colors

Copy Style LR
Paste Style Fa 47

808 Mainhenu.nil

rlnlr.irrl;li] Classes | Images | “ounds

A L =

MaunfdiEnu

Notice that when you drop it, a Font Manager object is added to the nib. Thisisa

http://www.it-ebooks.info/

www.it-ebooks.info

reference to the Font Manager so that you can connect it to other objectsin your
application if needed.

3. Save (File —» Save, or 3§ -S) thenibfile.

4. Return to Project Builder, and Build and Run (3§-R) the project. Try the following
tasks:

a. Type some text into the document, and select it. Open up the Font Panel (Font
—+ Show Fonts, or @8-T), and change the font. Watch the selected text
change, similar to what is shown in Figure 11-5.

Figure 11-5. Using the Font Panel

=|e 0 Untitled

I'ne naxl wo things | weanl lor chrisimas ang

Dual PowerMac G4/1GHz

10GB iPod
#CNIGNE Fammily Twiselacs Sizes
All Fonis Futara Condensed Madium 74
Fawvorites Cill Sans Condensed Extrabald
Classit Helvetica Meus Mediwm I:
Fuin Lptima FEchiuim Tealic

Modern
POF

== O S W rJd

4 >

5. From the Extras pop-up menu at the bottom of the Font Panel, select the Color item.
Change the text to adifferent color by selecting a color and clicking the Apply button.

6. Closethe Color and Font panels by clicking on their close window buttons.

7. Saveyour file, and then open it in Text Edit to see your changes work in various
applications.

http://www.it-ebooks.info/

www.it-ebooks.info

11.4 Text Storage and Attributed Text

The text-storage object, an instance of NSText St or age, serves as the data repository for the contents of atext view.
Conceptually, each character of text in the text-storage object has an associated dictionary of keys and values that describe the
characteristics, or attributes -- such as font, color, and paragraph style-of that character. Chapter 7's String View application
first introduced the notion of using attributes when drawing text. To make our text string show up in red, we set the following
attribute in adictionary (that we used when we drew the text):

[attribs set Qbject:[NSCol or redCol or]
f or Key: NSFor egr oundCol or At t ri but eNane] ;

Y ou can associate any attribute you want with text; however, the attributes that Cocoa's text system pays attention to are listed
in Table 11-1.

Table 11-1. Standard Cocoa text attributes

Attribute identifier

Class of value

Default value

NSAtt achnment Att ri but eNane NSText At t achment None
NSBackgr oundCol or Att ri but eNane NSCol or None
NSBasel i neOf f set At t ri but eName NSNunber (fl oat) 0.0

NSFont At t ri but eNane NSFont Helvetica, 12pt
NSFor egr oundCol or At t ri but eNane NSCol or Black

NSKer nAt t ri but eNane NSNunber (fl oat) 0.0

NSLi gat ur eAttri but eNane NSNumber (int) 1

NSLi nkAt tri but eNane id None

NSPar agr aphSt yl eNane NSPar agr aphStyl e Default paragraph style
NSSuper Scri pt Attri but eNane NSNunmber (i nt) 0

NSUnder | i neStyl eAttri but eName NSNunber (int) None

In Table 11-1, we refer to NSNunber (int) and NSNunber (float). This means that the attribute should be set to an
NSNurber object that was created with the type specified.

http://www.it-ebooks.info/

www.it-ebooks.info

11.4.1 Working with Attributed Text

The text-storage class provides methods to access the various attributes of the text it contains. To show how to work with text
attributes, we'll add an analyzer to RTF Edit. Our analysis will count the number of characters in the document and give the
number of font changes. To do so, follow these steps:

1. In Project Builder, edit the MyDocument.h file, and add the following action:

#i nport <Cocoa/ Cocoa. h>

@nterface MyDocunent : NSDocunent

{
| BOut | et NSTextView * textView

NSAttri butedString * rtf Data;
}

- (I BAction)anal yzeText: (id)sender;
@nd

2. Save the MyDocument.h file, then open MyDocument.nib in Interface Builder.

3. Reparse the MyDocument.h filein Interface Builder. To do this, drag the MyDocument.h file to the MyDocument.nib
window.

4. Add abutton to our document interface, and name it Analyze, as shown in Figure 11-6.

Figure 11-6. Adding an Analyze button to our interface

“ Analyze

5. Control-drag a connection from the Analyze button to the File's Owner object, and connect the button to the
anal yzeText : method.

6. Save (33-8) the nib file, and return to Project Builder.
7. Edit the MyDocument.mfile, and add the anal yzeText : method as shown.

- (I BAction)anal yzeText: (i d)sender

{
int count = O; Il a
i nt fontChanges = -1; /'l b
idlastAttribute = nil; Il c
NSText St orage * storage = [textView textStorage]; /1 d
while (count < [storage |length]) { Il e

id attributeValue = [storage attribute: NSFont Attri but eNane
at | ndex: count
ef fectiveRange: nil];
if (attributevValue != lastAttribute) { /1 f

http://www.it-ebooks.info/

www.it-ebooks.info

f ont Changes++;

}
| ast Attri bute = attributeVal ue; /Il g
count ++; /1l h
}
NSBegi nAl ert Sheet (@ Anal ysi s", Il title Il i
@ K", /] default button | abel
nil, /'l cancel button | abel
nil, /] other button | abel
[textView wi ndow], /1 docunment w ndow
nil, /1 nodal del egate
NULL, /'l selector to nethod
NULL, /1l dismss selector
nil, /1l context info

@ Font Changes % ",
f ont Changes) ;

The code we added performs the following tasks:

a. Setsup acounter to loop through all the characters in the document. Thiswill allow usto examine the
characters and notice font changes as we loop through the document.

b. Setsup acounter that will be used to keep track of the number of font changes that are found in the document.
c. Actsasaholder for the text-attribute object that was examined during a previous iteration of our loop.
d. Gets areference to the text-storage object behind the text view.

e. Setsup aloop that will continue until we have examined every character in the document. Each time the loop is
executed, the attribute value for the current character is obtained.

f. Checksto seeif the font attribute of the current character is the same as the last character. If not, we record the
changein font.

g. Storesthisfont attribute so that we can compare it to the font attribute we'll see the next time through the loop.
h. Increments our counter.

i. Creates our message and displaysit to the user on a sheet attached to the window. We can passinni | and
NULL to most of the arguments since the sheet is for informative purposes only.

8. Savethe project (File — Save, or 38-9).

9. Build and run (38-R) the application. Type some text, change the fonts, and then hit the Analyze button. Y ou should
see something like Figure 11-7.

Figure 11-7. RTF Edit analyzing itstext

http://www.it-ebooks.info/

www.it-ebooks.info

8 ® Untitled

Analysis

A Fent Changes &

-

f oKk 3
T R Mpnr IR OT IRROTE B0 NOTE TRINGNE ARLyam P—
arpl, sad dinm voluptun. Al vero ao8 ol pccusam ol juglo

fuo dolores ol ¢a reoum. Sied cita kasd gqubargren. no
soa takimats Senctus est Lorem (psinn dolar sil amel
Larem ipsum dolar sil amel, conseletur sadipscing elilr
sed diam nenumy eirmad lempor invidunl ol labore ef
dgalore magna aliquyam eral, sed diam voluplua. Al vero
eos of accusam ef justo duo dolores et ea rebum. Stet
ciila kasd gubergren, no sea takimata sanoius est
Lorem ipswm delor sit amet.

Diuis aulem vel gum inure doler in handrend in vulpalaie

wvelf asse molesie consequal, val illum dolore e leugial &
nulls lacilisis al vero eros ol accumsan ol iusk odia ¥

" anatyze

Our next set of additions to the code will change the formatting of the text in our document.
1. In Project Builder, edit the MyDocument.h file, and add the following action:

#i nport <Cocoal/ Cocoa. h>

@nterface MyDocunent : NSDocunent

{
| BQut | et NSText Vi ew * textView,

NSDat a * dat aFronfFil e;
}

- (I BAction)anal yzeText: (id)sender;
- (I BAction)clearFormatting: (id)sender;
@nd

2. Save the MyDocument.h file; then open MyDocument.nib in Interface Builder.

3. Reparse the MyDocument.h filein Interface Builder. To do this, drag the MyDocument.h file to the MyDocument.nib
window.

4. Add abutton to our document interface, and name it Remove Formatting, as shown in Figure 11-8.

Figure 11-8. Adding a Remove For matting button to RTF Edit

P) i f %
Analyee Remave Farmatting

5. Control-drag a connection from the Remove Formatting button to the File's Owner object, and connect the button to
thecl ear Format t i ng: method.

http://www.it-ebooks.info/

www.it-ebooks.info

6. Save (FB-S) thenib file, and return to Project Builder.
7. Edit the MyDocument.mfile, and add thec| ear For mat t i ng: method as shown.

- (IBAction)clearFormatting: (i d)sender

{
NSText St orage * storage = [textView textStorage]; /Il a
NSRange range = NSMakeRange(O0, [storage |ength]); Il b
NSMWut abl eDi ctionary * attribs = [NSMut abl eDi ctionary dictionary]; Il ¢
[attribs sethject:[NSFont font Wt hNane: @ Hel vetica" size: 12] /1 d
f or Key: NSFont Attri but eNane] ;
[storage setAttributes:attribs range:range]; Il e
}

The code that we added performs the following tasks:
a. Gets areference to the text-storage object behind the text view
b. Createsarange structure that will encompass all of the text in the storage object
c. Creates anew mutable dictionary for the attributes to which we will set the text
d. Adds an attribute to the dictionary to format the text with the Helveticafont in size 12
e. Tellsthe storage to apply the new attributes to all characters
8. Savethe project (File — Save, or 38-9).

9. Buildand run (Bg-R) the application. Type sometext, change the fonts, and then hit the Remove Formatting button.
Y ou should see all of your changes disappear.

11.4.2 Registering Undo Actions

There's one small problem with our method to remove formatting. When you make changes after removing the formatting and
then want to undo changes to a point in time before you cleared the formatting, things don't work as expected. Thisis because
we need to register the change with the undo manager.

The undo manager, implemented by the NSUndoManager class, is ageneral-purpose recorder of operations that can be
undone or redone. An undoable operation is registered with the undo manager by specifying an object and a method to call on
that object, along with an argument to pass to that method.

To allow the RTF Edit application to undo the removal of formatting, perform the following steps:
1. Editther enoveFor mat t i ng: method in MyDocuments.m, adding the code indicated in boldface:

- (IBAction)clearFormatting: (i d)sender
{
NSText St orage * storage = [textView textStorage];
NSRange range = NSMakeRange(0O, [storage |ength]);
NSMut abl eDi ctionary * attribs = [NSMut abl eDi ctionary dictionary];
NSUndoManager * undoManager = [self undoManager]; /Il a
[undoManager regi sterUndoWt hTarget: st orage Il b
sel ector: @el ector(setAttributedString:)
obj ect: [storage copy]];

[attribs set hject:[NSFont font Wt hNane: @ Hel veti ca"
size: 12]

http://www.it-ebooks.info/

www.it-ebooks.info

f or Key: NSFont Attri but eNane] ;
[storage setAttributes:attribs range:range];

}

The code we added performs the following tasks:
a. GetstheundoManager from the document. Each document has an associated undoManager .

b. Registersan undo action with the undoanager . Thisaction cals the underlying text-storage object's
set AttributedString: method with acopy of the current storage-effectively resetting the contents of
the storage to the same state as before the change.

2. Savetheproject (File — Save, §8-9).

3. Buildand run (gg-R) the application. Undo should now work correctly.

http://www.it-ebooks.info/

www.it-ebooks.info

11.5 Enabling the Text Menu

Not only do text views come wired to work with the AppKit's font system, they are a'so
prewired to work with paragraph-formatting rulers. These rulerslet a user specify
paragraph formatting for his documents. The easiest way to enable this functionality isto
use Interface Builder. Perform the following steps:

1. Open MainMenu.nib in Interface Builder.

2. Open the Cocoa Menus palette, and drag a Text menu to the MainMenu menu bar.
Drop it between the Font and Window menus, as shown in Figure 11-9.

Figure 11-9. Adding the Text Menu to RTF Edit's main menu bar

=

.
0 |
u

Mewipphcation Fille Edit Find Font m Wirdow Help
Algn Left

= [Tt
| Aspecason» §Tem
Carai
iy | Filed B Submenub
Align Right 1L s
Show Ruler | window b § Formark
Copy Ruler 1 AL -
Faste Ruler 2 L $#———
a0 MainkMenu . nils
f Inztarce= I| Classes images | Sourds
4 i E
=
i P T

3. Save (File — Save, or 3§ -S) thenibfile.
4. Return to Project Builder, and Build and run (38-R) the project. Try the following:

a. Select the Show Ruler menu item (Text —# Show Ruler). A ruler will
appear on the text view, as shown in Figure 11-10. The ruler displays

margin and tab markers similar to those used in full-blown word processors.

Figure 11-10. RTF Edit sporting aruler

http://www.it-ebooks.info/

www.it-ebooks.info

@00 Untitled
_F 3N JE BTSN HIEER T D b
¥ F F F F ¥ ¥ F F ¥ F F F -

u 8 I 5 L
Somewhere along the line. a simple little text editor
started looking quite a bit like a word processor

" Analyze " Remove Formatting

5. Type some text, and change the paragraph alignment using the four buttons along
the top-left hand side of theruler.

6. Create another paragraph, and change its indentation settings using the controls
provided by the ruler.

http://www.it-ebooks.info/

www.it-ebooks.info

11.6 Handling Embedded I mages

The next piece of functionality we will add to RTF Edit isthe ability to handle embedded images. To do this, we tell the text view
that we want it place graphics into documents, and we add methods to support the loading and saving of RTFD files.

1. In Project Builder, open the RTF Edit target (Project — Edit Active Target, or Option-3f-E), and select the
Application Settings tab.

2. Add anew document type entry as shown in Figure 11-11. Fill out the Document Type Information fields with the fields
shown, and click Add. Don't forget to set the Document Class field to My Document .

Figure 11-11. Adding thertfd filetypeto the RTF Edit application

8oce RTF Edit - Target: RTF Edit =
N *"'L - "ﬁ, ® RTF Ee b

Whend 5 SBuild 2 Hun o 1 Debug
O (& Targer ATF Edit # DB

@ Target "RTF Edit" of Project "RTF Edit"

Sunsmary * Document Types
whettings

wimphe View
Gereral Seftings
Installacion Settin
CCC Compiler Set
Linker Sertings
Prefix Header

| Files

Hame Role Extensions OF Types
Rich Text Edator rtf RTF
Rk Text with Attachments Edilor iid RTFD

i Classes

Search Paths
Java Comgiler Set
Java Archese Settir

Exper View

¥ Imfouplist Endnies
v Sl View

Basic Infarmasion
Display Infonmatic Documsnt Tyge Wformarion
lcarn
Cocoa-Spacific Mame: Rich Text with Attac Rale: | Editor TI
Co<oa Java-Specil
Pure Java-Spetific
Dacument Types 05 iypes: | KTFD
LRL Types =

Expert View toan file _| Fite Package

« JyBookmarks

o ¥ Targeis

Extensions. rifd

| = Brea kpaims

o Builld Phases
Document Class: MyDocumeni
Headers
Rusnddle Resaurcos © add " [Remowe ' | Chamge °
Sources
Framewarks & Lil
RTF Edit exited nosmally.
-

3. Open MyDocument.m, and change the| oadFi | eW apper Represent at i on: of Type: method as shown. This
will allow RTF edit to open either RTF or RTFD files. Note that we use the name of the document type we set previously
in step 2.

{

(BOQL) | oadFi | eW apper Represent ati on: (NSFi | eW apper *) of Type: (NSString *)type

if ([type isEqual ToString: @R ch Text with Attachnents"]) {
rtfData = [[NSAttributedString all oc]
i ni t Wt hRTFDFi | eW apper : wr apper docunentAttributes:nil];
} else {
rtfData = [[NSAttributedString alloc]
initWthRTF: [wrapper regul arFil eContents] docunentAttributes:nil];

}
if (textView)

[[textView textStorage]

http://www.it-ebooks.info/

www.it-ebooks.info

repl aceChar act er sl nRange: NSMakeRange(0, [[textView string] length]);
Wi thAttributedString:rtfData];

[rtfData
rel ease];
}
return YES;
}

4. Next, changethef i | eW apper Represent ati onOf Type: method so that the document can save its contents
according to the type of data requested.

- (NSFi | eWapper *)fil eWapperRepresentati onOf Type: (NSString *)type

{
NSRange range = NSMakeRange(O, [[textView string] l|ength]);
if ([type isEqual ToString: @R ch Text with Attachnents"]) {
return [[textView textStorage] RTFDFil eW apper Fr onRange: r ange
docunent Attributes:nil];
} else {
NSFi | eW apper * w apper = [[NSFi | eWapper all oc]
i nitRegul arFil eWthContents:[textView RTFFronRange: range]];
return [w apper autorel ease];
}
}

5. Finally, change thewi ndowCont r ol | er Di dLoadN b: method so that graphics can be added to the documents.

(voi d)wi ndowCont rol | er Di dLoadNi b: (NSW ndowControl | er *) aController

{
[super wi ndowControl | er Di dLoadNi b: aController];
if (rtfData) {
[[textView textStorage]
repl aceChar act er sl nRange: NSMakeRange(0, [[textView string] |ength]);
wi thAttributedString:rtfData];
[rtfData rel ease];
}
[textView set Al | owsUndo: YES] ;
[textView set|nmportsG aphics: YES];
}

6. Savethe project (File —+ Save, or 3g-S).

7. Clean the project (Build —* Clean, or Shift-38-K).[!
8. Build and run (38-R) the application. Create a document, and drag an image into it. When you save the document, the

Save panel will have a pull-down menu to select what kind of file you are saving, as shown in Figure 11-12. Be sureto
select Rich Text with Attachmentsin order to save your image information .

11.6.1 The Spoken Word

The last thing we will add to our application has very little to do with rich text, but it's fun and shows off one of the ways that
Cocoaisintegrated with other Mac OS X technologies. We'll add a button that, when pressed, will speak the contents of a
document to us using Mac OS X's built-in Text-To-Speech engine.

1. InProject Builder, edit MyDocument.h, and add the following action declaration:

#i nport <Cocoal/ Cocoa. h>

@nterface MyDocunent : NSDocunent
{

http://www.it-ebooks.info/

www.it-ebooks.info

| BQut | et NSText Vi ew * textView,
NSDat a * dat aFrontil e;
NSString * dataType;
}
- (I BAction)anal yzeText: (i d)sender;
- (IBAction)renoveFormatting: (id)sender;
- (1 BActi on)speakText: (id)sender;
@nd

2. Savethe MyDocument.h file; then open MyDocument.nib in Interface Builder.

3. Reparse the MyDocument.h file by dragging the MyDocument.h file from Project Builder to Interface Builder's
MyDocument.nib window.

4. Add abutton to our document interface, and name it Speak, as shown in Figure 11-13.

Figure 11-12. Saving a file with attachments

886 Uniitled

Save as: | Umtitled

Where Temp = fad

I Deskiop
Documents
B Library
B Movies jdam-b& -
& Music
Petures
¥ Public
Sites
Temp LAl

Temporary lems L]

f . ER

7 Mew Folder 7 Add to Favarites

Filg Farmat Rich Text with Artachments L]

1 Hide extension " cancel ¥ F Save 3

Figure 11-13. Adding the Speak button to RTF Edit

8ao8 Window

-

’_ﬁ.nall,'ze R rSp-eaIt R ¢ Chear

5. Control-drag a connection from the Speak button to the File's Owner object, and connect it to the speak Text : method.
6. Save (38—8) the nib file, and return to Project Builder.
7. InProject Builder, edit the MyDocument.mfile, and add the speak Text : method as shown:

- (1 BActi on)speakText: (i d)sender
{

}

[text Vi ew start Speaki ng: sender] ;

http://www.it-ebooks.info/

www.it-ebooks.info

8. Savethe project (File — Save, or §8-S).

9. Build and run (38-R) the application. Type some text, then click on the Speak button. The built-in Text-to-Speech engine
will start reading off what you typed.

(' some of the versions of Project Builder that we worked with while writing this book, there was a problem with adding document
types unless you forced this cleaning step.

http://www.it-ebooks.info/

www.it-ebooks.info

11.7 Exercises

1. Using Interface Builder, turn on image attachments and undo by removing the two
lines of codeinthe awakeFr onNi b method that perform this duty.

2. Set the ruler to appear automatically when a document window opens.
3. Replace the Speak buttons with menu items.

4. Add anumber of characters line to the Analyze sheet.

http://www.it-ebooks.info/

www.it-ebooks.info

Part IV: Miscellaneous Topics

This part covers avariety of Mac OS X and Cocoa features that are
important to delivering finished applications and giving them their finishing
touches. The chaptersin this part of the book cover diverse topics and can
be read in any order.

Chaptersin this part of the book include the following:

Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16

Chapter 17

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 12. Printing

In the past, code to handle printing has been difficult to write. Many factors, such as
margins, page orientation, and paper size, come into play. The differencesin drawing
models (between screen drawing and drawing to the printer) have made things even more
challenging. Cocoa provides a clean printing interface that uses the same drawing model
used to draw to the screen. In addition, just as Cocoa supports the use of calibrated color
when drawing to the screen, ColorSync provides advanced color management when
printing to paper.

Aswe saw in Chapter 7, when aview object recelvesadr awRect : message, it responds
by drawing itself into the current graphics context. Usually, this context is aframe buffer,
and thedr awRect : message resultsin the view drawing its contents to the screen. The
same machinery is used during printing, but the current graphics context is set to be the
printer.

Remember (as discussed in Chapter 7) that the dr awRect : method is never called

directly to make aview appear on the screen; it is called only when the display message is
sent to the view. The same methodology appliesto printing; the dr awRect : method is
calledwhenapri nt : messageissent to theview. Calling pri nt : onaview causesthe
AppKit to display a print panel that asks the user which printer she wishes to use (along
with page setup information). When the user clicks the Print button of the print panel, a
sequence of dr awRect : messages-one for each page-is sent to the view.

This chapter focuses on enabling basic printing from Cocoa applications. As with most
things, once you have mastered the basics, you can make printing fairly complex-such as
adding Ul elements to the print panel and using alternate text views to reflow text-to satisfy
special needs.

http://www.it-ebooks.info/

www.it-ebooks.info

12.1 PrintingaView

Since Cocoa makes it so easy to print aview, we're not going to waste any time. The following
steps guide you through creating your first print job.

1. Create anew Cocoa Application project in Project Builder (File —# New Project —#
Application —# Cocoa Application) named " View Print", and save it in your ~/
LearningCocoa folder.

2. Usethe Finder to locate the Ripples Blue.jpg file (/Library/Desktop Pictures), and drag it to
the Resources group of your project.

3. Open the MainMenu.nib file in Interface Builder. Click the Images tab on the MainMenu.
nib window, and notice that the image we just added is present.

4. Drag anImage View (NSI mrage Vi ew) from the Other Cocoa Views palette onto the main
window, and then resize it to be larger, as shown in Figure 12-1.

Figure 12-1. An Image View in the application window

5. Drag the Ripples Blue image from the MainMenu.nib window to the Image View that we
just added. When you drop the image onto the view, you should see the image appear there.

6. Control-drag a connection from the File —# Print menu item to the Image View. The
inspector will pop up, if it's not already open, and indicate that the menu item is connected
toFi rst Responder . print: . Disconnect this connection, and connect the File —#
Print menu item to the pr i nt : action of the view, as shown in Figure 12-2. Be careful

when dragging the connection, asit's easy to select the window as the target of the action.

http://www.it-ebooks.info/

www.it-ebooks.info

Figure 12-2. Creating a connection from the print menu item

[’ Moialdpra nide: - KainMeng
" .
S Asshealian Iu Ede Wendow H!lﬁ
hel] e
... w0
Oipan Racent ¥
Closu W
Sarie 5
Saree Mg oM
Rssert
Fage Sefup... SMP
T oo —
oA FolalTi ek L
T
Dty
“targer T]
prim:
tbsDachis'saiueliom
takallcat'yabsalrom

takelrivabanlrom
LakeEjectvalselion
Vab e Sd i L s el e

L

Semsrie Dedbiatian

7. Save (3B-S) the nib file, and return to Project Builder.

8. Build and run the project (3§ -R).

9. Select Print (File — Print, or 3§-P) in the running application. The print dialog box will
open, as shown in Figure 12-3.

Figure 12-3. Theprint dialog panel in action

http://www.it-ebooks.info/

www.it-ebooks.info

Print

Prirter. | laserjer.x180.net _:'

Presels. Duplex T‘
Copies & Pages]

aesn i Copies: |1 # Collated
Fages. f= 4
_JFram: 1 W (1

@) (Preview save As PDF._. “Cancel " prine)

10. Click the Preview button. The application prints to a PDF file that will be displayed in the
Preview application. Repeat the process, and click Print if you want to see the results

printed on your printer.

Now that you have printed the view, notice that the entire image view drew itself onto the printer-
border and all-and appearsjust asit did onscreen. If you just wanted to draw the image itself to the
printer, you'd need to add alittle code to control what gets printed. In the next section, we'll do just

that with text.

http://www.it-ebooks.info/

www.it-ebooks.info

12.2 Using Print Operations

Usually, you'll want more control over your printing than was available in our View Print application. This control is
provided in Cocoa by creating print operations (instances of the NSPr i nt Oper at i on class) and running them. Y ou can
think of a print operation as a controller object that mediates between the underlying print machinery of Mac OS X and
the view being printed. Print operations use a helper object of type NSPr i nt | nf o to help them determine how the page
should be printed. If the print operation is constructed without a print info object, a default print info object for the
application will be used.

We'll show you how to use print operations and print info objects in conjunction with printing using the document
architecture, as covered in Chapter 10 and Chapter 11.

12.2.1 Printing Using the Document Ar chitecture

To enable simple printing from a document-based application simply requiresthat apr i nt Showi ngPri nt Panel :
method be implemented in the document class. This method is called by the document architecture on the active document
when a user selects File —# Print or presses 3§ -P.

To show thisin action, we will create a simple editor that just prints the contents of the text document. So we can just
focus on the printing-related code, we're going to create a new editor rather than using the one we just built. The following

steps will guide you:

1. Create anew Document-Based Application in Project Builder (File —# New Project —# Application —#
Cocoa Document-based Application) named "Document Print", and save it in your ~/LearningCocoa folder.

2. Design the GUI by opening the MyDocument.nib file in Interface Builder and performing the following steps:
a. Remove the default text field.
b. Drag an NSText Vi ewfrom the Cocoa Data Views paette to the application’'s window.
c. Resizethetext view so that it occupies the entire window.
d. Change the Autosizing options so that the view will follow changes in the window's size.
3. InProject Builder, open MyDocument.h, and add a declaration as follows for the text view's outlet:

#i nport <Cocoal/ Cocoa. h>

@nterface MyDocunent : NSDocunent
{

| BQutl et NSText View * textView

}
@nd

4. Save (File —» Save, or 3§ -S) MyDocument.h; then drag it onto Interface Builder's MyDocument.nib window so
that Interface Builder can pick up the change to thefile.

5. Control-drag a connection from the File's Owner object (remember, thisis a proxy for the My Docunent instance
at runtime), and connect it to thet ext Vi ewoutlet.

http://www.it-ebooks.info/

www.it-ebooks.info

6. Save (File — , or 38-S) thenibfile.
7. In Project Builder, open MyDocument.m and add the pr i nt Showi ngPr i nt Panel : method as shown here:

(voi d) pri nt Showi ngPri nt Panel : (BOOL) f | ag

{
NSPrintIinfo * printinfo = [self printlnfo]; /[l a
NSPri nt Operation * printQp; /'l b
printQp = [NSPrint Operation printQperati onWthView textView /Il ¢
printlnfo:printlnfo];
[printOQp runQperation]; /1 d
}

The code we added performs the following tasks:

a. Obtainsareferencetothe pri nt | nf o object used by the document. This object is created automatically
by Cocoa's document architecture for each document.

b. Declaresapri nt Op variable of type NSPr i nt Oper at i on.

c. Creates anew print operation that will print the contents of our text view using the print information that
we obtained in linea

d. Calsther unCper at i on method on the print operation object. This puts the printing machinery into
play.

8. Savethe project (File — Save, or 38-5).
9. Build and run (3£ -R) the application.

a Create some text and then print it (File — Print, or 3€-P). A print dialog box will appear, as shown in
Figure 12-4.

b. Click either the Print button (to send the print job to your printer) or the Preview button (to send the print
information to the Preview application, as shown in Figure 12-5). We recommend that you use the Preview

button as you work through this chapter so that afew sheets of paper can be saved.

Figure 12-4. Printing from a document-based application

http://www.it-ebooks.info/

www.it-ebooks.info

8apse Untitled .

Lorem ipsum daolor sit amed, consectatuer adipiscing alil, sad
diam nonummy nibh suismod incidunt ut lsorest dolona
magna aliguam erat volulpat. Ut wisi enim ad minim vaniam,
quis noslrud axers tation ullameorper suscipit loborlis nisl ul
aliquip ex 8a commado consaguat. Duls subam vel eum irure
dolor in hendrenit in vulpulzate velit esse moleste consegquat,
vel illum dolore ~ —

apsumsan el jue Print
lupkatum zznl
s Printer: | laserjet.x1B0.net i3
Lt wisi eni
ulh:r‘;r::: Prasets: iDuplcx i
conseguat O =
vulpuiate velit _ Coples & Pages ﬂ
faugiat nulla
dignissiem gui
duis dolore b8 Copies: |1 | ™ Collared
amal con —
euismod lnsi Pages: (&) a)|
volutpat O From: 1 to: 1
. (Preview) (Save As PDF... “ Cancel | Print D

Figure 12-5. Printed document in Preview.app

) 5_& ¥ Preview of "Untitled". pdf '
® {3 ¢ - =T]

Luswrn: @i delel wi @il et bt ads wong = K eed
BT PR Py R AT LT 1 R T
B B W v Ll L e T
BRI SRRST I L LT L T T S A T
g e e L
B P BRI IR il a0 i ek TV A T
T e L L T
T T L ASTE s AT Wi d
Lty AT el iy s dur de e W il fu b e

Lilwie wrers g e s, s oo e Mk
s i mandip el Ea fhd ol Saup e se sem el
e Chas gdem sl 0= rare fnlg = beedeecd o
wilpaista e P sess mwlinds oreagaad v Bus dinen g
fagut e Becin s of verv oo o e o o Laio da

£ OrRa T e b prpee T LEiE Y EIT en et Bupae
Bt i b Faoga £l ladie Leves i Sokor ol mrad
ror e e NECHIN TG BT BT ST ERUTTTY S0 sunmod
S T e e DA T LT R LRzl

Drs mrey, vl s ™ o S0 e e P LU sl
BN FHETE DT B T R e SR
Tl ik 7 i i o0 B i b0 Sl ke G
PRI GrERRE ITIIL T XR T A Nl BT 1
AT S SRR T W T, §
S o S AN, A A P S P] I i
Lk i it P Al i BT LR LT A R A
B (] 06 PR ST L T s gl
belpar | o sl ap e wE oy vy gl

10. Use the Page Setup (File —» Page Setup, or Shift-38-P) functionality to change the paper size and the
orientation used.

http://www.it-ebooks.info/

www.it-ebooks.info

12.3 Setting Margins

When printing text documents, we don't usually want the text centered on the page; we'd rather have it printed from the
top-lefthand corner with some given margin.

1. Modify our pri nt Showi ngPanel : method asfollows:

- (void)printShow ngPrintPanel : (BOOL) fl ag

{
NSPrintinfo * printinfo = [self printlnfo];
NSPri nt Operati on * print Qp;
[printlnfo setTopMargin:36.0]; Il a
[printlnfo setLeftMargin:36.0]; Il b
[printinfo setHorizontallyCentered: NJ ; Il c
[printinfo setVerticallyCentered: NJ ; Il d
printQp = [NSPrintQperation printCperationWthViewtextView

printlnfo:printlnfo];

[print O runQperation];

}

The code we added performs the following tasks:

a. Setsthetop margin of the printed page to 36 points (1/2 inch). Points are a unit of measure used in page
layout and typography, based on a scale of 72 points per inch. See Table 12-1 for a quick reference.

Table 12-1. Pointsto inches conversion chart

Point Size Measurement in Inches
9 18
18 v4
27 3/8
36 12
45 5/8
4 3/4
63 7/8

http://www.it-ebooks.info/

www.it-ebooks.info

72 1

b. Setsthe left margin of the printed page to 36 points.
c¢. Indicatesthat the printed view should not be horizontally centered on the page.
d. Indicates that the printed view should not be vertically centered on the page.

2. Savethe project (File — Save, or 38-9).

3. Build and run (38-R) the application. Now, when you print out a block of text, it will be printed starting at the
upper-left corner, as shown in Figure 12-6.

Figure 12-6. Printing at the top-left corner

806 « Preview of "Untitled". pdf

Complete information on the settings for a print info object can be found in the /Devel oper/Documentation/Cocoa/
TasksAndConcepts/ProgrammingTopics/Printing/index.html file installed on your hard drive with the Developer Tools.

http://www.it-ebooks.info/

www.it-ebooks.info

12.4 Exercises
1. Add aFont menu to the application, and print out files with various fonts.
2. Add printing to the Dot View application that we created in Chapter 8.

3. Resizetheimage view in View Print to occupy the entire window (don't forget to
set the Autosizing attributes!), and experiment with printing other images.

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 13. Bundles and Resour ces

Even though it may look like asinglefilein the Finder, a Cocoa application is actually a
collection of filesin a special directory structure known as a bundle. Bundle directoriesin
the filesystem have a special significance that the Finder understands and that allows users
to treat applications, as well as other types of bundles, as asingle entity. This allows users
to install an application simply by dragging it from a CD image and relocate it by dragging
it around the filesystem.

There are three general types of bundles:
Application bundles

Application bundles contain an executable and all its related resources, such as nib
files, image files, and localized strings. For example, most of the applications
installed in the /Applications folder are application bundles.

Plug-in bundles

Plug-in bundles provide code that extends or enhances the functionality of a host
application in some way. They plug into some kind of architecture provided by the
host application. An example of a plug-in bundle is the screensaver modules
installed in the /SystenvLibrary/Screen Savers folder. Each of these bundlesis used
by the screensaver system (whose control panel isin the System Preferences).

Framework bundles

Framework bundles contain dynamic shared libraries, as well as header files,
images, and documentation. For example, the two Cocoa frameworks, Foundation
and AppKit, are packaged as framework bundlesin the /Systemy/Library /
Frameworks folder. Framework bundles differ from other bundlesin that the Finder
allows you to browse their contents. This allows you to browse the contents of a
framework easily.

The essence of abundleisthat it pullstogether a set of resources into a single package.
This mechanism works on a variety of filesystems, from the dual fork-based HFS+
filesystem that Mac OS X prefersto single-fork SMB and NFS volumes that might be
mounted from Windows or Unix servers. In this chapter, we take alook at application and
other bundles and how to manage and obtain resources from them.

http://www.it-ebooks.info/

www.it-ebooks.info

13.1 Peeking Inside Bundles

To get abetter idea of how bundles go together, let's take alook inside abundle that is
already on your system.

1. Usethe Finder to browse to the iPhoto application, located in the /Applications
folder.

2. Control-click on iPhoto. Select Show Package Contents from the context menu. A
Finder window rooted at the directory in which iPhoto islocated will open. Y ou can
use this Finder window to browse around the internals of the application. Figure 13-

1 shows a column view of the application.

Figure 13-1. Looking inside an application bundle

1elp

L (e g
i Havaurcm # Sacanchartala B
Letirfo - . -

Duplicate o
Make Allas S

Copy “iPhota

All of the contents of a bundle exist in the aptly named Contents directory. At avery
minimum, a bundle consists of two files-Info.plist and Pkglnfo-located in the Contents

directory, as shown in Figure 13-2.

Figure 13-2. A minimal bundle

http://www.it-ebooks.info/

www.it-ebooks.info

aa
oo

Name Date Modified
Contents aday, 1649
nfe.plist oday, 16:47

Peglinfo aday, 1647

The Info.plist fileisan XML-based property list file that specifies the following:

. The name of the main executable for the bundle

. Versioninfo

. Type and creator codes

. Document types that the application handles and what role (editor or view) the
application plays for a document type

« Application and document icons

. Thekinds of datathat the application can handle via the pasteboard

. Application-specific attribute information

When we used Project Builder in Chapter 11 to manipulate the document-type application
settings for Simple Edit and RTF Edit, those settings were automatically made into the Info.
plist file.

Pkglnfo contains only the type and creator codes for the application. Thisinfo is redundant
with that in the Info.plist, but it is held separately so the Finder can use thisinformation
more efficiently.

13.1.1 Bundle Directories

In addition to the Info.plist and Pkglnfo files, the following directories can appear in the
Contents directory:

MacOS
Contains the actual executable code for an application or plug-in.
Resources

Contains the various resources an application uses. These resources include nib
files, images, localized strings, and icon files. Older Mac OS applications stored

http://www.it-ebooks.info/

www.it-ebooks.info

these resources in the resource fork of the application's executable file.

Frameworks

Contains frameworks on which the application depends. These frameworks will
always be used by an application, even if newer versions exist on the users system.
This ensures that a specific version of aframework, which you need for your
application, is always used.

Shared Frameworks
Contains frameworks that will be used by the application unless a newer version of
the framework exists on the local system. These frameworks can be superceded by

shared frameworks in other applications, allowing programs to take advantage of
the latest code.

Shared Support

Contains helper applications, assistants, and other tools that may be used by an
application.

http://www.it-ebooks.info/

www.it-ebooks.info

13.2 Using Bundles

Y ou can obtain the contents of bundles, even the application bundle from which your application is running, by using the NSBund| e class. This
class provides methods to obtain the paths to resources within your application, as well as methods to load and link executable code that is located in

abundle.

To demonstrate working with bundles, we will build a simple application that |oads an image into an image view.

1. Create anew Cocoa Application project in Project Builder (File —# New Project —# Application —# Cocoa Application) named "Image
Bundle", and save it in your ~/LearningCocoa folder.

2. Add some image filesto the project using the Add Files command (Project —# Add Files). Navigate to the /Library/Desktop Pictures/
Abstract folder, select all the JPEG images (named Abstract 1-8.jpg), and click the Add button.

= To select multiplefiles, asrequired in step 2, you cangg-cl ick each image file and then click the Add button to
o load all of the images at once. This method of selecting filesis particularly helpful when you want to pick and
ul oM. choose thefiles, rather than selecting them all.

When adding files, Project Builder also allows you to select a directory and click the Add button.

3. Inthe next sheet that drops down, make sure that the Copy items checkbox is clicked, as shown in Figure 13-3, and click the Add button.

Figure 13-3. Adding filesto the project

http://www.it-ebooks.info/

Yy

bt

; -y s i
S -
B Croups & Files
¥ L Image Bundle
¥ [Classes
Oittheer Sal
Fiouirias
F i it 1
Froducls

TTYTY

L, Image Bundie

M Copy items into destination group's felder Of needad)
Reference Style: | Default a7

™ Recursively create groups for any added folders
™ Create Folder References for any added folders

Add Ta Targets

W Image Bundle

Cancel F Auged L]

1

wabdes

Rur

1 Dhbiisg

e

. Savethe project (File — Save, or 38-S).

. Next, open the MainMenu.nib filein Interface Builder.

www.it-ebooks.info

. Drag animage view (NSI nage Vi ew) object from the Cocoa-Other views palette into the main application window, and resize it so that it
occupies the entire window, as shown as Figure 13-4. Set the Autosizing attributes so that the view will expand and contract if the user

resizes the window.

Figure 13-4. Adding an Image View to our application window

http://www.it-ebooks.info/

www.it-ebooks.info

a - Window

7. Create asubclass of NSObj ect inInterface Builder. To do this, click on the Classes tab of the MainMenu.nib window, find and Control -
click on NSObject, and then select Subclass NSObject from the pop-up menu. Name the subclass " Controller”.

e Y ou can also create a subclass by locating NSObject in the Classes pane and hitting the Return key. A new
. subclass will be created, and all you need to do is enter a new name for the subclass.
LT TN

8. Create an outlet named | nage Vi ew on the Controller object using the Inspector, as shown in Figure 13-5. Type the outlet as
NSI mageVi ew.

Figure 13-5. Adding an imageView outlet to the Controller class

http://www.it-ebooks.info/

10.

11.

12.

13.

www.it-ebooks.info

Conroller Chiss l=dn

AOributics = |

Lirgusge: ' Dbjective-C
Jva

& 068 MainMen.nib

Classamrs: Controdlar

Instances | Classes | images | Sounds [— a—

=@ a - Search Duter Name Ty

r KSFarm .

] WSFarmatbes
KS5FarmiCall
W5lmaae
WilmageCell @

Conbrofer
Farsties ponder

MaMatrin

Y MEMEmu
MEMEnultem
WEMG i .

“memove | | add

Create the source files for the Cont r ol | er class (Classes —# Create Filesfor Controller, or Option-3§-F).
Instantiate the Cont r ol | er class (Classes —# Instantiate Controller, or Option-3g-1).

Control-drag a connection from the Cont r ol | er object to the image view. Hook up the connection to the i nage Vi ewoutlet in the Info
window.

Savethe nib file (§8-S), and return to Project Builder.
Add an avwakeFr onNi b method to the Controller.m file as follows:

#inport "Controller.h"

@ npl enent ation Controller
- (voi d) awakeFromNi b

http://www.it-ebooks.info/

{
NSBundl e * mai nBundl e = [NSBundl e mai nBundl e] ;
NSString * path = [nai nBundl e pat hFor Resource: @ Abstract 1"
of Type: @j pg"];
NSImage * image = [[NSInmage alloc]initWthContentsO Fil e: path];
[1 mageVi ew set | nage: i mage] ;
[1 mage rel ease];
}
@nd

The code we added performs the following tasks:

a. Gets areference to the bundle object from which this application was |oaded.

11
/1

Il
/11
/1

www.it-ebooks.info

b. Usesthepat hFor Resour ce: of Type: method of the NSBund! e classto look up the path of the Abstract 1.jpg filein the

application bundle. If we were to print out the path that results, it would be as follows:

~/ Lear ni ngCocoa/ | mage Bundl e/ bui | d/ | mage Bundl e. app/ Cont ent s/ Resour ces/ Abst r act

c. Createsan NSI nmage object using the file in our application bundle.

d. Tellsthei mageVi ewof our application interface to display the image.

e. Releasestheimage, now that we are done with it and the image view hasit.
14. Build and run (3g-R) the application. The application should look like Figure 13-6.

Figure 13-6. Image Bundle running and showing Abstract 1.jpg

1.jpg

http://www.it-ebooks.info/

www.it-ebooks.info

808 Window

15. Open the Products group in the Groups & Files pane, and examine the Image Bundle.app item, shown in Figure 13-7. Thisis the built

application bundle and all of the resources inside of it. During the build process, Project Builder automatically moves the image files that we
added to the project into the Resources directory of the application bundle.

Figure 13-7. Examining the built application bundle for Image Bundle

http://www.it-ebooks.info/

www.it-ebooks.info

8o B, Image Bundle - Abstract 1.jpg =

AN B @ maeni®) R d b

Groups & Files

Anskract & jpag
B F M enunib
= mhhﬂii:.rlﬂrh;:
= |7 Framsrwsorks
¥ [Preducts
= w4 image Bundie. sop
[# infa. phist
¥ [MacOs
) Image Bundle
“ Piginfa
v [Resources

* Abstract Lipa
Abstract Fjpg

Abstract 3.jpg
Abstracy 4.jpg
Absract 5.jpg
Absracy G.jpq
Aharact T.jpg
E.‘ub!’lrlﬂ E.ipa

¥ [l [nglish.lpraj
|#] Infoilist stramgs
MainMenu.nik

L

W00 [# Abstrac Lipg § o000

Eonkmarks

T

Image Bundle exited normally.

Instead of just obtaining specific files from the application bundle, we can get all of the resources of a particular type. To illustrate this, we'll add a
Next button to the application, which will iterate over the set of images in our application.

1. Edit the Controller.h file, and add the following code:

#i nport <Cocoa/ Cocoa. h>

@nterface Controller : NSObject

{
| BQut | et NSI mageVi ew *i mageVi ew,
NSArray * i magePat hs;
int currentl mage;

http://www.it-ebooks.info/

www.it-ebooks.info

- (I BAction) next | mage: (i d)sender;

@nd

This alows usto keep track of the pathsto all the imagesin the bundle, as well as keep a count of what image we're showing. In addition, it
adds the method declaration for the action method.

. Save (3§-S) the Controller.hfile.
. Open the MainMenu.nib file in Interface Builder.

. Click on the Classes tab of the MainMenu.nib window; find the Cont r ol | er class, and then reread the source file (Classes —# Read
Controller.h) so that Interface Builder can pick up the new action method.

. Add anew button, named Next, to our interface, as shown in Figure 13-8.

Figure 13-8. Adding a Next button to our interface

http://www.it-ebooks.info/

6. Connect the Next button to the next | nage: action method on the Cont r ol | er instance object.

5] & Window

I Next

7. Savethe nib, and return to Project Builder.

www.it-ebooks.info

8. Modify the awakeFr oniNi b method in Controller.mto match the following code. Note that we have changed lines b and ¢ from the
previous implementation of this method.

{

(voi d) anakeFromNi b

NSBundl e * mai nBundl e = [NSBundl e mai nBundl €] ;
i magePat hs = [mai nBundl e pat hsFor Resour cesOf Type: @] pg"
inDirectory:nil];
[1 magePat hs retain];
currentl mage = O;
NSImage * image = [[NSImage alloc]initWthContentsO Fil e:
[1 magePat hs obj ect At | ndex: current| nage]];

Il

/11
/11
Il

http://www.it-ebooks.info/

}

[i mageVi ew set | mage: i mage] ;
[i mage rel ease];

This code performs the following tasks:

www.it-ebooks.info

a. Obtains an array of paths for all the JPEG filesin our application. Theni | argument tells the method to look in the default Resources

directory. If the images were located in a subdirectory of the bundle, we could specify that subdirectory here as well.

b. Retainsthereferencetothei nagePat hs array so that it doesn't disappear out from under us.

c. Setsthecurrent | mage counter to 0.

d. Createsanew NSI nmage object using the first path of the array of paths we obtained in line a.

9. Addthenext | mage: action method to Controller.m asfollows:

{

}

(1 BActi on) next | mage: (i d) sender

current | nage++,
I f (currentlmage == [imagePat hs count]) {
currentl mage = 0O;

}

NSl mage * inage = [[NSInage alloc]initWthContentsO Fil e:

[i magePat hs obj ect At | ndex: current | nage]];
[i mageVi ew set | nage: i mage] ;
[1 mage rel ease];

The code we added performs the following tasks:

a. Increments the image at which we want to look by 1.

/11
11

/1

11

http://www.it-ebooks.info/

www.it-ebooks.info

b. Checksto seeif we've incremented the counter past the number of images we have. If so, we reset the counter to 0.
c. Createsan NS| nmage object using the path at the current index.
d. Setstheimage view to display the new image.
10. Savethe project (File — Save, or 3B-S).
11. Build and run (38-R) the application. Y ou should now be able to step through the sequence of images in the bundle.
13.2.1 A Performance Diversion

When you run the Image Bundle application, you'll notice that loading the next image isn't exactly snappy. Even on a PowerBook G4, thereisa
notable lag as each image loads into the window. Thisis because we are going back to the filesystem and forcing Cocoato rel oad the image each
time we click on the Next button. We can fix this performance problem by preloading the images. The following steps will modify the code:

1. Modify the Controller.h file to match the following code:

#1 nport <Cocoa/ Cocoa. h>

@nterface Controller : NSObject

{
| BQut | et NSI mageVi ew *i mageVi ew;

NSMut abl eArray * i nages;
I nt currentl mage;

}

- (I BAction) next | mage: (i d)sender;
@nd

Here, we've changed the name of the array to indicate that we will hold references to images, not to the paths at which the images are |ocated.

2. Modify the avakeFr onNi b method in Controller.mto match the following code. We are changing almost every line of code, so be careful
here.

http://www.it-ebooks.info/

{

}

(voi d) anakeFromNi b

NSBundl e * mai nBundl e = [NSBundl e rmai nBundl e] ;

NSArray * imagePaths = [mai nBundl e pat hsFor Resour cesOf Type: @ pg”

inDirectory:nil];
I mges = [[NSMut abl eArray alloc] init];
i nt count = [imagePat hs count];

int i;
for (i =0; i < count; i++) {
NSImage * image = [[NSImage alloc] initWthContentsOFil e:
[1 magePat hs object Atlndex:i]];
[1 mages addObj ect: i mage];
[i mage rel ease]
}

currentl mage = O;
[1 mageVi ew set | mage: [i nages obj ect At | ndex: current | mage]] ;

This code does the following things:

a. Loadsthe pathsto all the JPEG images in the bundle into an array
b. Creates amutable array to the location where the images will be stored
c. Loops through the image paths and creates anew NSI mage object with each path

d. Setstheimage view to display the first image

/1

/1

/1

www.it-ebooks.info

3. Now, modify the next | mage: method in Controller.mto match the following code. This method actually gets simpler as aresult of the
work that we did in the awakeFr oniNi b method.

(1 BActi on) next | mage: (i d) sender

http://www.it-ebooks.info/

www.it-ebooks.info

{
current | mage++;
If (currentlmage == [inages count]) { /] a
currentl mage = 0O;
}
[1 mageVi ew set | mage: [i mages obj ect At | ndex: current | mage]]; Il b
}

The code we added does the following things:
a. Checksto seeif we have incremented the counter past the number of images |oaded. If so, it resets the counter to O.
b. Setstheimage displayed into the image view to the next image.
4. Savethe project (File — Save, or §§-9).

5. Build and run (38-R) the project. You'll notice that it takes longer for the application to launch than it did before, but switching between
images is now much quicker. Aswith most performance optimizations, the price of loading the images has to be paid somewhere; it'sjust a
matter of when the priceis paid.

e The real answer to our performance problem is a background thread that |oads the images after the first imageis
. loaded and displayed. Doing this would move the price of loading the images to after the application was already
wlh = displayed, when the user wouldn't care. However, using threads is not easy and is an advanced topic beyond the scope
' of this book.

http://www.it-ebooks.info/

www.it-ebooks.info

13.3 Exercises
1. Add aPrevious button to the Image Bundle application.

2. Add keyboard shortcuts for both the Next and Previous buttons.

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 14. L ocalization

If an application will be used in more than one part of the world, its resources should be
customized, or localized, for the language, country, or cultural region. Cocoa provides a
group of conventions and services, known as an inter nationalization architecture, that are
flexible enough to enable multiple localizations of character strings, icons, user interfaces,
and even context help packaged into your application. The localized resources appropriate
to the user's preferences are dynamically loaded as needed.

The aim of Cocoas |ocalization architecture is to enable multilingual applicationsto be
created without generating any new Objective-C code for each supported locale. Even if
you don't have an immediate need for multilingual support in your application, it is always
agood idea to keep the localization abilities of a Cocoa application in mind, so you can
enable it when the need arises. With proper design, your application's source code won't
have to be touched if and when it does need to be localized-minimizing the risk of
introducing problems by modifying the code.

In this chapter, we'll take alook at how Cocoa's localization system works, how it depends
on the user's language preferences, and how to structure your application's nib files and use
of strings to take advantage of it.

http://www.it-ebooks.info/

www.it-ebooks.info

14.1 Mac OS X Language Preferences
To see how Mac OS X supports different languages, try the following process:
1. Open the TextEdit application (/Applications/TextEdit), and take alook at its user interface.

2. Close TextEdit, and open the System Preferences application. Select the International
preferences panel.

3. Reorder your preferred language order by dragging Francais to the top of thelist, as shown

in Figure 14-1.
Figure 14-1. Changing language pr eferences
o &) International —

« H4@E®
" Language |_ Date

| Time Mumbers | Keyboard Menu

Lamguages
Francals Drag languages into your preferred
Enalish aorder for use In application menus and
E o dialogs,

Sfal 0
Daursch U Changes :.Hr -‘-‘rcrln i i Fln--'m .'Il-: the next

Lirmee you log in. Changes take &ffect in
Nederlands apalications the next time you apen them.
Italiann
H¥n " Edit.. |
SCript
Kcman Select a ser of text behaviors for each
= SCript,
- |

H¥E Behaviors: English -
(= 25 b
TR

These affect sort order, case comeerssan,
and ward definirions far the selecred
SCrip.

4. Open TextEdit again, and notice how the menu items are now in French rather than English,
as shown in Figure 14-2.

Figure 14-2. TextEdit running in French

http://www.it-ebooks.info/

www.it-ebooks.info

7 TextEdit Fichier Edition Format Fenétre Aide

08 Sans titre
I =
= = = IR N

Enreg. sous : 5Sans titre.rif
|.'| IE

: Tl =l
. - .
Eal maimieni Chemin : ST - 1as sir sl
J& VEux ¥ran flenani
I'heure ' fEnregistrery
e POt Annuler Enregistrer

vraiment £ot hewre
pour tous lel = S znt Ecmine

une telle tnpes dans le livie, mais diable. Ce sem ok, pas il ? Est maintenant lheure pour tous les bons
hommes de venir & l'aide de lear partie. Je ne suis pas sir si je veux voiment derire une telle tripes
dans le livee, mais diahle. Ce sera ok, pas il 7 Est maintenani |'heare pour tous les bons hommes de
venir b l'aide de leur partie. Je ne suis pas sirsi je veux veaiment fcrire une telle tripes dans le livee,
miais diable, Ce sera ok, pai il T Ex maintenant Uheure pour tous les bons hommes de venir & L'aide de
feur partie. J& Be suns pas 05 & pe veus yvraimenl écnre ung telle tnpes dans le livre, mas diable, Ce
sera ok ,[pas 1] T st mamtenant Cheuwre pour tous les bons hommes de venir & larde de leur partig Je
ne s0is pas sar s je veus yrament éonre une telle tipes dans be livee, mais dioble. Ce serm ok, pasil 7
Est muintenant |'heure pour tous les bons hommes de venir i 'aide de leur partie. Je ne suis pas silr si
je veux vraiment écrine une telle tipes dans le livee, mais diable. Ce sera ok, pas il 7 Est maintenant
I'veure pour tous les bons hommes de venir & L'aide de leur partie. Je ne suis pas sir si je veux
vraimeni derire une telle tripes dans le livee, mais diable. Ce sera ok, pas il 7 Est maintenant Ihewre
posur tous les bons hommes de venie b laide de lewr pariie. Je ne suis pas silr si je veux vraiment Scrine

une Lelle trpes dans le livee, mais diable. Ce sera ok, pas il ?

5. Quit TextEdit (File — Quit, or 38-Q), and then reset your language preferences to
English.

What just happened here? By changing the System Preferences, TextEdit uses Mac OS X's and
Cocoa's internationalization system to display the correct interface for the locale we specified.
Under the hood, the system is using localized interface components stored within separate files and
directories within the application’s bundle.

http://www.it-ebooks.info/

www.it-ebooks.info

14.2 L ocalizing Resour ces

In Chapter 13, we took alook at how Cocoa applications are packaged into application
bundles. These bundles can contain multiple sets of resources, each set contained in a
directory with an .Iproj extension and identified by a combination of language and locale.
The ability for bundlesto hold all of the localized resources for an application, combined
the ability for with bundle resource look-up routines to be aware of a user's language
preferences, is what enables one version of an application to support multiple languages.

To get afeel for how localized resources are stored inside an application bundle, take a
look at the contents of the Clock application.

1. Usethe Finder to locate the Clock application (/Applications/Clock).

2. Control-click on the Clock application icon, and select Show Package Contents
from the pop-up menu.

3. Select View —# List from the Finder menus, browse through the application as
shown in Figure 14-3, and notice the files shown.

Figure 14-3. Localized resourcesin the Clock application bundle

http://www.it-ebooks.info/

200

Clock

L J

Hame
Cantents
Info, Elist
Mac 0%
Plginfo
Resgures
¥ background.tif
* Clock.icns
= Lhoc ik B
* ClockTitle. i

F da.lpraj
| Lutch iproj
¥ Erglis . ipraj
ol Clock?2 nib
InfoPlist,.strings
[R.lpraj
¥ French. lproj

wd Clock2.nib
__ InfoPliststrings
L German.lpra

| Italiam, | prod

Date Modified
12801, 11:13 AM
SiEML, A5 AM
34002, 258 PM
O/E/01, 4:35 AM
1278700, 11:13 AM
9i3/01, 4:35 AM
Q/E{01, 4:35 AM
SiEML, 435 AM
2iF/01, 4:35 AM
9/15/01, &:37 PM
SiEM, WLd AM
971101, 3:38 AM
9/11/01, 3:38 AM
G300, 4:3% AM
9i13/01, 637 PM
QE/01, G924 AM
SiEML, W24 AM
2iF/01, 24 AM
9/E/01, 924 AM
SisM, WLd AM

www.it-ebooks.info

Asyou can see, the same files, Clock2.niband InfoPlist.strings, exist in various subfolders
of the Resources folder. These subfolders, which have alanguage name or country code
and a .lproj extension, contain the language-support files for the project.

Mac OS X defines localizations using three different conventions. Each convention allows
adifferent degree of specificity.

A language name

L anguages supported by Mac OS X include English, French, German, Japanese,

Chinese, Spanish, Italian, Swedish, and Portuguese.

A language abbreviation

The language abbreviations, some of which are shown in Table 14-1, conform to
the 1SO 639 specification.

Table 14-1. Some common language abbreviations supported by Mac OS X

L anguage

Country code or abbreviation

http://www.it-ebooks.info/

www.it-ebooks.info

Chinese zh
Danish da
Dutch ni
English en
French Fr
Korean Ko
Polish Pl
"_' o Y ou can easily find language abbreviations on the Web by
o searching for "iso 639". One resource is OASIS-OPEN (http://
wh .

& Www.0asi s-open.org/cover/iso639a.html).

A locale abbreviation

The locale abbreviations consist of alanguage abbreviation (see Table 14-1),

followed by an underscore and atwo letter code. These codes, some of which are
shown in Table 14-2, conform to the 1SO 3166 specification that can identify a

regional variant of alanguage.

Table 14-2. Someregional language codes

Region L ocale abbreviation

British English en UK

http://www.oasis-open.org/cover/iso639a.html
http://www.oasis-open.org/cover/iso639a.html
http://www.it-ebooks.info/

www.it-ebooks.info

American English en US
Canadian French fr_CA
Tawainese Chinese zh TW
Mainland China Chinese zh CN
- Again, you can easily find country abbreviates on the web by
' o searching for "iso 3166". OASIS-OPEN has aresource at http://
W 4. www.oasis-open.org/cover/country3166.html.

A common practice of developersisto use the traditional language name for those that
exist, then to use the language abbreviation, and then-only when necessary-the regional
variant abbreviation.

14.2.1 L ocalized Resour ce Search Algorithm

Cocoa's various resource-handling methods in the NSBund! e class automatically return
the filesystem location of the resource that best matches the user's language and regional
preferences. These methods look for resources of the following types until a matching
resource is found:

Global Resource
Filesthat are stored at the top level of the Resources directory in the bundle
User Region Specific Resource

Filesthat are stored in aregional directory (such as en_UK.lproj) under the
Resources directory, as specified by the user's preferences

User Language Specific Resources

Filesthat are stored in aregional directory (such as English.lproj, da.lproj, or
French.lproj), as specified by the user's preferences

http://www.it-ebooks.info/

www.it-ebooks.info

Developer Region Specific Resource

Filesthat arein aregional directory (such asen UK.lproj), as specified by the
region in which the application was developed

Developer Language Specific Resource

Filesthat are in alanguage directory (such as English.lproj, da.lproj, or French.
lproj), as specified by the region in which the application was devel oped

Note that global resources take precedence over localized resources. This allows a quick
return of resources that never change between locales, without going through the rest of the
search process. Y ou shouldn't have aglobal version of aresourceif you have localized
versions, as the localized versions will aways be masked by a global version.

http://www.it-ebooks.info/

www.it-ebooks.info

14.3 Localizing Nib Files

Nib filesaretypically localized al at once. A person performing localization takes anib file,
trandlates all the user-visible strings, and makes any adjustments that are necessary, such asresizing
controls so that the translated strings appear correctly.

To illustrate how to localize nib files, we will create an application interface that isn't hooked up to
anything, but which contains various controls that we can localize. The following steps will guide
you:

1. Create anew Cocoa Application project in Project Builder (File —# New Project —#
Application —# Cocoa Application) named "Localization", and saveit in your ~/
LearningCocoa folder.

2. Open the MainMenu.nib file in Interface Builder by double-clicking onitsicon in the
Resources folder of the Groups & Files panein Project Builder.

3. Using the various controls available on Interface Builder's palettes, lay out an interface that
looks like Figure 14-4.

Figure 14-4. Our Localization application'sinterface

™ [Window

Payment Type: # Cash
Credit Card

A1atus. Naot Submitted

Subrmit

4. Create asubclass of NSObj ect . Click on the Classes tab of the MainMenu.nib window,
find NSCoj ect , Control-click it, and select Subclass NSObject from the pop-up menu;
name the subclass Cont r ol | er .

5. Create an outlet named st at usFi el d on the Controller object, using the Info window
(Tools — Show Info, or Shift-Gg-1).

6. Create an action for the Controller subclass, named submi t : .

7. Create thefilesfor the Controller subclass (Classes —# Create Filesfor Controller).

http://www.it-ebooks.info/

www.it-ebooks.info

8. Instantiate the Controller subclass (Classes —# Instantiate Controller).

9. Control-drag a connection between the Controller object and the Not Submitted text field,
and connect ittothe st at usFi el d outlet in the Info window.

10. Connect the Submit button to the subm t : method of the Cont r ol | er by Control-
dragging a connection from the Submit button to the Controller object.

11. Savethenib file (38-S), close the MainMenu.nib window in Interface Builder, and then
return to Project Builder.

12. In Project Builder's Groups & Files panel, click the disclosure triangle beside the
MainMenu.nib file, and select the English entry underneath it, as shown in Figure 14-5.

Figure 14-5. Looking at the single localization of the MainMenu.nib file

2) Lecalization - InfoPliststrings —

\NhAB Lecalization |4

i, Fung ', Buikd # Bun | Debug

rihoFllst.srrings: 1 =

i
r

]

Ji:
Fisgs

- —a—— CFEurdleHose = Lon® s
] Tn.n
—J CFEund L eShartVersionString =
CFEardleGetInfoString = |

L4
=
Chissis

Framseaorics = r&l-n-i-rmul!.‘:m*-:'.w - oyt L H I H

Back ks

i Taigels

= Briakpainls

13. Bring up the Info panel (Project —# Show Info, or 3§-1).

14. Select Add Localized Variant from the Localization & Platforms pop-up menu. Y ou will be
prompted for alocale. Enter French, as shown in Figure 14-6.

http://www.it-ebooks.info/

www.it-ebooks.info

Figure 14-6. Adding a French localization of the MainMenu.nib file

File Relerence Inlo

Enter the name of theé new lacale

French v/

Cancel © f 0K \

nstEnuLRilE

Maodily Referenced File - Localization & Platlorms i

| TexT Sertings | COmMmenTs

File Encodirg

Lire Endings

Tab Widhk B Inclent WidiF
— Editar uses tahs

Reser o Defal Values

15. Closethe Info window by clicking on the red close window button.
16. Y ou should see two localizations of the MainMenu.nib file in Project Builder.
17. Double-click the French variant to open it in Interface Builder.

18. Modify the various strings in the interface to match Figure 14-7. To typein the ¢ character,

type Option-g, then e again (without the Option key). Notice that you'll have to resize the
window and move things around to accommodate the longer text fields.

Figure 14-7. Our interfacein French

8 £ Window

Tvpe De Paiement " Argent comptant
) Carte de crédit

statut: Mon scumis

Soumetiez

19. Savethenib file (38-S), and return to Project Builder.

http://www.it-ebooks.info/

20.

21,

22.

23.

24,

25.

www.it-ebooks.info

Build and run the application (38-R) to verify that everything works.

Quit the application (3§ -Q).

Launch the System Preferences application in the Dock, and click on the International
button to open its preferences panel.

Change your language preferences from English to Francais by clicking on Francais and
dragging it to the top of thelist in the Languages window.

Run the application again to see the French interface run.

Quit and return to the System Preferences; reset your preferred language to English by
dragging it to the top of the list.

http://www.it-ebooks.info/

14.4 L ocalizing Strings

www.it-ebooks.info

Not all strings used by a program are located in anib file. Many strings, such as those that appear in dialog
boxes, are usually encoded directly in source code. To localize these strings without requiring changes to the
source, Cocoa provides afunction to look up strings against a strings file directly from code. This function has

the following signature:

NSLocal i zedStri ng(NSStri ng *key, NSString *coment);

Thisfunctionusesthe! ocal | zedSt ri ngFor Key: val ue: t abl e: method of the NSBund| e classto
look up the strings out of the main application bundle. We will add a couple of .strings files (and a bit of code
that uses them) in our project to illustrate how this works.

1. Add anew file, named Localizable.strings, to the project in Project Builder (File —# New File —
Empty File). Save it to the ~/LearningCocoa/Localization/English.Iproj folder. Make sure that it isin the
Resources group, as shown in Figure 14-8.

&)

N,

Figure 14-8. Adding a L ocalizable.stringsfile

| Lnoups & Files

) L

Ll pation
Classes
Cniver Sowring
Rescurces
B Rin bk
&
s 4 English
French

rfaPlist.strirgs

Leszalizabla serings

English

French
Frameworics
Freducts

\ %

Localization

i® Localizatian |5

| Files

Rocd rar ks e Classns

S Targels

= Fovalkjoinis

Localizable.strings

4, Fimed w, B[2 Run | Cebug

Laalizable strings I %

2. Edit the new file to have the following text:

"Not Submtted" = "Not

" Accept ed”

Subm tted";

= "Accept ed";

http://www.it-ebooks.info/

10.

11.

12.

www.it-ebooks.info

Bring up the Info panel (Project —# Show Info, or 3§-1).

Select Add Localized Variant from the Localization & Platforms pop-up menu. Y ou will be prompted for
alocalization. Enter French, and then close the Info window.

Click on the disclosure triangle next to the Localizable.strings file. Beneath that, you will see two files:
English, which we created in steps 1 and 2; and French, which we created in the previous step.

Edit the French variant of the file to match the following text:

"Not Submtted" = "Non soum s";
"Accepted" = "Adm s";

Editthesubm t : method of the Controller.mfile.
- (I BAction)submt: (id)sender
{
}

[statusField setStringVal ue: NSLocal i zedStri ng(@ Accepted”, nil)];

This code sets the value of our status field to the localized form of the Accepted string.
Save the project (File — Save, or 3B-S).

Build and run (38-R) the application. Test out the Submit button, and make sure that the status field
changes.

Quit the application, and set Francais as your preferred language using System Preferences.
Run the application again to see the French interface run. Click the Submit button.

Quit and return your preferred language to English.

http://www.it-ebooks.info/

www.it-ebooks.info

14.5 Exercises

1. Localize the Currency Converter project from Chapter 5 into the language of your

choice. Use the Trandation channel of Sherlock 3 if you need help transating the
strings.

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 15. Defaults and Preferences

Most applications need to store and retrieve preferences that allow for user customization
of an application's behavior and keep track of configuration settings. Mac OS X provides,
as part of its Core Foundation framework, a preferences system that provides a simple and
standard way to maintain these preferences. Cocoa calls these preferences defaults.

If you go to the ~/Library/Preferences folder, you will see the user-preferences database
used by the applications you run on your system. In fact, many of the applications we have
created in this book have written preferences to this database. Take alook, and you'll see
that you probably have Dot View.plist, Menu.plist, and RTF Edit.plist files. These contain
preferences used by some of the various Cocoa base classes used in the sample applications
we've built throughout the book.

In this chapter we'll show you how to take advantage of the user-preferences system from
your applications using Cocoa.

http://www.it-ebooks.info/

www.it-ebooks.info

15.1 How Preferences Work

The preference system in Mac OS X alows you to store values associated with a key-the
name of a property-that can later be used to look up the preference value when you need it.
These key-value pairs are scoped using a combination of username and application ID. All
of the preferences for auser are stored in his ~/Library /Preferences folder.

There are multiple domains-or different scopes of coverage-in which a preference can
exist. When you request a preference, the following resources are searched-in order-until a
match is found:

1. Thelist of arguments that were passed to an application. This lets an application
start up with a preference setting to override all other values for that preference's

key.

2. The users preferences stored in the ~/Library/Preferences folder. Thisis where
preferences that are unique to a user and that need to last between invocations of an
application are kept.

3. A set of global preferences used across al applications that a user may use. For
example, rulersin text views will obtain a user's preferred unit of measurement.
These preferences are stored in the ~/Library/Preferences/Global Preferences.plist
file. Many of these preferences are set using the System Preferences application.

4. The set of preferences that your application registers as the defaults for your
application. If avalue for a preference is not found anywhere else, then this allows
your application to provide a default value.

Preferences in the ~/Library/Preferences folder are stored in the same property-list file
format used by the Info.plist file included with application bundles. Preference value
objects can be of any of the following types:

« NSSt ri ng for storing string values

. NSNumber for storing number values derived from integers, floats, and other
numeric types

. NSBool ean for storing YES or NO values

. NSDat e for storing date information

. NSDat a for storing arbitrary data

. NSArray for storing arrays that consists of any of the previously listed types

. NSDi ct i onary for storing name/value dictionaries that have values of any of the
previously listed types

http://www.it-ebooks.info/

www.it-ebooks.info

Whileit is possible to edit the filesin your ~/Library/Preferences
folder yourself using any text editor, you probably should not.
Y ou might introduce accidental errorsinto the XML syntax of
the files. We'll see some other ways to edit these filesin just a bit.

http://www.it-ebooks.info/

www.it-ebooks.info

15.2 Using Defaults

To show how to usethe NSUs er Def aul t s class, the mechanism by which Cocoa provides accessto Mac OS X's preference
system, we'll build asimple application to keep track of afew of our favorite things.

1. Create anew Cocoa application project in Project Builder (File —# New Project —# Application —# Cocoa
Application) named "Favorites', and save it in your ~/LearningCocoa folder.

2. Open the MainMenu.nib filein Interface Builder.

3. Lay out the user interface as shown in Figure 15-1.

Figure 15-1. Favorites application interface

[&] B Favorites

Favorite Baok
Favorite Color
Favorite Food

Favarite City

4. Create asubclass of NSChj ect in Interface Builder. Click on the Classes tab of the MainMenu.nib window, find
NSChj ect , Control-click it, and select Subclass NSObject from the pop-up menu. Name the subclass " Controller”.

5. Create the following outlets on the Controller class:
o bookFi el d
o colorField
o foodField
o cityField
6. Create an action named t ext Fi el dChanged: . Thisaction will tell the preferences database when an item has changed.
7. Generate the source-code files for the Controller class (Classes —# Create Filesfor Controller).
8. Instantiate the Controller class (Classes —# Instantiate Controller).

9. Connect the four text fields on the user interface to their respective outlets by control-dragging a connection from the
Controller instance to each of the fieldsin turn.

10. Connect each of the four text fieldsto the Controller'st ext Fi el dChanged action method by control-dragging a
connection from the text field to the Controller instance.

11. Save(File — Save, or 38 -S) the nib file, and return to Project Builder.
12. Edit the Controller.h file as shown, adding an instance variable that will hold areferenceto aNSUser Def aul t s object.

#i mport <Cocoal/ Cocoa. h>

@nterface Controller : NSObject

http://www.it-ebooks.info/

www.it-ebooks.info

{
I BQutl et id bookField;
[BQutlet id cityField,
IBQutlet id colorField;
| BQutl et id foodField;
NSUser Defaults * prefs;
}
- (I'BAction)textFiel dChanged: (i d)sender;
@nd

13. Addani ni t method to the Controller.mfile. Thiswill set the pr ef s instance variable.

- (id)init

{
[super init];
NSMut abl eDi cti onary * defaultPrefs = [NSMut abl eDi cti onary dictionary]; /Il a
[defaul t Prefs set Obj ect: @Learni ng Cocoa" forKey: @ FavBook"]; /Il b
[defaul t Prefs set Obj ect: @ San Franci sco” forKey: @FavCity"];
[defaul t Prefs set Object: @Red" forKey: @FavCol or"];
[defaul t Prefs set Obj ect: @Mexi can" forKey: @ FavFood"];
prefs = [[NSUser Def aul ts standardUserDefaults] retain]; Il ¢
[prefs registerDefaul ts:defaultPrefs]; /1 d
return self;

}

This code does the following things:
a Creates anew mutable dictionary that will serve as the container for the default values the application will use
b. Setsfour key/value pairs that correspond to the default values we want to store in the preferences system
c. Obtains areference to the preferences system
d. Indicatestothe pr ef s object that we want to usethe def aul t Pref s dictionary as the set of default preferences
14. Addadeal | oc method so that the class cleans up after itself properly.

- (void)deal |l oc

{

[prefs rel ease];
[super deall oc];

}

15. Add an awakeFr omNi b method to populate the user interface from any settings that arein the pr ef s object.

- (voi d) awakeFr omNi b

{
[bookFi el d setStringVal ue: [prefs stringForKey: @FavBook"]];
[cityField setStringVal ue:[prefs stringForKey: @FavCity"]];
[colorField setStringValue:[prefs stringForKey: @FavCol or"]];
[foodField setStringVal ue:[prefs stringForKey: @FavFood"]];

}

16. Implement thet ext Fi el dChanged: action method so that the key values are saved as they change to the pr ef s object.

(I'BAction)textFiel dChanged: (id)sender

{
if (sender == bookField) {

http://www.it-ebooks.info/

www.it-ebooks.info

[prefs setObject:[bookField stringVvalue] forKey: @FavBook"];

} else if (sender == cityField) {
[prefs setObject:[cityField stringVvalue] forKey: @FavCity"];
} else if (sender == colorField) {

[prefs setoject:[colorField stringValue] forKey: @FavColor"];
} else if (sender == foodField){
[prefs set Object:[foodField stringVal ue] forKey: @FavFood"];

}

17. Build and run (3g-R) the application. You should see the interface launch as shown in Figure 15-2.
Figure 15-2. Our application running

8586 Favorites

Favorite Book. Lparning Cocoa
Faworite Calor: geg
Favarite Food .Mg:.i-;an

Favorite City. San Francisco

18. Change some of the values. Quit the application, then restart to seeif the values were saved.

19. Find the Favorites.plist file in your ~/Library/Preferences folder. Double-click the file to launch the Property List Editor (/
Applicationg/Utilities), which allows you to see the values that you changed in thefile, as shown in Figure 15-3. To see the

XML representation of the plist file, click the Dump button. Y ou can aso, if needed, edit the property list here, save the
changes, and then launch the application we built to see the changes.

Figure 15-3. The preferencesfile under the hood

8aoe " Favorites.plist
Dump

Property List Class Value
¥ Root Dichonary .

FavBook Siring » Stranger in a Strange Land

FanCity Siring + Dallas Texas

FavColor Siring » Black

FavFood Siring + Thai

<tuml version="1.0" encading="UTF-E7>
« |DOCTYPE plist PUBLIC =~/ /Apple Cormputery F/DTD PLIST 1.0/ JEN" “htp: / 'waww.apple comfDTDS/
Propertylist-1.0.d1d">
<plist version="1.0"»
it
<key>FavBook < /key>
<string=Stranger in a Strange Land < /string=
ckey>FavCity</key>
<string>Dallas Texas</string>
<key=FavColor< /key>
<string>Black < /string>
<key>FavFood < /key>
<string>Thal < /string>
< fdict>

< fplists

http://www.it-ebooks.info/

www.it-ebooks.info

Overriding Preferences Using Launch Arguments

Sometimes, when you are developing an application, it is useful to override preference settings for a particular run of
an application. To do this, smply specify the preference key names and values as launch arguments when you launch
your application from the Terminal. These arguments are given following the pattern:

Application -[Key nane] [Val ue nane]

For example, to override the favorite city when we launch the Favorites application, enter the following command
into a Terminal window:

open ~/ Learni ngCocoa/ Favorites/build/ Favorites.app - FavCity "New Ol eans”

Of course, you can apply this concept to any application on your system as long as you know the name of the
preference to use. The best way to find out preference namesisto look in the plist files that they leave in the ~/
Library/Preferences folder.

http://www.it-ebooks.info/

www.it-ebooks.info

15.3 Command-L ine Preferences Access

Y ou can access your preferences from the Terminal by using the defaults command. For
example, to see the defaults for the Favorites application we just built, type the following
into a Terminal window:

defaults read Favorites

Something like the following should print:

{
FavBook = "Stranger in a Strange Land";
FavCity = "Dallas Texas";
FavCol or = Bl ack;
FavFood = Thai :
}

If you want to modify a preference from the command line, you can use the defaults
command's write option. For example, to change our favorite city to Sedona, Arizona, issue
the following command (the quotes are needed to accommodate the commain the value
string we are using):

defaults wite Favorites FavCty "Sedona, Arizona"

Now go back to Project Builder, and build and run (3§-R) the Favorites application again
to see the changes.

http://www.it-ebooks.info/

www.it-ebooks.info

15.4 Using Unique Application | dentifiers

Aswe said before, preferences are stored in files using an application's ID. So far, our
sample applications haven't specified a particular application 1D, so the system has used the
name of the application asitsID.

However, when you browse through your ~/Library/Preferences folder, you'll see that
quite afew of the files have long names like com.apple.iPhoto.plist. When Apple created
the iPhoto application, they assigned it an application ID of com.apple.iPhoto-Apple's
domain name followed by the application name-to reduce the possibility of somebody
else's application named iPhoto interfering with the preferences used by the system.
Obviously, for an application like iPhoto, there probably won't be a collision. But for
applications with more common names-like the ones that we have been creating in this
book-this level of namespace protection is valuable.

For example, all of the Mac OS X applications created by O'Reilly & Associates should
have application IDs that start with com.oreilly. Following this logic, our Favorites
application should have an application ID of com.oreilly.Favorites. To specify this
application ID:

1. Open up the main target of the application, navigate the outline view to Info.plist
Entries —» Simple View — Basic information, and change the Identifier field,
as shown in Figure 15-4.

Figure 15-4. Setting the application identifier

http://www.it-ebooks.info/

www.it-ebooks.info

BoB Favorines - Targer Favorges =
Ay 45 T o
F |
'{‘q, - % & Favorites §
™ = ~ _ |
- ':"-ll-:_* & Files BFind 4 Buld 4 WRsn 4) Debug
v WAL
e —— £ () B Targe: Favarine §)
w [0 Db Sosrces cl & T, . i * of P ng i "
- B i | arget Favorites ol Project Favorites
L4 h Carralar h SummraTy T Basst inToemutian
L e Cosniger i 4 wieingy
¥ 7 Bespaunes | ¥ Sk Wiew Exscuinbisc Favor i
o " :J LTS TRr e ¥ Gararal Seitingu
4] ekt 5 B T Invtalaiizn e Wiewler | Coemoreilp Fanaiiing s
¥ [T Fagsenorks ! GOC Comgilar & = n —
B [T Liid Frasmewaih = Linkar Seitirgs e AFRL o
B [T iy Frasienieis 2 Frafis Header T T
w7 B el g Saarch Paihie
| Jova Compiler 22

B FareiinE -
Laa Archins §en
Fapen Wiew
¥ Infaplin Eniries
w Simaks Wi
Bazk lnfcematia
MHup Ly Infnrma
krin
Cacpa-Tpeciic
Caroa Java-fps
Fud: Jawa -5
Do ume e Type
UAL Types
Enpeit WiEw
wBailld Fases
Herl s
B o b Fo 5 P
SOTES
Frommworis & L

@ Lamets

= B hpegeais

Fiarmdiabes soappei.

2. Build and run (38-R) the application, change the values, and quit the application.

3. Using the Finder, you can see that there is now a com.oreilly.Favorites.plist filein
your ~/Library/Preferences folder. If you wanted to read thisfile from the
command line, you could use the following command:

defaults read comoreilly. Favorites

http://www.it-ebooks.info/

www.it-ebooks.info

15.5 Exercises

1. Takealook at the contents of the Favorites preference list file using Property List
Editor.

2. Add areset button to the Favorites application that will reset the valuesto their
origina state.

3. Modify the Favorites application so that it reads its application defaults from a.
plist file contained as aresource in its application bundle.

4. Modify the Currency Converter application from Chapter 5 to remember the
exchange rate between invocations of the application.

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 16. Accessory Windows

When a Cocoa-based application starts up, it loads all of the objectsin the main nib file,
then initializes, connects, and displays them. This can take some time, and the more objects
you have in your interface, the longer it will take. While this process is happening, nothing
el se can happen in your application, and the user gets to watch the application icon bounce.

To shorten load time, lower initial memory consumption, and help organize your
application better, Cocoa lets you use multiple nib files and load them on demand. For
example, you can have separate nib files for info panels, toolbars, and dialog boxes. This
chapter shows you how to use auxiliary windows with your application, explaining how to
load them and how to manipulate their contents to create inspectors.

http://www.it-ebooks.info/

www.it-ebooks.info

16.1 The Role of File's Owner

So far, we haven't paid much attention to the special File's Owner object that shows up in
Interface Builder-other than to say that it is a proxy object that "owns' the objectsin anib
file. However, when working with multiple nib files, it is crucial to understand the role that
the File's Owner plays as the object that |oads-and thus "owns'-the nib file. When working
with asingle nibfile, it is easy enough to create connections between your code and
controls in the nib file. However, when working with multiple nib files, it becomes more
difficult to make clear connections between controlsin an auxiliary nib file and those of the
main application. To make these connections, you use the File's Owner object proxy.

In the applications that we've put together so far, File's Owner has been assigned to the
main object (an instance of NSAppl 1 cat i on) of the application or, in the case of a
document-based application, a document object (a subclass of NSDocunment). You can
see this connection in Interface Builder by selecting the File's Owner and looking at the
Attribute's inspector, as shown in Figure 16-1.

Figure 16-1. The default File's Owner object

8086 Untithed £ £ Fila's Chamsar Inla
BinGutes
i T
Instamces Classes Images Sounds

Class

. u E =
ALEMIEOE | ectinfo
| - A5EM BB ectinfedlanager

Bl pie C1ai
SMainkleny

EPalette

aed larg E)ect
M5ACTE e
S5 pplication
Mhadrray

S5 B

S EroAWE e
hHrowseriel
S5 RiTEn
sSHumonCe
“&Cell

o ko W TR S
H5ColorPMcke
HhLplorive
SSComb oS
5L omboEoalell
AL pntro

SY5C 5o L

WWEnc o

Asyou can see from Figure 16-1, you can assign the File's Owner object to any class.

When creating an auxiliary nib file, you will need to assign the File's Owner proxy to the
class that will load the nib and be responsible for mediating between the functionality of

http://www.it-ebooks.info/

www.it-ebooks.info

the secondary window and the rest of the application.

http://www.it-ebooks.info/

www.it-ebooks.info

16.2 Making an Info Window

To illustrate how to use auxiliary windows and how the File's Owner proxy enables the various parts of an application to
communicate, we will create a simple inspector to tell us how many characters are in atext view.

16.2.1 Createthe Main Interface

1. Create anew Cocoa Application project in Project Builder (File —# New Project —# Application —# Cocoa
Application) named "Simple Inspector", and save it in your ~/LearningCocoa folder.

2. Open the MainMenu.nib file in Interface Builder.

3. Createasubclass of NSCbj ect in Interface Builder, named Cont r ol | er . (Click on the Classes tab of the
MainMenu.nib window, find NSObj ect , Control-click it, and select Subclass NSObject).

4. Create an action method on the Controller class, named showl nf oPanel : .
5. Create four outlets on the Controller class, named i nf oPanel ,i nf oPanel Control | er,text Lengt hFi el d,

andt ext Vi ew, and assign their types as shown in Table 16-1 and Figure 16-2.

Table 16-1. Assigning the typesfor the outlets of the Simple Inspector application

Outlet Type
i nf oPanel NSPanel
i nf oPanel Control | er NSW ndowCont r ol | er
text Lengt hFiel d NSText Fi el d
t ext Vi ew NSText Vi ew

Figure 16-2. Creating outlets on the Controller class

Ej E| @ Maindenu.nib (&)) Corémdies Class Info
AT 5 R
nstances | Classes | Images | Sounds
='m Qe cegreh Languace = Dbjective C
i Jaria
= [-l ChassMame: Conoredler
Connsller
FirstAespomder Fatumee | 1 Actios
.I'.' wrhes Wame Twpe
infoParel HSParee| .
i infofanelCenerelier HiWindowlonkrciier ¥
texilergthField HETexiField v
"

(LRI MET @

" agd

Thei nf oPanel outlet will hold areference to our inspector panel. Thei nf oPanel Contr ol | er will serveasthe

http://www.it-ebooks.info/

www.it-ebooks.info

window controller for the panel. Thet ext Fi el dLengt h outlet will point to atext field in our inspector panel that
will display the total number of charactersinthet ext Vi ew.

. Generate the source-code filesfor the Cont r ol | er class(Classes —# Create Filesfor Controller).
. Instantiatethe Cont r ol | er class(Classes —# Instantiate Controller).

. Drag atext view out to the application's main window, and set its Autosizing attributes so that it will resize along with
the window that containsit.

. Control-drag a connection from the Controller instance object to the text view, as shown in Figure 16-3, and connect it
tothet ext Vi ewoutlet.

Figure 16-3. Connecting the text view to the Controller

— Tes

oy

Lorein ipsuin Sslof
sl ar shil lamsl
ronsreielaur

- adipisicing paoa, e
! do wiuemod fempor

ik f_'\

T [Browser

Connectinons

Outlats

mioPanel

mitePane iConoroder
textiengthl el

EEwbe e r

BO6 Mainkdenu.nib
Source Destination
i \ = heatiiew ST st View
Instances Classes mages Saunds
x o iE H
{ =
' 1 =]
e
u
Windom Contraller
hecommect

10. Add a Show Info menu item to the MainMenu's Window menu, as shown in Figure 16-4. Give it akey equivaent of

g8-1. Thiswill let the user of our application get the info panel either by using the menu item or by just using the
Command-key equivalent.

From the Cocoa-Menus palette:
a. Drag an Item to the menu, and place it as shown in Figure 16-4.
b. Usethe Info panel to change its name and assign a Command-key equivalent.

Figure 16-4. Adding a Show Info window to the application's menu bar

http://www.it-ebooks.info/

www.it-ebooks.info

5] MainMenu.nib - Mainkenu 2 =) 4§ rual Ly Infs
r .
MewaApplication File Edit Help Anributes i
Minimize =M
ll'..-l--l-
F Bring All ko Front
Tie: Show Info
) Kay Fopawalant -I
] £ I'J1rlll Mrnuw —
!
- Yy ==y = Madifiers
- AWy, — —
- Texi = 1"\.‘_ Fa = - =
Application ¥ _ =
mﬁ ==t

11. Connect the Show Info menu item to the Controller'sshowl nf oPanel : action method by Control-dragging a
connection from the menu item to the Cont r ol | er object, as shown in Figure 16-5.

Figure 16-5. Connecting the menu item to the showl nfoPanel: action method

o, (a) WM item info
(&) Mainkenw.nib - Maindlenu =
- . Connechigry -
MewApplcstion File Edit Help
Ml [z oM Cutlats Actions
Langet - showinfoPanel; "
Shiw Iilo I
Bring All ta Freat
MainMenu.nib
i _— Souwre Destination
Instances | Classes | Images | sounds narget Conwrolier.shawinfoPamel:
}7\ o L] s E
e
L =
’.' -
Manilenis
8 ‘
Windiow Controlies
4 Discannect b

12. Save (§B-S) and close (38-W) thenib file.
16.2.2 Create the Inspector Panel

Now that we've created the controller object for the application, the application's main window with a text view, and the menu
item for the user to request the info panel, we need to create anew nib file to contain the user interface for the info panel.

1. Createanew nib filein Interface Builder (File —# New). Interface builder will show adialog box similar to that in
Figure 16-6. Select Empty and click New.

Figure 16-6. Interface Builder's starting point

http://www.it-ebooks.info/

www.it-ebooks.info

&) & Starting Paint

Y ocoa
Application
Empty
Antention Panel
IE Inspector
Ik Palette
¥ arhon
Main Window With Menu Bar
Empty
Window

Language English 53|

“Dpen... | “Cancel | I Wew

2. Savethefile as InfoPanel.nib in your ~/LearningCocoa/S mple Inspector /English.Iproj folder, as shown in Figure 16-
7. You will be prompted to add the nib file to the Simple Inspector target; click the Add button to do so.

Figure 16-7. Saving the InfoPanel.nib file

as Untitled
Save a5 InfoPanel.nikx
Where Erglish | pro T" fal
build
English.lgraj F
'—& a4 e
" Wew Folder ' (7 Add to Favorites
T Hidle extension Cancel © F Save 3

3. Now, we need to designate our Cont r ol | er classasthe object that will be the File's Owner for thisnib file at
runtime. To let Interface Builder know that the Cont r ol | er classexists, drag the Controller.h file from Project
Builder onto the InfoPanel .nib window.

4. Select the File's Owner proxy object in the InfoPanel.nib window, and, using the File's Owner Info inspector as shown
in Figure 16-8, set the File's Owner classto Control | er.

Figure 16-8. Setting the File's Owner class

http://www.it-ebooks.info/

W

B B InfaPanel.nib

{

[
INSTAnCEs \ Classas Images Sounds

e 1

www.it-ebooks.info

File’s Chemar inf

Aktrbate |

Class

ASE MO ecinfo

ASE NG| ectinfoManager
Cancraller

IBInS pCenr

IEPale e

jara. lansy. CEject
MSAcrsanCil

M5

HECambsahox

HECambsabaxCel 3
HECanbne L

Thistells Interface Builder that the class responsible for loading this nib file will be of type Controller. By setting this
class as the File's Owner, we can designate that various interface components in this nib file should be connected to the

outlets of the Cont r ol | er class.

5. Drag out apanel from the Windows palette. Name the panel Info by using the NSPanel Info inspector, as shown in
Figure 16-9. Also, make sure that the Hide on deactivate and Utility window (Panel only) options are checked. These
options will make our panel look like an Info panel and ensure that it disappears when our application is not active.

Figure 16-9. Creating the Info panel

B0 6 nfoPanel.nib

ImsLangas Claggas Imaggas Sounds

e | B

Farm |

(R}

Wind oo
— - Ta: -
- ; Te H 1
Window
Panel Drawer
REF i
AT B
WiAdsw Tin
Aule have Name
Bl K1) Comrot
Moewerared Minanrize
™ Retwned M Cheaa
= puffered Resine
Dalians

Eeleace when closed
W Hide on deactivaze

Wisible ar Munch Givid
'¥‘ Dadurrad
W One shot

W Lailiny window {Panel anly

6. Drag two text fields onto the panel; name them "Length of Text View:" and "Number". Control-drag a connection
from the File's Owner proxy object (remember, thisis a stand-in for our Controller class) to the Number field, and set
thet ext Lengt hFi el d outlet, as shown in Figure 16-10.

http://www.it-ebooks.info/

www.it-ebooks.info

Figure 16-10. Connecting the textL engthField

(] (5] Panel a B File's Owerar inf

" . Comnections A
Length of Text View: Wumber

Cuitlens

il sl
foPanslComroller
riextlamgihfield [
LIS T

Source Destination
texiLengthFieid M Tewil iekd (Sumber)

| InfoPanel.mip

Instances ! Classes | Images T Sounds |

& 1 ’

Parl

r k|

Emsconpect

7. Control-drag a connection from the File's Owner object to the Panel object in the InfoPanel .nib window, as shown in
Figure 16-11, and connect it tothei nf oPanel outlet.

Figure 16-11. Connecting the infoPanel outlet

60 | infaFanal.nib (&) 8 File's B Inla
Connaction =
P instancas T Classes T Images | Sownds \
Dutlets
. I B ‘infoPanel -
e 1 inf nPamebC oncroller
™ k temiLenpgihFicld v
Panel b e
“Source Destination
infoffane| M5Pare| (Panell
textlangthiield MaTaxtFiald emberi

== &

[rrreeees

8. Savethe nib file (38-S), and return to Project Builder.

16.2.3 Implement the Code

Now that we have our two nib files designed, it's time to implement the code that ties all the pieces together.
1. Edit the Controller.mfile asfollows:

#i nport "Controller.h"
@ npl enentati on Controller

- (I BAction)show nfoPanel : (i d)sender

{
if (!infoPanel Controller) { /Il a
[NSBundl e | oadN bNaned: @I nf oPanel " owner: sel f]; /'l b
i nf oPanel Controller = [[NSWndowControl |l er alloc] /Il ¢
i ni t WthW ndow: i nf oPanel];
}
[text Lengt hFi el d setlntValue:[[textView textStorage] |ength]]; /1l d

[i nfoPanel Control |l er showW ndow: sel f]; Il e

http://www.it-ebooks.info/

www.it-ebooks.info

}
@nd

The code we added performs the following tasks:

a. Checksto seeif we have areference to awindow controller for the Info pandl. If we don't, it means that we
need to load the nib file that contains the panel. On the other hand, if we have areference, then we don't need
toload it.

b. Loadsthe InfoPanel nib file. Notice that we don't use the .nib extension here. When the nib isloaded, the
connections assigned to the File's Owner will be made to the Cont r ol | er object.

c. Creates anew window controller, assignsittothei nf oPanel Cont r ol | er variable, and initializesit to use
the panel loaded from the nib.

d. Setsthet ext Lengt hFi el d to the length of thet ext St or age object.
e. Showsthe Info panel.

2. Build and run (38-R) the application. Enter some text into the text view, then show the Info panel (Window —#
Show Info or 3g-l). Y ou should see something like Figure 16-12.

Figure 16-12. Our inspector in action

008 Window Panel

Length of Text View: 119
Things ko do today 3

Clean e Eiichan
Findsh Chiaplar 16
Gl ready for YWANDIC

Things o do lomosnaw

Go soe & movie

Obviously, we could add al sorts of information to our inspector window, such as the number of words in the file, number of
paragraphs, etc. We'll leave these tasks as exercises at the end of the chapter.

16.2.4 Tracking Changes with Notifications

Notice that we have a problem with our application. When you show the Info panel, you see the number of charactersin the
text view, but when you change the text in the text view, the info panel becomes out of date. The information only updates
when you close the Info panel and select Show Info again. We see this behavior because we are only setting the information in
the panel when the user tells the application to show the panel. We prabably want this information to be updated dynamically
asthe text view's contents change.

To get this functionality, we'll use a notification that the text-view object will post to the notification center whenever its
contents change. For more information about notifications, see Chapter 8.

1. Add thefollowing code to the Controller.mfile:

nmport "Controller.h"

@ npl enent ati on Controller
- (voi d) awakeFronmN b Il a

http://www.it-ebooks.info/

www.it-ebooks.info

{

NSNoti ficati onCenter * center = [NSNotificationCenter defaultCenter];

[center addObserver:self

sel ector: @el ect or (t ext Di dChange:)
name: NSText Di dChangeNoti fi cati on
obj ect:textView;

}
- (voi d)textDi dChange: (NSNotification *)notification /'l b
{

[textLengthField setlntValue:[[textViewtextStorage] |ength]];
}
- (1 BAction)showl nf oPanel : (i d) sender
{

if (!infoPanel Controller) {

[NSBundl e | oadNi bNamed: @ | nf oPanel " owner: sel f];
i nfoPanel Controller = [[NSW ndowControl | er all oc]
i nit WthW ndow: i nf oPanel];

[textLengthField setlntValue:[[textView textStorage] |ength]];

[i nfoPanel Control |l er showW ndow. sel f];
}
@nd

The code we added performs the following tasks:

a Addsan awakeFr omiNi b method that will add the Controller instance as an observer to the default
notification center interested in NSText Di dChangeNot i ficati on eventsonthet ext Vi ewobject.

b. Implements the callback method that the notification center will call whenever text changesin the text view.
We simply update thet ext Lengt hFi el d inour inspector panel.

. Build and run (38-R) the application. Show the Info panel (Window — Show Info or §8-1), then type text into the
text view. The info panel will now keep up with the correct number of charactersin the text view as you type.

http://www.it-ebooks.info/

www.it-ebooks.info

16.3 Exercises

1. Add afield to the Simple Inspector application that will display the number of
words in a document.

2. Add afield to the Simple Inspector application that will display the number of
paragraphs in a document.

3. Add an Info window to Dot View (see Chapter 8) that will let the user know the
current diameter of the dot.

http://www.it-ebooks.info/

www.it-ebooks.info

Chapter 17. Finishing Touches

Over thelast 16 chapters, we've covered quite abit of material and laid a decent foundation
on which you can build your Cocoa programming abilities. Before we leave you at the end
of the book, let's take alook at the various finishing touches that you should put on your
application before sending it out into the world. In this chapter, we explore the following
topics:

. Tidying up the user interface
. Providing anicon

. Providing help

« Customizing the About box

. Tweaking compiler settings
. Packaging for distribution

http://www.it-ebooks.info/

www.it-ebooks.info

17.1 Tidying Up the User Interface

Y ou've no doubt noticed that when running the applications we've built throughout the
book, the menu items refer to a"NewApplication" instead of the name of the application
you created. An example of thisis shown in Figure 17-1, where we see the application

menu of Dot View.

Figure 17-1. Dot View's application menu

" g Imhle Edit Window Help

About MewApplication
Dot View
Services k

Hide MewApplication 3H

Hide Others oaEH
Shaowe Al
"'I [u.J. P [l.' LIk J-:::l
T I ——

i

Thankfully, thisis easy to fix. Instead of creating a new application, as we've done to
introduce most of the topicsin the book, we'll add all of these finishing touches to the Dot
View application we built in Chapter 8.

1. Open the Dot View project from your ~/LearningCocoa/DotView folder.

2. Open the MainMenu.nib filein Interface Builder.

3. Click on the NewApplication menu, as shown in Figure 17-2, and change the menu
text "NewApplication" in the various menu items to read "Dot View". Y ou can do

this either by modifying the title of the menu item using the inspector, as shown in
Figure 17-2, or by editing the menu items from the MainMenu.nib window.

http://www.it-ebooks.info/

www.it-ebooks.info

Figure 17-2. Editing the menu

B MainMenu.niby - MainMenu
L
File Edic Window Help
R

About Dot View
Preferences...
Seryices F
Hide Dot View EH
Hide Others S EH
Showr All

ShkleAuem Infa

Altributes N |

Title: Guit Newdpplcation .].

=

Kay Eguivalest: O

Moditiers

If you choose to edit the menu items from the MainMenu.nib window, click once
on the applicable menu, and then double-click on an item (for example, "Quit
NewApplication") to highlight it. Next, double-click again on "NewApplication” to
highlight just that word, and type in the name of the application-in this case, Dot

View.

read "Dot View Help".

Click on the Help menu item, and change the "NewApplication" help menu item to

5. Savethenib file (3B-S), and return to Project Builder.

6. Build and run (38-R) the application. Check all the menu items.

http://www.it-ebooks.info/

www.it-ebooks.info

17.2 Providing an I con

All Mac OS X applications should provide an icon for their application. In fact, icons are
probably the single most visible attribute of your application, so investing a bit of time and
effort into them is warranted. Application icons are typically stored in a.icnsfilein the
application's bundle. These .icnsfiles contain severa images to use as the application's
icons, in various sizes and bit depths.

The Developer Tools package contains avery ssmple utility called lconComposer (/

Devel oper/Applications) that will convert imagesinto Mac OS X-style icon files. Using a
standard graphics application, you can create art for your icon, save it as a 32-bit imagein
TIFF, PICT, or Photoshop format, and then import it into |conComposer. Once the image
has been imported, |conComposer can create icon masks for icons sizes that require one.

If you are comfortable working with Adobe Photoshop, use this section learn how to create
source art for an icon in just afew seconds. If you don't use Photoshop, you can adapt these
instructions to other graphics applications; or, you can just grab the DotViewlcon.psd file
out of the sample-code download for this book (see the Preface for information about
where to download the example code).

1. Launch Photoshop, and make a new 128x128 pixel image with atransparent
background, as shown in Figure 17-3. It doesn't really matter what DPI you use, but

72 DPI istraditional for screen work.

Figure 17-3. Creating the DotViewl con.psd filein Photoshop

o E
Name: | DotViewloon r (804 —]

Image Size: 48K _ancal

Preset Sizes: Cuitom]
Width: (1128 pixels ¥

Height: |128 pixels ¥

Résalution: |72 pixels finch I'§

Mode RisB Color T

Contents
White
Background Color

™ Transparent

http://www.it-ebooks.info/

www.it-ebooks.info

2. Create your icon. Theicon that we designed (and which you can get from the
example download package) is shown in Figure 17-4.

Figure 17-4. The Dot View icon in Photoshop

®00 Daotviewlcon i

"N

3. Savethefile as a Photoshop document. Be sure to save with transparency.
4. Launch IconComposer.

5. Chose File —# Import Image. IconComposer's dialog box will have a pop-up
menu that lets you specify what kind of icon to make from the imported data. Select
Thumbnail 32 bit data, and open the document saved in step 4.

6. Theimage will appear in the Thumbnail slot of IconComposer. Drag and drop the
image from the Thumbnail row to the Huge, Large, and Small rows, as shown in
Figure 17-5. Each time you do this, you'll be asked whether you want to use a

scaled version (say yes) and whether you want to extract a 1-bit mask from the data
(also say yes).

Figure 17-5. The Dot View icon in Icon Composer

http://www.it-ebooks.info/

www.it-ebooks.info

= iUntited

Image ELE A Gha (44 B E Mass (L HiL)

7. Savethefile as ~/LearningCocoa/DotView.icns.

8. Return to Project Builder, and add the DotView.icnsfile to the project (Project —#
Add Files). It doesn't need to be copied into the project directory, since we saved it
there, but make surethat it is added to the Dot View target.

9. Edit the main target (Project —# Edit Active Target), navigate the outline view to
Info.plist Entries —# Simple View —# Icon, and enter DotView.icnsinto the
Icon filefield, as shown in Figure 17-6.

Figure 17-6. Setting the I con using Project Builder

http://www.it-ebooks.info/

www.it-ebooks.info

(- RSN | Dal View - Target Dal View =
L 3
a “* ‘a, y # Dot View 2] > oAb
L E:i;?:: o WFird 4 Budd 4 WA g) Detup
» [Clasees @ O & Targer Dot Wiew 3] = R
b [Other Sources
¥ [Asasmerces & Target "Dot View" of Project "Dot View”
£ h-nﬂ-lhiﬁm nlz | Sumsiary r leon
L ¥ |7 AfoFisLsTings 5 ¥ Saitings
o * Defwew.Eni whmale Wew foon Ble: Da]
¥ [Fearrasanarin. 3 Cenaral Semng et
¥ [Prod s q :E:I‘W:I;
I: Licksr Selbirgs
Frefi Maader
| Seanch Farhs
{ e Cerrgiien §
i ey hive 52
= Enper Yiew
| ¥ infoplist Edtrias
B wEmek Ve
| Eashe intormean
& Einsiny i=fesre
'-lfl knn
| Lo =5Specific
C=zon Jres-Spr
{ Fure jasa-Saes
il Cesturrat Top
. UBL Typan
o Exper Yiew [

[l | ¥ Build Phases

Dt Yiew exiind scrmally,

e ————

10. Build and run (3€-R) the application. When the application launches, you probably
won't see the new icon in the Dock; but, when you try to close the window, you
will seeit in the sheet, as shown in Figure 17-7.

Figure 17-7. Theicon filein use by the application

af-]- Dot View

Close
Showld this windorar clase?

{ cancel))

http://www.it-ebooks.info/

www.it-ebooks.info

- When you run the Dot View application from Project Builder or
out of the build directory, you won't aways see theicon used in
) &4. theDock or in the Finder. However, as soon as you drag the built
- application to another directory (e.g., ~/Applications), the icon
will probably work correctly. Sometimes logging out and back
into your machineis required. This behavior is due to the Finder

caching the icons for display on screen.

Chapter 10 of Apple's Inside Mac OS X: Human Interface Guidelines contains quite a bit of
information about icon design. Y ou can find this book on your system in the /Developer/
Documentation/Essential s/AquaHI Guidelines folder.

http://www.it-ebooks.info/

www.it-ebooks.info

17.3 Providing Help

Among the other features of Mac OS X is an integrated help system known as Apple Help.
Introduced as part of Mac OS 8.5 as part of Carbon, Apple Help isan integral part of Mac OS X,
displaying help content authored in the HTML format in the industry standard HTML 3.2
specification. Using HTML for the help file format is a big win and means that you can create help
files using atext editor or your favorite web page authoring tools, such as BBEdit, Dreamweaver, or
GoLive. In addition, Apple Help can display any media supported by QuickTime. This means that
most of the major image formats, as well as Flash content, are supported for display.

The following steps guide you through adding help to the Dot View application:

1. Create a subfolder in your ~/LearningCooca/Dot View folder, named Help, as shown in
Figure 17-8.

Figure 17-8. Adding a Help folder

Lok View L builg

Favorites Dot View.pbpra
nellg h Doiiew n
Hello ‘Warlg ¥ Doty lew icnis
abjects m Doty iew.m

RTF Edit Emghsh.lpro|
SONGE Helg

m main.m
h Mylelegate h

m MylDelegate,r

2. Add the Help folder to Project Builder (Project —# Add Files). Select the Help folder
created in step 1, and click the Add button. On the next sheet that appears, click the Create
Folder References for any added folders radio button, as shown in Figure 17-9. Thisinstructs

Project Builder to copy all of the contents of the built application’'s Resources folder.

Figure 17-9. Adding the help folder asa Folder Referenceto our project

http://www.it-ebooks.info/

www.it-ebooks.info

-l Dot Wiew - Tanget: Dot View
"‘\]-... IJ_ 1;"' _ | Copy Remd info destinatan grosp's folder O res ded)
¥ Creups & Filed e
vy Refererce Style: Default -
"
s " Becwrshvaly craate graups for any added folders
¥ # Create Folder Beferences for any added folders
o 4 |
+ F = ¥ Farmsin
= > Add To Targets
. o Do® Vi d EY T | Dubug

(u)=
"Dt View"

Cance ¥ Add W
i 11 Urer Seiras | |

Pretic Fipader

Search Farhis
= lava Compiler §
= Java ArCRiwi S
% [apert View
s winfoglist Eanriit
i ¥Fiimps Wiem

Hagic iviormani =
Diaplay nboemy

Dt View ensed sormally

3. Createanew file (File —# New File —# Empty File) named index.html in the Help
directory.

4. Edit the index.html file as follows:

<htm >

<head>

<neta nanme="Appl eTitle" content="Dot View Hel p">
<title>Dot View Hel p</title>

</ head>

<body>

<h1>Dot Vi ew</hl>

<p>Click the Dot. Change its color. Have Fun. </ p>
</ body>

</htm >

Thisisastandard HTML file with the addition of anet a tag that names its attribute set to
Appl eTit| e. Thisnet a tagisused by Apple Help.

_a Y ou can find much more Oinformation about Apple Help,
including all the special tags that you can add to your HTML files,
«! #4. inthe Carbon documentation installed with the Developer Tools.

~ Start with /Devel oper/Documentation/Carbon/

Humanl nterfaceToolbox/AppleHelp /
ProvidingUser AssitAppleHel p/index.html.

http://www.it-ebooks.info/

www.it-ebooks.info

5. Thelast step isto add two keys to the application's property list. Unlike setting the icon file,
Project Builder doesn't yet provide a GUI for setting these properties, so use the following

directions:

a. Open the main target of the application (Project —# Edit Active Target).

b. Navigate the outline view to Info.plist Entries — Expert View, as shown in Figure

17-10.

Figure 17-10. Adding propertiesto thetarget in the Expert View

BaB Dl View - Targar Dot Wiaw
-"1..\. "'L = | ﬁ, 3 Dot Vi
." 8
B, Find = Buiid & Fun i Cmiziug
%_- D D Targei: Dot Wiy 2 [)
& Target "Dot View” of Project "Dot View™
| [Eewnary ¥ Infin.plisy Ervbries i
5 wSennings
5 S el VA RMew Sizling Cweleie
= Leserdl Jetbirags
. racsllaiizn Tsiingn Frogerey Lini Clasx Wl
CLC Compller Sritisg - M I A R L, Riring T
2 Iricer SRrnnge CFBard e Lusiulibde fmrg L Bt Wiew
E Prefin Header | crmcrditislzBookrzizer Smieag L Halp |
A depreh Parss CFRerdistiviphanktare Bineg d Do Wiew Help
I Jivi Comgilet Sanisgi CFBurdleiconFike Slnrg + DoTéliem ions
Juvw Archive Sait rege CF B b i FolDia 1 Dot i e g e Sinrg v B
Expeet Wipw ClBurdiePachige Tyse furirg : APPL
g wintoopis Enives Cf Burdhrh gratars String
- D YA CFBerd vercn Simieag oy
= Base 1 Morrsal or Fohz i hFie Hrrg ! Kankens
1 Dhaplary |z Formatins roPriag aah g srrg b wSapgd Can o
]
= Cooea-Specific
i Ciodsa brea-Spechic
] Pure jivi-Saee e
5 Dt L e
'] LRL Typas
Expert Wisw
v Belld Phases
Headers
-

Busdk: Bessucos
Sourcea
Frameraorin & Lbsaries

6. Click the New Sibling button. Name the new key C-Bund! eHel pBookFol der , and give
it astring value of Hel p.

7. Click the New Sibling button again. Name the new key CFBund! eHel pBookNane, and
giveit astring value of Dot Vi ew Hel p.

. Build and run (38-R) the application. When the application launches, ask for Help (Help —
Dot View Help, or use the 38-? keyboard shortcut). The Apple Help application will launch and
display your help, as shown in Figure 17-11.

Figure 17-11. Dot View Help

http://www.it-ebooks.info/

8086 Dot View Help == L
& H Q % | vl Help Center
Back Help Center &zk a Question e AlrPon Help

i AppleScript Help
Nl e e e L e et e =t __I g Dot View Help

Dot View 2 Ink Help

N Mac Helg
Click @ dot. Chimge it ealor. Have Fun. '=-' ::;':1::"

vl Developer Help
& Using Developer
& Additional
& Carban

| & Cocooa

J

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

17.4 Customizing the About Box

Cocoa applications get a "free" About Box by default. When you run the Dot View
application and select the Dot View —3# About Dot View menu item, you'll see an About
Box that looks like Figure 17-12.

Figure 17-12. The default About Box for Dot View

" @ T rile Edit window Help

Services Pk

e

Hide Dot Yiew #H
Hide Others SCMH
Show All
Dot View

Dot Wiew wersion 0.1 (vl 1)

Quit Dot View WO

Loppright 2002 . MyCompanykame .

This default about box displays the application icon-in our case, the icon we added earlier
in the chapter-the application name, and a couple of strings obtained from the application
bundle. To set these strings to something a bit more sensible, use the following steps.

1. Openthe InfoPlist.strings file in the Resources folder of the Groups & Files panel,
as shown in Figure 17-13.

Figure 17-13. Editing the InfoPlist.stringsfile

http://www.it-ebooks.info/

www.it-ebooks.info

.:"‘w.. ’.'I_h_ Q ‘ﬂ'jw. D View

Creaipi & File &, Farkd %, i 3 kr I Debuip
2 Dot View " —
Clavuen E InlaFELiIFEga Y & 5 X
sl [T
o i Dt ot §
- CFHaslicHome :
- il MyDe egale s - .
1= a | CFBured leSeaat Ve s landtrlng =
o YL EgIE 2 | CrDandeiet Inf o3 ing = “[ot
Oither Sources 3 ;
- s - A H s i Sl | Wl egret IS =
RAetcurons
o " anMenunib
i d
wat [e i, i rsg i E
o % Dotviicns N i
" el 4
e i
Framewnirgs
Linked Framesoris

DHher Frameworks

sgpain

Dot vView exied normally

2. Editthe CFBundl eGet | nf oSt r i ng and NSHumanReadabl eCopyri ght
strings to whatever you choose. These strings are what the default about box uses.

3. Build and run (38-R) the application. When you open the About Box, you'll see the
strings that we just edited.

You'll notice that one part of the about box still refersto a"v0.1". Y ou can change
this string in the Info.plist Entries —# Simple View —# Basic Information area
of the Dot View target.

17.4.1 Giving Some Credit

It's not obvious, but if you provide a Credits.rtf file in your application's bundle, the default
about box will display it as part of its content. To see thisin action:

1. Use Text Edit (or the Simple RTF Edit application we made in Chapter 11) to

create a Credits.rtf file. Y ou can say anything you'd like here. We chose to create
the text you seein Figure 17-14.

Figure 17-14. Creating the Credits.rtf file

http://www.it-ebooks.info/

www.it-ebooks.info

["'\.

« Credics,rif
== op [BIiSi |[=a=& pedw
]
I

i i i i i i i
: Iz : Iz = le = E

U
L
I3

-r

Programming By:
Jamas Duncan Rasidson

Quality Assurance By:
Chuck Topargk

Special Thanks Ta:
Jo Raedson. Mike Barpn, and $e rest of tha echaical review

@ang. You Lnovw wha you are

. Save thisfileto ~/LearningCocoa/Dot View/Credits.rtf.

. Return to Project Builder, and add the Credits.rtf file to the project (Project —#
Add Files). Be sure that it is added to the Dot View target.

. Build and run (38-R) the application. When you open the about box, you should
see something like Figure 17-15.

Figure 17-15. Our finished about box

©

Dot View
Dot View version 1.6 (vi.00
Pragramming By:

James Uuncan Daviosan

Quality Aasuranoe By:
Chuck Taporok

Special Thanks Ta:

Jo Dawidson, Mike Baron, and $he rast of tha
IBEnnical mnview gang. You knaw who you pr

Copryright FO02 Jarmes Duncan Davidicn

http://www.it-ebooks.info/

www.it-ebooks.info

L LY
>

Once you create an RTF file and add it to Project Builder, you
can edit it directly in Project Builder. However, we couldn't start
by creating the RTF file directly in Project Builder. Hopefully,
the Project Builder team will add this functionality in future
revisions to the Developer Tools.

http://www.it-ebooks.info/

17.5 Tweaking Compiler Settings

www.it-ebooks.info

The last step before shipping an application is to build an optimized version of it with no
debugging information. To set up the compiler for this:

1. Open the active target settings (Project —# Edit Active Target), and navigate to
the Settings —# Simple View —# GCC Compiler Settings panel, as shown in

Figure 17-16.

Figure 17-16. GCC Compiler Settings

=3 Dot View - Target: Dot Wiew
w | L & Dor View +
% 1‘\ A h
o, Fira L] LT Draig
B -
= 10 Targee Dok Wiars: # =1 5D
- A = L . =
1 Target "Dat View” of Project Dot View™
i ek ry ™ v GCC Campller Settings

I+ Batiings
|
3 Samale View Cemaler werwar GCC %l L 1!
~| Genery fnminge
| szl non Semngs

EEE Cormnplbir Lastinas Wirnisgs Debugging Sypmi=lih
2 LizkEr Spmngs — Trean a8 warnd nge- a8 BTy _| Ceneraie debugging symbos
i Frede Hedde k
-1 Srarck Parra Code Geanratine
s Comgiber Semings

zaa Archve Latlings Dprimizanion bevel: | Diptimi sxiion far oooe sipe -0

Cm e T W R Optimization tor code size as cppeard io apeesd Lint

E Infoplist £ rlnas ELDMITEDED T 63 e 300 [D00E, SECHEIE Me ned O DoDE
L Lmgle Ve
a Bail i fseie Ak Conargin proliing code
1 Cluplaw Irfrmak

o Advirsad Feslurad
L2 Locoe-3pac e CCC % PFE cigpas
i Cocna hrea-Saecit
- | Fure Jawi-Spedlic Dbver © Compller Flags
K Pocamens TVReE
= - w
i L

nart View

Breild Frases

teadari

s Pl mm

b Tew exiled noimaly

2. Uncheck the Generate debugging symbols box.

A setting that you will be tempted to tweak, but probably shouldn't until you have quite a
bit of experience, isthe optimization level box. Project Builder ships with many possible
settings for this, but in general the default setting of - Os (optimize for code size) isthe
best to use, as it makes the resulting binary as small as possible, both on disk and in
memory. The number one performance problem of applications, according to Apple
engineers, isthat alarge application memory footprint will cause Mac OS X's virtual
memory system to work overtime. Using the - Os setting helps prevent your application

http://www.it-ebooks.info/

www.it-ebooks.info

from large amounts of memory swapping to and from disk, thus increasing your user's
experience.

http://www.it-ebooks.info/

www.it-ebooks.info

17.6 Packaging for Distribution

The last thing you do when devel oping an application-packing it up for distribution-is the
first experience most users will have with your software. Unfortunately, too many
applications out there come with installers that make their users jump through hoops. Since
Cocoa applications are bundles that can be drag-and-dropped anywhere on your system
with ease, it makes sense to distribute your applications in the simplest way possible: using
compressed disk images. Compressed disk images download easily, most browsers will
automatically mount the drives contained in them, and, best of all, they don't require the
purchase of an expensive installer that your user probably won't appreciate.

Making a compressed disk image is simple. The following steps will bundle up our Dot
View application for distribution:

1. Create anew folder on your desktop, named Dist.

2. Drag the built Dot View application from the ~/LearningCocoa/Dot View/build
folder to the Distfolderon your desktop.

3. Launch the Disk Copy utility. It islocated in your /Applications/Utilities folder.

4. Select the New —+ Image from Folder or VVolume menu from Disk Copy. Disk
Copy presents a dialog box to choose the folder. Select the Dist folder on your
desktop, and click the Image button.

5. Another dialog box will open, as shown in Figure 17-17, asking you to select some
options. Select compressed for the image format, and save the resulting image to

your desktop.

Figure 17-17. Making a compressed disk image using Disk Copy

http://www.it-ebooks.info/

www.it-ebooks.info

Image Falder
g

Save 4t Dot Wiew

Where i Desktop = | I
Image Formar | compressed 4|
Encrvprion A |

" Cancel f Sive |

6. Click the Save button. After afew status boxes go by, you should have aDot View.

dmg file ready for distribution. Double click on the .dmg file, and mount it as a disk
drive.

http://www.it-ebooks.info/

www.it-ebooks.info

17.7 Closure

After 17 chapters, you should now have aworking foundation of how to build simple
Cocoa applications. (And it is quite likely that you have finished the book in a much
shorter time than it took to write!) To be sure, we haven't covered every topic in depth, but
we have given you enough knowledge to be dangerous. These are the next steps you should
take in your quest to become a great Cocoa programmer:

. Read more about Cocoa. We noted a few books on Cocoa in the Preface, which you
should check out.
. Write applications. There's no substitute for experience.

There's still alot you will need to learn to master Cocoa programming, but you should now
be over theinitial "huh?' stage and ready to dive in deep.

Good luck!

http://www.it-ebooks.info/

www.it-ebooks.info

17.8 Exercises

1. Provideanicon, "help", and customize the about box for the Simple RTF Edit
application from Chapter 11.

2. Package up for distribution the Simple RTF Edit application.

3. Write a complete application from scratch, utilizing the knowledge that you've
gained from this book.

http://www.it-ebooks.info/

www.it-ebooks.info

Part V: Appendixes

The appendixes include quick-reference material for learning more about
Cocoa's Objective-C classes. In addition, they list resources beyond the
scope of this book, to expand your Cocoa devel opment horizon.

This section includes the following appendixes.
Appendix A
Appendix B

Appendix C

http://www.it-ebooks.info/

www.it-ebooks.info

Appendix A. Exercise Solutions

This appendix gives some tips, hints, and answers to the exercises found at the end of each
chapter.

http://www.it-ebooks.info/

www.it-ebooks.info

A.1 Chapter 2

1. Open aFinder window, and navigate to the /Devel oper/Applications folder. Drag
the Project Builder and Interface Builder icons to your Dock.

2. Open a Finder window and navigate to the /Devel oper/Documentation/Cocoa
folder. Drag the CocoaTopics.html file to your Dock.

http://www.it-ebooks.info/

www.it-ebooks.info

A.2 Chapter 3

1. One way to access the documentation:

Open the /Devel oper/Documentation/Cocoa/CocoaTopics.htmifile in your web
browser of choice, click on the Foundation link in the Objective-C Framework
Reference section, and then follow the NSChj ect and NSSt r i1 ng links,

2. One way to find the documentation:

In the Foundation reference document that the NSCoj ect and NSSt r i ng links
are on, go to the bottom of the page, and click on the Functions link. Y ou'll find the
NSLog documentation on this page.

ol Use the Find functionality of your browser (Edit —#
. Find, or 3f-F on most browsers) to search for the NSLog
“! 4. documentation on this rather large page.

3. Oneway todoitisto add thefollowing linetothei ni t Wt hName: arti st:
method of the Song class:

NSLog(@i sa: Y@self %@, isa, self);

Thiswill print the name of the class as well as the description.

http://www.it-ebooks.info/

www.it-ebooks.info

A.3 Chapter 4

1. Here'soneway todoit:

Open the strings project we created, and place a breakpoint beforethe[art i st r el ease] statement. Debug the
application, and enter in the following commands into the gdb console:

(gdb) print-object [artist |owercaseString]
(gdb) print-object [artist uppercaseString]

2. One possible solution is to create a project named "fileprinter" with the following main.mfile:

#i nport <Foundati on/ Foundati on. h>

int main(int argc, const char * argv[]) {
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
if (argc > 1) {
NSString * filename = [NSString stringWthCString:argv[1]];
NSString * file = [NSString stringWthContentsOFile:fil enane];
printf("%\n", [file UTF8String]);

}
[pool release];
return O;

}

When executed from Project Builder, nothing will happen, but if you go to the terminal and issue the following
commands, you will see the contents of the main.m file printed:

[titanium ~] duncan% cd ~/ Lear ni ngCocoal/fileprinter
[titanium ~/ Learni ngCocoa/fileprinter] duncan% build/fileprinter main.m

Try thiswith afew other files.
3. Oneway to look up this documentation:

Open the /Devel oper/Documentation/Cocoa/CocoaTopics.html file in your web browser of choice, click on the
Foundation link in the Objective-C Framework Reference section, and then follow the NSAr r ay, NSSet and
NSDi cti onary links.

4. One solution isto add the following line of code to the main method:
[array witeToFile: @foo.plist” atom cally: YES];

When you run the arrays program with this additional line, afoo.plist file will be written into ~/LearningCocoa/arrays/
build containing the elements of the array.

5. One possible solution is to create a project named "dictionarysaver" with the following main.mfile:

#i nport <Foundati on/ Foundati on. h>

int main(int argc, const char * argv[]) {
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
NSMut abl eDi ctionary * dict = [NSMut abl eDi ctionary dictionary];
[dict setObject: @The Meaning of Life" forKey: @A String"];
[dict setObject:[NSNunber nunberWthint:42] forKey: @An |Integer"];

http://www.it-ebooks.info/

www.it-ebooks.info

[dict witeToFile: @dict.plist" atomically: YES];
[pool release];
return O;

}

When you run this program, the dictionary will be written to the dict.plist file in the ~/LearningCocoa/dictionarysaver
folder. Thisfile will look as follows:

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE plist PUBLIC "-//Apple Conputer//DITD PLIST 1.0//EN'" "http://ww. appl e
com DTDs/ PropertyList-1.0.dtd">
<plist version="1.0">
<di ct>
<key>A String</ key>
<string>The Meani ng of Life</string>
<key>An | nt eger </ key>
<i nt eger >42</i nt eger >
</ dict>
</plist>

6. The dictionaries example application doesn't release the di ct object. The following line of code is needed after the
printf statement:

[dict rel ease];

http://www.it-ebooks.info/

www.it-ebooks.info

A.4 Chapter 5

1. Oneway to do thisisto select the text |abels, then change the font using the Font
Panel (Format — Show Fonts, or 38-T).

2. Oneway todo thisisto select thet ot al Fi el d, then change the font color using

the Font Panel. To access the color picker, use the Extras... pull-down menu on the
Font Panel.

http://www.it-ebooks.info/

www.it-ebooks.info

A.5 Chapter 6

1. The documentation can be found in the /Devel oper/Documentation/Cocoa /
CocoaTopics.html folder. Click on the Application Kit link in the Objective-C
Framework Reference section, and then follow the NSW ndow and NSVi ew links.

2. The easiest way to do thisisto select the window in Interface Builder and change
the title using the Attributes inspector. Y ou can bring the inspector up by hitting

Shift-§g-1.

3. Oneway to do thisisto edit the Controller.h file directly to match the following
code:

@nterface Controller : NSObject

{
| BQutlet id converter:
| BQut | et NSText Field dol |l arFi el d;
| BOut|l et NSTextField rateField;
| BQut |l et NSTextField total Field;
}

- (I BAction)convert: (id)sender;

@nd

http://www.it-ebooks.info/

www.it-ebooks.info

A.6 Chapter 7

1. Oneway to dothisisto edit thedr awRect : method as follows:

{

}

(voi d)drawRect: (NSRect) rect

[[NSCol or col orWthCalibratedRed: 1.0 green: 0.0 blue: 0.0 al pha:1.0] set];
NSRect Fil | ([sel f bounds]);

2. The easiest way to do thisisto add the drawing code from the String View application into the Line View
dr awRect : method as follows:

{

}

@nd

(voi d) drawRect : (NSRect) r ect

NSRect bounds = [sel f bounds];

NSPoi nt bottom = NSMakePoi nt ((bounds. si ze.wi dth/2.0), 0);

NSPoi nt top = NSMakePoi nt ((bounds. si ze. wi dt h/ 2. 0), bounds. si ze. hei ght);
NSPoi nt | eft = NSMakePoint (0, (bounds. size. height/2.0));

NSPoi nt right = NSMakePoi nt (bounds. si ze.wi dth, (bounds. size. height/2.0));

[[NSCol or whiteCol or] set];
[NSBezi erPath fill Rect: bounds];

[[NSCol or bl ackCol or] set];
[NSBezi er Pat h strokeRect: bounds];

[NSBezi er Pat h strokeLi neFronPoi nt:top toPoint: bottoni;
[NSBezi er Pat h strokeLi neFronPoint:right toPoint:left];

[[NSBezi er Pat h bezi er Pat hWt hOval | nRect : bounds] stroke];
NSString * hello = @Hello World!";
NSMut abl eDi ctionary * attribs = [NSMut abl eDi cti onary dictionary];
[attribs setObject:[NSFont fontWthNanme: @ Ti nes" size: 24]

f or Key: NSFont Att ri but eNane] ;
[attribs set Object:[NSCol or redCol or]

f or Key: NSFor egr oundCol or Att ri but eNane] ;
[hel | o drawAt Poi nt : NSMakePoi nt ((bounds. si ze. wi dt h/ 2. 0),

(bounds. si ze. hei ght/2.0))
withAttributes:attribs];

3. Oneway to do thisisto insert the following line of code before drawing any of thelinesin Line View:

[NSBezi er Pat h set Def aul t Li neW dt h: 3. 0] ;

Thiswill cause al paths to be drawn with 3-point-wide strokes. Try some other values.

4. Oneway of findingthe NSBezi er Pat h documentation isto click the Find tab in Project Builder (or use the menu
Find —# Show Batch Find). Enter NSBezi er Pat h into the Find box, and hit Return. After afew moments,
Project Builder will show you all the occurrences of the NSBezi er Pat h string, both in your project and in the
frameworks against which it's linked. To limit the search to just your project, adjust the "This Project” pull-down to
"This Project, no frameworks."

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

A.7 Chapter 8

1. The easiest way to accomplish thisisto rename the nrouseDown: method to nouseDr agged: .
2. Oneway to do thisisto modify thei ni t Wt hFr ane: method as follows:

(id)initWthFrane: (NSRect) frane

{
self = [super initWthFrane:frane];
center.x = frane.size.width / 2.0;
center.y = frane. size. height / 2.0;
radi us = 20.0;
color = [[NSCol or redCol or] retain];
return self;

}
3. Oneway of changing theset Radi us: method is asfollows:

- (I BAction)set Radi us: (id)sender

{
fl oat newRadi us = [sender fl oatVal ue];
if (newRadius != radius) {
radi us = newRadi us;
[sel f set NeedsDi spl ay: YES];
}
}

Thiswill ensure that aredraw of the interface only occurs when it is needed.

4. One way to do thisisto makethe My Del egat e object instance a delegate of NSAppl i cat i on and
implement the appl i cat i onShoul dTer m nat e: method. To do this, Control-drag a connection from
File's Owner to MyDelegate in Interface Builder, then add the following method to the My Del egat e class:

(NSTer m nati onRepl y) appl i cati onShoul dTer m nat e: (NSAppl i cati on *) sender

{
int answer = NSRunAl ertPanel (@Qit", @Are you sure?",
@Qit", @Cancel", nil);
if (answer == NSAl ertDefaul tReturn) {
return NSTer m nat eNow;
} else {
return NSTerm nat eCancel ;
}
}

5. We suggest changing it to blue by modifyingthei ni t W t hFFr ane: method as follows:

- (id)initWthFrame: (NSRect) frane

{
self = [super initWthFrane:frane],;
center.x = frane.size.width / 2;
center.y = frane.size. height / 2;

http://www.it-ebooks.info/

radi us 20. 0;
col or [[NSCol or
return self;

bl ueCol or] retain];

}
Of course you can change it to whatever color you please.
6. To do thisrequires setting the springs appropriately in Interface Builder.

a. Set the springs for the Dot View as shown in Figure A-1.

Figure A-1. Spring settingsfor Dot View

o2

Wirstl oo Tzl Vearwy Foaniam] Infn

Hre =§

Lock e Frame
Lapoest Apct =1

Boiipem L 2 | WwidihHeighy

B 2 Wt a0

. | BE h: 281

AL

A

www.it-ebooks.info

7. Set the springs for the slider as shown in Figure A-2.

Figure A-2. Spring settingsfor Dot View's dider

MERidnr infa

o

Wirslnew
ol

Lock Wew Frame
Lapout Arct =1

Borioem L 2} wadihHeighs #H

B |20

W 13789

v, | 28

BAnETE

8. Set the springs for the color well as shown in Figure A-3.

Figure A-3. Spring settingsfor Dot View's color well

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

A.8 Chapter 9

1. Gointo Interface Builder, and either edit the column header, either directly or using the inspector.

2. Oneway to doitisto makethe MyDat aSour ce object instance a delegate of NSAppl | cat i on and
implement theappl i cat i onShoul dTer m nat e: method. To do this, Control-drag a connection from
File's Owner to MyDataSource in Interface Builder, then add the following method to the My Dat aSour ce
class:

- (NSTerm nati onRepl y) appl i cati onShoul dTer m nat e: (NSAppl i cati on *) sender

{
int answer = NSRunAl ertPanel (@Qit", @Are you sure?",
@Quit", @Cancel”™, nil);
if (answer == NSAl ertDefaul tReturn) ({
return NSTer m nat eNow;
} else {
return NSTerm nat eCancel ;
}
}

3. TheFoodl t emclassneedsadeal | oc method to release the nane and pr i ce variables.

http://www.it-ebooks.info/

www.it-ebooks.info

A.9 Chapter 10

1. Once again, the documentation can be found in the /Devel oper/Documentation /Cocoa/CocoaTopics.htmifile.

2. Inthe active target panel of Project Builder (Project —# Edit Active Target), add a document type with the following
settings:

o Name: Property List
o Extensions: plist
o Document Class: MyDocument
Build and run (§8-R) the application. Y ou should be able to read and write plist files now.

3. Therevert functionality doesn't work becausethewi ndowCont r ol | er Di dLoadN b method isn't called, and that
is where we turn the contents of afileinto astring to use. To fix this, edit the| oadDat aRepr esent at i on:
of Type: method as follows:

- (BOOL) | oadDat aRepresent ati on: (NSData *)data of Type: (NSString *)type
{
if (textView({
NSString * text = [[NSString alloc]initWthData: dataFronFile
encodi ng: NSUTF8St ri ngEncodi ng] ;
[textView setString:text];
[text rel ease];
} else {
dataFronfFile = [data retain];

}
return YES;

http://www.it-ebooks.info/

www.it-ebooks.info

A.10 Chapter 11

1. Toturn on the ability for the TextView to handle graphics from within Interface Builder, simply click on the
TextView, and bring up the Attributes inspector, as shown in Figure A-4. Simply click on the radio buttons, and then

remove the corresponding lines of code from MyDocument.m.

Figure A-4. TextView attribute inspector

NS Texldaw Inln
Aniributes =)

Lolor

- Text

Backgrownd

Editabie

=

Lraphics allcaed
f Unda allowed *

i
B sultigle fants allgwed
#

Emall
W treww Seroiibar

2. Addthefollowing lineto the anakeFr omNi b: method:
[textView setRul er Vi si bl e: YES];
3. One solution:

Add amenu item named " Speak” to the File menu of the MainMenu.nib file. Connect the menu item to
Fi rst Responder . st art Speaki ng by Control-dragging a connection from the menu item to the First
Responder icon. This makes our speak Text method obsolete, so it can be removed.

4. Oneway to do thisisto modify theanal yzeText : method, as shown here:

- (I BAction)anal yzeText: (id)sender
{
int count = O;
i nt fontChanges = -1,
idlastAttribute = nil;
NSText St orage * storage = [textView textStorage];

while (count < [storage length]) {
idattributeValue = [storage attribute: NSFont Attri but eName
at | ndex: count
ef fectiveRange: nil];
if (attributevValue !'= lastAttribute) {
f ont Changes++;

}

http://www.it-ebooks.info/

|ast Attribute = attri buteVal ue;
count ++;

}

NSBegi nAl ert Sheet (@ Anal ysi s",

@,

nil,

nil,

[textView wi ndow] ,
nil,

NULL,

NULL,

nil,

11

11
11
11
11
/1
11
Il
11

www.it-ebooks.info

title /1

default button | abel
cancel button | abel
ot her button | abel
docunent w ndow
nodal del egate

sel ector to nethod
di sm ss sel ect or
context info

@ Font Changes % \ nCharacter Count %",

f ont Changes,

[storage length]);

http://www.it-ebooks.info/

www.it-ebooks.info

A.11 Chapter 12

1. The easiest way to do thisisto add the Font menu to the MainMenu.nib file. Then,
in your application, use the Font menu to bring up the Font Panel (or hit 3E-T).

2. Thisisamost atrick question.

By default, the File —# Print command works and will print out the Dot View
window. To print just the Dot View, disconnect the File —# Print menu item from
First Responder. print,then connect it (by Control-dragging) to the

Dot Vi ewareaandthepri nt : action.

3. Simply drag the image view to encompass the entire window. Y ou may even want
to turn the border off so that only the image contained by the view will print. Try
setting the image view to some of the imagesin the /Library/Desktop Pictures
folder for printing.

http://www.it-ebooks.info/

www.it-ebooks.info

A.12 Chapter 13

1. Oneway to do this:

Add the following method to Controller.m, and connect it to a"Previous Image"
button:

{

}

(I BActi on) prevousl mage: (i d) sender

i f (currentlmage == 0) {
currentl mage = [inages count] - 1;
} else {

currentl nage- -;

}

[1 mageVi ew set | nage obj ect At | ndex: current | mage] ;

2. Oneway to do thisisin Interface Builder. In the inspector, set the key equivalent of
the next button to "n" and of the previous button to "p".

‘ Be sure to hit Return after entering in the key equivalent so that it

isstored in the nib file. We had a few problems with this feature
on some builds of Interface Builder until we discovered this.

http://www.it-ebooks.info/

www.it-ebooks.info

A.13 Chapter 14

1. The best way to do thisisto follow the procedure that we detailed in the chapter:
a. Create alocalized nib file variant.
b. Modify the various strings in the Ul for their new language.

If you don't know another language, or if you just want to check your
tranglations, use the Trandation channel of Sherlock 3.

http://www.it-ebooks.info/

A.14 Chapter 15

www.it-ebooks.info

1. Find the ~/Library/Preferences/com.oreilly.Favorites file, and double-click it to open it in the Property List Editor (/Developer/
Applications).

2. Create a button on the interface for the Favorites application, and have it call the following action method:

- (I'BAction)reset: (id)sender

{
[
[
[
[

}

prefs renovebj ect For Key: @ FavBook"];
prefs renmovebj ect ForKey: @ FavCity"];
prefs renovej ect For Key: @ FavCol or"];
prefs renovebj ect For Key: @ FavFood"];

3. Oneway to do this:

a. Create adefault.plist file using Property List Editor. The root key should be of type Dictionary, and it should have four
children. Thefile should look as follows when you are done with it:

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE plist SYSTEM "file://local host/ Systenl Li brary/ DTDs/ PropertylList.dtd">
<plist version="0.9">
<di ct >

<key>FavBook</ key>
<string>Learni ng Cocoa</string>
<key>FavCi ty</ key>

<string>San Francisco </string>
<key>FavCol or </ key>
<string>Red</string>
<key>FavFood</ key>

<string>Mexi can</string>

</ dict>
</plist>

b. Add the default.plist file as a resource to your project.

c. Changethei ni t method asfollows:

{

}

(id)init

[super init];

NSString file = [[NSBundl e nmai nBundl e]
pat hFor Resour ce: @default" of Type: @plist];

NSDi ctionary * defaultPrefs = [NSDi ctionary
dictionaryWthContentsOFile:file];

prefs = [[NSUser Def aul ts standardUserDefaults] retain];

[prefs registerDefaul ts:defaultPrefs];

return self;

4. Oneway to do this:

Create anew action method in the Controller.h file as follows:

- (I'BAction)rateUpdat ed: (i d)sender

{

[[NSUser Def aul t s st andar dUser Def aul t s]

set Fl oat Val ue: [sender fl oat Val ue]
forKey: @rate"];

http://www.it-ebooks.info/

www.it-ebooks.info

Hook ther at eFi el d text fieldtother at eUpdat ed: action method so that it is called whenever the contents of the field are
changed. Next, add an awakeFr omNi b method to the Controller.h file as follows:

- (voi d) anakeFromNi b

{
[rateFi el d setFl oat Val ue: [[NSUser Def aul t s st andar dUser Def aul t s]

fl oat ForKey: @rate"];

http://www.it-ebooks.info/

www.it-ebooks.info

A.15 Chapter 16

1. Oneway to do this;

a. Add an outlet named wor dCount Fi el d to the Controller class.

b. Add two text labelsto the utility panel: the first named "Number of Words" and the second being a
place holder. Connect the place holder to the wor dCount Fi el d outlet in the File's Owner object

proxy.

¢. Add thefollowing codeto the showl nf oPanel : method:

#inport "Controller.h"

@ npl enent ati on Controller

{

}

@nd

(I BActi on) showl nf oPanel : (i d) sender

if (!'infoPanel Controller) {

[NSBundl e | oadNi bNaned: @ | nf oPanel " owner:sel f];

i nf oPanel Control ler = [[NSW ndowControl |l er all oc]

i ni t WthW ndow: i nf oPanel] ;

}
[textLengthField setlntValue:[[textView textStorage] |ength]];
[wor dCount Fi el d setlntVal ue: [[textStorage

conmponent sSepar at edByString: @ "] count];
[i nf oPanel Control | er showW ndow. sel f];

2. Follow the same process aslisted earlier with anew par aCount Fi el d, and separate the string based on the

\ n character.

3. Usethe following process to guide you:

a Addar adi usText Fi el d outlet and ashow! nf oPanel : action method to the DotView class.

b. Create anew nib file named InfoPanel.nib.

c. Lay out auser interface that allows the radius to be displayed viaar adi usText Fi el d outlet.

d. Set the File's Owner of InfoPanel.nib to the DotView class.

e. Add amenu item to the menu bar to show the Info panel, and connect it to the showi nf oPanel :
action method.

http://www.it-ebooks.info/

www.it-ebooks.info

A.16 Chapter 17

We're going to leave the final exercises up to you to complete on your own. By now you
should be able to tackle them without any help from us. However, here are a couple of
ideas for an application to write:

. A homeinventory keeper that can keep alist of al the itemsin your house,
complete with serial numbers and date of purchase

. Anapplication that is like Dot View, but can draw shapes with a variable number
of sides

Good luck!

http://www.it-ebooks.info/

www.it-ebooks.info

Appendix B. Additional Resour ces

If your mission isto produce commercial-quality software for Mac OS X, Learning Cocoa
with Objective-C has provided a great liftoff, but your journey to market still has afair
distance to go. This appendix lists information about the documents referred to in this book
and points you to other resources that can further help you in your Cocoa application
development. These resources include the following:

« Cocoaand Mac OS X books aimed at the general programmer audience
. Articles and postings about particular Cocoa programming topics

. Sample code

. Cocoa developer mailing lists and newsgroups

« Partnership programs with Apple Computer

Y our first source of additional information pertaining to the materia presented in this book
is the book's own web site, located at the following URL:

http://www.oreilly.com/catal og/learncocoa2/

At this site, you'll find the book's sample code available for downloading, as well as any
errata and plans for future editions.

http://www.oreilly.com/catalog/learncocoa2/
http://www.it-ebooks.info/

www.it-ebooks.info

B.1 Documentation on Your Hard Drive
Many of the best resources on Cocoa development are installed on your hard drive:
Mac OS X Release Notes

Updated with every release of Mac OS X, these notes are typically one step ahead
of therest of Apple's documentation. Y ou should read through these every time you
update your system so that you can stay on top of the latest and greatest trends.

/Devel oper/Documentation/Rel easeNotes
Cocoa Developer Documentation

The one-stop shop to get accessto all the nitty-gritty documentation about Cocoa
installed onto your hard drive.

/Devel oper/Documentati on/Cocoa/CocoaTopics.htmi
Inside Mac OS X: System Overview

This overview of Mac OS X is valuable for anyone doing software development
with Cocoa. Y ou should read Inside Mac OS X: System Overview to familiarize
yourself with the architecture of Mac OS X and how to take best advantage of its
design. This guide not only describes the features and capabilities of the operating
system, but also describes concepts, facilities, and conventions common to the
system's Carbon, Cocoa, Java, and BSD application environments.

/Devel oper/Documentati on/Essential §/ SystemOver view/ SystemOver view. pdf
Inside Mac OS X: The Objective-C Programming Language

This book fully documents the Objective-C language and provides a foundation for
understanding how Cocoa works.

/Devel oper/Documentati on/Cocoa/Obj ectiveC/Obj C.pdf
Inside Mac OS X: Aqua Human Interface Guidelines

This book describes how to design your application for the Mac OS X user

http://www.it-ebooks.info/

www.it-ebooks.info

interface, known as Aqua. This guide provides examples of how to use such Aqua
interface elements as windows, controls, dialogs, and icons so that the users of your
Cocoa application will be familiar and comfortable with your product the moment
they double-click itsicon.

/Devel oper/Documentation/Essential Sy AquaHI Guidelines/ AquaH| Guidelines. pdf
Inside Mac OS X: Performance

This book tells you how to enhance your program to achieve maximum
performance and how to use development tools to analyze and tune your code.
Topicsinclude: managing virtual memory; accessing files efficiently; optimizing
Carbon applications; building efficient C, C++, and Java code; using the Mac OS X
performance measurement and analysis tools; and optimizing the in-memory layout
of your program.

/Devel oper/Documentation/Essential §/Perfor mance/per for mance.pdf
Core Foundation Developer Documentation

Cocoa s built upon the Core Foundation framework. Occasionaly, you will need to
use functionality that is at the Core Foundation level and isn't exposed viathe
Cocoa APls.

/Devel oper/Documentati on/Cor eFoundati on/cor efoundation_carbon.html

http://www.it-ebooks.info/

www.it-ebooks.info

B.2 Printed Documentation

If you prefer print over PDF, you can order printed, bound copies of many selected
documents, including the full Cocoa API reference, from Appl€'s print-on-demand
provider, Vervante:

http://www.vervante.com/apple

http://www.vervante.com/apple
http://www.it-ebooks.info/

www.it-ebooks.info

B.3 Getting Sample Code

Sometimes there is no better way to learn how to write code than to see working code
written by someone else. Apple provides software development kits (SDKs) free of charge
for most of Apple's key technologies. You'll find header files, libraries, sample code, and
other useful tools and resources in each SDK. Y ou can access alink to Apple's SDKs from
thisweb site:

http://devel oper.apple.com/cocoalindex.html

You'll aso find links to Cocoa Development Tips & Tricks, a page dedicated to sharing
Cocoa development, debugging, and porting information.

http://developer.apple.com/cocoa/index.html
http://www.it-ebooks.info/

www.it-ebooks.info

B.4 Web Sites

The Web provides a cornucopia of information about Cocoa (as it does everything else).
We've found it useful to use Google (http://www.google.com/) to provide help for the most

arcane of issues, including odd compiler error messages. Just type it into the search field
and go.
These are the sites that we browse most often for Cocoa information:

Apple Developer Connection

Apple uses the Developer Documentation area of this web site to post new
documents, and update existing ones, on a frequent basis. In addition, being a
member of the ADC (basic online membership is free) gives you access to the latest
Developer Tools releases.

http://devel oper.apple.com/
O'Reilly's Mac DevCenter

Affiliated with O'Reilly & Associates, Inc., the O'Reilly Network is home to the
Mac DevCenter, a hub site that offers news, FAQs, original articles, and other
technical information for Mac OS X developers.

http://www.macdevcenter.com/

MacTech Magazine

This MacTech web site al'so contains alot of downloadable source code and aweb
version of MacTech Online, a monthly column from the magazine that provides
online technologies and resources. These resources include links to web pages,
shareware archives, newsgroups, mailing lists, and castanet channels aimed at
Macintosh programmers.

http://www.mactech.com/
Sepwise

One of the original Cocoa sites, Stepwise was created as aresource for NeXTSTEP
developers and serves as an excellent resource for Cocoa and WebObjects

http://www.google.com/
http://developer.apple.com/
http://www.macdevcenter.com/
http://www.mactech.com/
http://www.it-ebooks.info/

www.it-ebooks.info

programming.
http://www.stepwise.com/
The Vermont Recipes

Published on Stepwise, this group of articles written by Bill Cheeseman servesas a
cookbook for developing Mac OS X applications with Cocoa using a no-nonsense,
hands-on, step-by-step approach.

http://www.stepwise.com/Articles/V ermontReci pes/index.html
Cocoa Dev Central

This siteis updated fairly frequently with tips, tricks, and tutorials for the novice
Cocoa devel oper.

http://www.cocoadevcentral .com/
CocoaDev Wiki

This user-editable web siteis by and for the Mac OS X developer community. If
you've never used a WikiWeb before, this style of site gives literally anyone
capable of viewing the page the ability to add information.

http://www.cocoadev.com/

http://www.stepwise.com/
http://www.stepwise.com/Articles/VermontRecipes/index.html
http://www.cocoadevcentral.com/
http://www.cocoadev.com/
http://www.it-ebooks.info/

www.it-ebooks.info

B.5 Mailing Lists

Many programmers find online mailing lists to be the best way to stay on top of what's
fresh and new in the Cocoa community. In addition, they can be an excellent place to get
help for a problem; just be sure to search the archives first before asking!

Appl€e's cocoa-dev mailing list
Apple's moderated email list focused exclusively on Cocoa development issues.
http://lists.apple.com/mail man/listinfo/cocoa-dev

Appl€e's projectbuilder-users mailing list
Apple's moderated email list focused on Project Builder issues.

http://lists.apple.com/mail mary/listinfo/projectbuilder-users

The OmniGroup's MacOSX-dev mailing list

A mailing list set up by one of the premier Cocoa development houses for
developersto assist each other.

http://www.omnigroup.com/devel oper/mailinglists/macosx-dev/

The MacDev-1 mailing list

A source of news, information, updates, and special offers for the Mac programmer
community.

http://www.mactech.com/macdev-1/index.html

Mamasam's Cocoa List Archive

A browsable, searchable archive of Apple's cocoa-dev and The OmniGroup's
MacOSX-dev mailing lists.

http://cocoa.mamasam.com/

http://lists.apple.com/mailman/listinfo/cocoa-dev
http://lists.apple.com/mailman/listinfo/projectbuilder-users
http://www.omnigroup.com/developer/mailinglists/macosx-dev/
http://www.mactech.com/macdev-1/index.html
http://cocoa.mamasam.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

B.6 Partnering with Apple

Apple knows that your success is Apple's success. Apple wants developers like you to
create successful applications that make customers clamor for Apple computers.

Y ou should tap into some of the programs, products, and services offered by Apple
Developer Connection (ADC). Aimed at both large and small developers, the stated
purpose of ADC is "to help you successfully develop, test, market, and distribute software
and hardware products for Apple platforms and technologies.”

In addition to publishing the Developer web site at devel oper.apple.com (which includes
the Cocoa Devel oper Documentation suite), hosting an annual A pple Worldwide
Developers Conference (WWDC), and championing devel oper needs to Apple'sown
development engineers, ADC offers several program packages useful to you and other
developers.

Y ou should become a member of one of these programs. At minimum, sign up for the
Online program...it's free! The Online program allows you to download up-to-date
development tools, gain access to certain early software releases, and receive weekly
technical updates via email.

If you'd rather have this type of information mailed to you, you can pay to become an ADC
Mailing customer. You'll then receive the latest in development tools, system software,
development kits, and reference materials viaa CD series delivered to you monthly via
snail mail.

A low-cost ADC Student Program istargeted at university students around the world. ADC
Student developers receive special introductory tools, access to a student community of
Mac programmers, and other educational opportunities, including the chance to win
scholarships to the Worldwide Devel opers Conference.

The priciest ADC programs are called Select and Premier. These programs offer a
multitude of plush products and services, including fat discounts on Apple hardware and
third-party products and services, as well as access to Apple's technical-support engineers.

For information on signing up for any of these programs, go to the following URL :

http://devel oper.apple.com/membership/

file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/LearnCocoaObjC/pages/developer.apple.com
http://developer.apple.com/membership/
http://www.it-ebooks.info/

www.it-ebooks.info

Appendix C. Using the Foundation and Application Kit
API References

When you install Apple's developer tools on your system, a set of reference documentsis
installed with them into the /Devel oper/Documentation folder on your hard drive. This
documentation covers all aspects of Mac OS X development, from building kernel
extensions to Carbon and Cocoa development. For Cocoa devel opment, the place to start
looking isin the /Devel oper/Documentation/Cocoa folder, as shown in Figure C-1.

Figure C-1. Thelocation of the Cocoa Developer Documentation

8e0e Cocoa

k @I@"Jﬂ"

1]
E_

gt 10 items selected, 250 CR available
Applications Applications F" adeityle css - Cocoa idx
Developer D umentaticn [Additional...nologies CoeaaTopics. htrml
B Lisrary Examples Apgle Help Fages
Sysiem Headers Carban avaTutoria
& Users ava Cioooa [Lepacy
Mlakefibes Coredudio OhpC Tutoria
Falpiles 2 CoreFoundatior 0
ProgeciBuslder Exiras ComeTechnologies 1elerence
Llarain Sitelnfao
Deweloper Toals TasksAnd Condepts
Eisemliak
Helg
Java
a ManFages
Metwarking
QuickTime
D1 README harr
HeleaseNojes

Simply double-click the CocoaTopics.html file, and your browser will open it, showing you
the compl ete set of Cocoa documentation. While using this book, one of the most important
parts of this documentation set will be the Objective-C Framework Reference, highlighted
in Figure C-2.

Figure C-2. Cocoa Developer Documentation index page

http://www.it-ebooks.info/

www.it-ebooks.info

8a0o D Cacoa Develaper Documentation =)
< e @ = =
I | ik .fn'Eiw!hpr."Lhrmlianl':mHL'ml'w ci el | ¥
i Lyw Hera P i gk LR T - } Boacks LA T Bl 55 X% T Macrait M Tapia W
<l o
PATH el 1 & Cinam

Cocoa Developer Documentation

Cacon i 5 o0 lbective of sdvarced abject-oriemted AP12 for dewebopd rg sppdicekiane, framessarie, sad otber sefbears i
ks fiescrt s~ il e

Site Information Getting Started Related Resources

1T i e T [Frogram W e p |alee | i e
w | Gl Ubjsdi -1 Tuterish (FE2) [pchirich| Haldd

drre e Lipaisted [iac umsrsgtine g Turtarigl {POF) Tachr

Obyjesi-Drianted Programming and e Dk

Objeckive-C Larguge (200} LEreRiie.cor HETE

{Ha] LEi PRI | &y ¥ ieek

Reference Documentation

Obdeciive-C Framework
Releramnme Helated Beference

Java Framework Reference

SpEl izt K spplizatan E i i i
LAF]] i LA i bEn
ol icyba 1 Frlavpe el pplizaba 1 Folagsn Yol 3 1% 1 vy

w

ELW!'"’-H""F o

The Objective-C Framework Reference consists of four primary sections:
Application Kit Reference

The authoritative and comprehensive reference to all of the classes, protocols,
functions, and typesin the Application Kit.

Foundation Reference

The authoritative and comprehensive reference to all of the classes, protocols,
functions, and types in the Foundation Kit.

Application Kit Release Notes

An overview of the changes to the Application Kit in the last release. With each
release of Mac OS X comes new features and functionality. This document details
the changes in the AppKit that will affect you. Y ou should read these to keep on top
of new developments.

http://www.it-ebooks.info/

www.it-ebooks.info

Foundation Release Notes
An overview of the changes to the Foundation Kit in the latest rel ease.

The benefit to this reference set isthat it will always be there, even if you are hacking
Cocoa on your PowerBook at 38,000 feet above the Atlantic Ocean. However, the shear
mass of documentation on the system can be intimidating to use.

http://www.it-ebooks.info/

C.1 Cocoa Browser

www.it-ebooks.info

When writing this book, we were planning on putting in quick references to the Foundation
and Application Kit APIs as a couple of long appendixes. We thought a bit about the best
way to organize the information and came up with afew solutions that might have worked.
Then we stumbled across Cocoa Browser, an Open Source documentation viewer written
by Hoshi Takanori and Max Horn. It was good enough, even at version 0.4, to recommend
as areplacement for the 50 or more pages of reference that would quickly become dated in
this book (not to mention that including that many pages would probably drive up the price

of the book).

Cocoa Browser presents an effective column-based interface-similar to the Finder's column
view-to the documentation installed in your /Devel oper/Documentation /Cocoa folder. This
column view allows quick access to the information you need. In Figure C-3, we've drilled

through tothei ni t method of NSCbj ect and can view the documentation for this

method directly.

Figure C-3. Using Cocoa Browser to access API reference documentation

1AL
r § & N
Locoa (Ubjective=0L} 'y
Foundation MERUl & Class ata Clange
GCenera NENumber Class Description
Classns ME5NurmberFarmatt B ple Ll_:".ﬁ'..'.il.':'. &
Pratacols N50bject Method Types
Application Kit NEPipe Class Methods
Cenera ME Bt [Instance Methods
Classes MSParCoder
Protocols NSPortMessage
MSPormmMNameServer
MS5PasitionalSpecit
imit
= [(idyimnit
[mplememed by subclysses o initialize & sew object (the e i 1
ez allocsted. An inil messape 15 penerally coupled with an r
1 | I:.'
=l assg ewlbject TheClage allos] init
An objpect isn't ready o be used unil it hoas been initiolized. The version of the imit

Ml bt class dio

Ty Oi I

talzraipon; i simply retarms solf

classMName

capy

deallor
doesMotRecogn
fr

prwardinvocatic

imverseForRelar
methodFarsalec
methodSigrnatur
mutableCopy

1Y [OT 1L Las

methed defined in the

v 15 thee garm

http://www.it-ebooks.info/

www.it-ebooks.info

Cocoa Browser is aso invaluable for seeing which methods a particular class supports and
which arguments can be used. For example, we find ourselves looking at all the methods
that NSResponder and its subclasses support on afrequent basis. In addition, the Cocoa
functions and data types from both the AppKit and the Foundation Kit are easily
browsable, as shown in Figure C-4.

Figure C-4. Browsing Foundation's functions

BB MEASSETT =

Cocoa (Objective-Cy ™% 1

Fauinc arigan F IrsdiicTan ALSEIanS F HaAESErT
Classes Functians E Bundles HSAszertl
Proafocols Twpis and Consts Byte Dirdering D WSAZsErt2 [}
Applicaricn Ki Desirnals ! MSAssems |
Classes java Setup WSAssertd
Protocols Hazh Tahles H5AZEErS
HFS File Types HSC Ascirt
Map Tables & HAChAszertl &
Ohject Allacation & ¢ NSCALIEr? ¥
P s cil
TRt o] ILLTH) the #rven comdilion is

KSkssert (condltlon, HEString *oescripkbiomn)

IHiscnssion

Ahrct & o akaake g comlition and, i he < evaliames e Caleg, cull B assertion handles Foi

The cumrent thr . prida i Tormmed <ir il & el number of ar rrila] has i

mwn asseriiin handler. whics & an olyec ol class NyAssemionblamdier. When imnvoked, an asseriiin s

handles poinls e cison mesaape Bl inclides e ns] eliin insmed Do B TasClian nasnes). N

then raises T Pep MEInkernallneonsskency Exceplion

Thee NS ARRErT srocrn cvahaales. B condilion ed derves ad o Trond end I the assér urller, Tha

T & 0 1156 v W TH= et -l cllwls. NS Assert akos o areumenis o1 B 1

Cund i s Jisral seng .
L

sveien sl B an eapeess jorn Thad evalugdies o roe on alsg. deseriniun is nil-<1vke Bl

Y ou can find Cocoa Browser at the following URL:

http://homepage2.nifty.com/hoshi-takanori/cocoa-browser

Since the tool is Open Source and licensed under the GPL, it will always be available for
use and can't just disappear. If, for some reason, this site goes away, we'll be sure to link to
where you can pick up thistool from the web site for this book:

http://www.oreilly.com/catal og/learncocoa?

http://homepage2.nifty.com/hoshi-takanori/cocoa-browser
http://www.oreilly.com/catalog/learncocoa2
http://www.it-ebooks.info/

www.it-ebooks.info

Colophon

Our look isthe result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentialy dry subjects.

The animal on the cover of Learning Cocoa with Objective-C, Second Edition, isan Irish
setter. Bred as a sporting dog in the 19th century, the Irish setter's agility and energy made
it a prime companion for pheasant and quail hunters. By the 1890s, the dog's attractive,
silky red coat and elegant build boosted its popularity as a show dog. For the past century,
breeders have created alarger dog with alonger coat, with deep chestnut red or patches of
red and white hair. The dog is aso popular as afamily dog. Described as loyal, gentle,
energetic, and happy, the Irish setter gets along well with children. Some hospitals, nursing
homes, and rehabilitation centers also adopt the Irish setter as a therapy dog.

Brian Sawyer was the production editor and proofreader for Learning Cocoa with
Objective-C, Second Edition. Jeff Holcomb was the copyeditor. Claire Cloutier and Sheryl
Avruch provided quality control. Brenda Miller wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman.
The cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma
Colby produced the cover layout with QuarkXPress 4.1 using Adobe's I TC Garamond font.
Robert Romano and Emma Colby designed the quick reference card using Adobe's Myriad
Condensed and ITC Garamond fonts.

David Futato designed the interior layout. This book was converted to FrameMaker 5.5.6
with aformat conversion tool created by Erik Ray, Jason Mclntosh, Neil Walls, and Mike
Sierrathat uses Perl and XML technologies. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono
Condensed. Theillustrations that appear in the book were produced by Robert Romano and
Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. Thetip and
warning icons were drawn by Christopher Bing. This colophon was written by Ann
Schirmer and Brian Sawyer.

The online edition of this book was created by the Safari production group (John Chodacki,
Becki Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and
cleanup tools written and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff
Liggett.

http://www.it-ebooks.info/

"Build succeeded"

"Currency Converter" application
assembling component parts of
testing

"Document Print" application

"Dot View" application
About Box, customizing for
connecting controls to
creating component parts of
finishing touches for
help files, adding to

"Favorites" application

"freeze-drying" GUIs

"Hello, World" example
code for
GUI for

"Image Bundle" application

"Menu" application
coding/archiving, adding to
formatter, adding to
table-data sorting capability, adding to

"RTF Edit" application

"Simple Date" application

"Simple Inspector"” application

"Simple Text Edit" application

"text editor" application

+ plus sign

- minus sign

.dmg files

.m files (Objective-C source code)
for Dot View[m files

Dot View
/* ... */ indicating comments
// indicating comments

= assignment operator 2nd

www.it-ebooks.info

http://www.it-ebooks.info/

== equality operator

%@ format token (print as object)
%d or %i (print as signed decimal)
%0 (print as unsigned octal)

%s (print as string)

%u (print as unsigned decimal)

%x (print as unsigned hexadecimal)
@"..." construct

\ backslash

\: colon

About Box, customizing

acceptFirstResponder method (NSResponder class)

accessor methods
action messages
actions
connecting button to
Convert action defined for Controller class
defining
making connections and
target/action relationship
ADC (Apple Developer Connection)
addObject method\: (NSMutableArray class)
Address Book API
Adobe Photoshop, designing icons with
Adobe Portable Document Format (PDF)
alert dialog boxes
alert sheets
aligning objects
allkeys method (NSDictionary class)
alloc message, coupled with an init message
alloc method 2nd
alpha
appendString\: method (NSMutableString class)
Apple Computer
Human Interface Guidelines
partnering with
Apple Developer Connection (ADC)
Apple Help 2nd

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

AppleScript scripting language 2nd 3rd
AppleScript Studio
application bundles
application ID (application identifier) 2nd
Application Kit framework (AppKit) 2nd
document-based applications and 2nd
applications 2nd [See also sample applications]
About Box, customizing for
Credits.rtf file for
debugging
designing with MVC
document-based
building
finishing touches for
Foundation framework and
help files for
icon for
main window for, setting size and location of
multilingual
packaging for distribution
as project type
running
saving data and
Applications Settings pane
Aqua interface widgets, problems aligning
archiving 2nd
GUIs
arguments
arrays 2nd
illustrated with Address Book API
replacing with sets
assignment operator (=)
vs. equality operator (==
attachments contained in RTF files
attributes
changing for text fields
setting for window

string 2nd

http://www.it-ebooks.info/

www.it-ebooks.info

autoindentation, in Project Builder

autorelease method (NSObject class)

autosizing views

auxiliary windows

awakeFromNib method (NSNibAwaking protocol)

implementing for Dot View

background threads, image loading performance and
backslash (\) in folder names
BOOL type
bounds of a custom view
breakpoints, setting 2nd
BSD Unix environment
Build & Debug button (debugger)
Build & Run button (Project Builder)
Build button (Project Builder) 2nd
build problems, resolving
bundle directories
bundles

.icns file in

localized resources and

as project type
buttons

adding to interfaces

connecting to an action

C++ programming language
C++ Tools
calibrated HSB
calibrated RGB
call command
calling
methods
superclass methods
Carbon environment
Apple Help and
categories 2nd
cats and codenames

cells

http://www.it-ebooks.info/

www.it-ebooks.info

CG calls
changes, tracking with notifications
character attributes 2nd
Cheetah release of Mac OS X
class methods 2nd
Class type
classes
creating
defining
for Currency Converter
for Dot View
implementing
for Currency Converter
for Dot View
protocols and
root class and
support
using
Classes group
Classic environment
CMYK
Cocoa
colors and
documentation/resources for further reading
frameworks of 2nd
text system of
web sites about
Cocoa Browser documentation viewer
CocoaTopics.html file 2nd
codenames and cats
coding
collection classes
storing collections as files
collections
colon (:), in method names/message arguments
colors 2nd
ColorSync 2nd

Column Title field, vs. Identifier field

http://www.it-ebooks.info/

www.it-ebooks.info

command-line development tools (list)
comments in code
compiler settings, configuring
component technologies
compressed disk images,

distributing applications and
Concurrent Version System (CVS)
connections
Console (the)
Console tab (debugger)
containsObject method\: (NSArray class)
content view
Contents directory, bundles and
Contents/Info.plist
Control palette window (Interface Builder)
Controller class, creating for Currency Converter
Controller instance object, connecting to interface
controller instance, for formatted cell example
controllers

for formatted cell example, creating
controls 2nd

connecting to Dot View
Convert action defined for Controller class
Convert button, for Controller instance object
Converter class

adding a method to

creating for Currency Converter
Converter instance object, connecting to Controller instance object
coordinate systems
copyright information
Core Graphics (CG) calls
core program framework

accessing objects and
CoreFoundation Tools
CoreServices Tools
count method (NSArray class)
count method (NSDictionary class)

Cox, Brad

http://www.it-ebooks.info/

creating
classes
custom views
data source for table views
delegates
GUIs
for table views example
Inspector panel
objects 2nd
projects in Project Builder
sample applications
\Simple Date
Currency Converter
for displaying date and time
Document Print
Dot View
Favorites
Hello, World 2nd
Image Bundle
Menu
RTF Edit
Simple Inspector
Simple Text Edit
View Print
Credits.rtf file
cString method (NSString class)
custom views
adding to main window
autosizing
paths, drawing into
preparing to draw into
strings, drawing into

CVS (Concurrent Version System)

data functionality

data source class, declaring for table views
data source, creating for table views

data types for text

data values

www.it-ebooks.info

http://www.it-ebooks.info/

dataRepresentationOfType method\: (NSDocument class)

date and time 2nd 3rd
sample application displaying
dealloc method
implementing for Dot View
invoking for objects
deallocating objects
debugger
debugger commands (list)
debugging applications
decorative lines
defaults
defaults command

delegates/delegation

deleteCharactersinRange\: method (NSMutableString class)

designated initializers

developer language-specific resource

developer region-specific resource
Developer Tools
installing
updating via ADC web site
Developer.mpkg file
development tools
GUI/command-line (lists)
as project type
device RGB
dictionaries 2nd
directory wrappers
disclosure triangle
Disk Copy utility
disk images
distributing applications and
display method (NSView class)
distributed objects 2nd
Dock (the), adding applications to
document architecture 2nd
document-based applications 2nd

building

www.it-ebooks.info

http://www.it-ebooks.info/

printing from
template for
document controller
document objects
document type arrays
documentation 2nd
accessing via Project Builder
print-on-demand
Documentation group
documents
document controller for
implementation for
speaking contents of
DotView class
creating
defining
DotView.h header file, defining
DotViewlcon.psd file

drag-and-drop

drawRect\: method (NSView class)

implementing
for Dot View

printing and

drawRect\: method (NSView class)[drawRect\: method (NSView class)

dynamic typing

embedded images

Empty interface window (Interface Builder)

encodeWithCoder\: method (NSCoding protocol)

entries (in dictionaries)

equality operator (==), vs. assignment operator (=)

error messages
event cycle
event messages
events

routing

types of

examples [See sample applications sample code]

exceptions

www.it-ebooks.info

http://www.it-ebooks.info/

exercises in this book, answers to and tips for

External frameworks and libraries group

file management
file wrappers
File's Owner object
files
storing as collections
working with
filesystem paths
filesystems
accessing

functionality of, Foundation framework and

fileWrapperRepresentationOfType\: method (NSDocument class)

first responder
focus
folders, naming
Font menu
fonts 2nd
functionality for
setting string attributes for
formal protocols
format string tokens
formatters
formatted cell example illustrating
using
formatting
functionality of, Foundation framework and
paragraphs
removing/undo function for
Foundation framework 2nd 3rd
Foundation Tools, creating 2nd
framework bundles
frameworks
core program
as project type
frameworks bundle directory

Frameworks group

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

global resources
Gosling, James
grayscale
Groups & Files list (Project Builder)
groups, projects and
GUIs (graphical user interfaces) 2nd [See also user interface]
"freeze-drying"
adding buttons to
applications with vs. without
archiving
concepts in for Cocoa
creating
with Interface Builder
development tools for (list)
finishing touches for
vs. interfaces
table views example and

testing

header (.h) file 2nd
for Dot View
help command
help files
HIG (Human Interface Guidelines)
Horn, Max
HSB
HTML format, help files and

Human Interface Guidelines (HIG)

1/0 management, Foundation framework and

.icns file

IconComposer utility

icons for applications

id keyword, dynamically typed outlet declarations and
id type

identifier attributes

Identifier field, vs. Column Title field

images

application icons and

http://www.it-ebooks.info/

embedded
preloading
imaging
immutability vs. mutability
immutable collection classes
immutable strings
IMP type
implementation
implementation (.m) files 2nd
for Dot View
info panels
info property list
modifying
Info window
implementing code for
Info.plist file
informal protocols
inheritance
caution with
init message, coupled with alloc message
init method
invoking for arrays
initial first responder, setting
initialFirstResponder method (NSWindow class)
initializers
initWwithCoder\: method (NSCoding protocol)
initWithContentsOfFile\: method (NSString class)
initWithFrame\: method (NSView class)
implementing
input/output [See entries at 1/0]
insertObject\:atindex\: method (NSMutableArray class)
insertString\:atlndex\: method (NSMutableString class)
Inspector panel, creating
inspector, sample application for
instance methods
instance, creating for Controller and Model classes
integration of graphical elements, Foundation framework and

interface

www.it-ebooks.info

http://www.it-ebooks.info/

vs. graphical user interface
sample definition of
Interface Builder

adding to the Dock

application main window, setting size and location of

File's Owner object and

parts of
internationalization [See localization]
introspection
10Kit drivers

isa variable

isOpaque method (NSView), implementing for Dot View

Jaguar release of Mac OS X
Java environment

Java programming language 2nd

java.lang.StringBuffer, NSMutableString class analogous to

kernel extensions, as project type
key-value coding
key-value pairs
key window
panels and
key-value pairs
keyboard events
keys

keystrokes 2nd [See also events]

labels

language conventions

language preferences in Mac OS X
lastPathComponent method (NSString class) 2nd
Layout menu

layout rectangles, displaying

length method (NSString class)

lines, adding for decoration

link wrappers

loadDataRepresentation\:of Type\: method (NSDocument class)

loadFileWrapperRepresentation\:ofType\: method (NSDocument class)

localization 2nd

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

architecture for

functionality of, Foundation framework and
localizedStringForKey\:value\:table\: method (NSBundle class)
lockFocus method (NSView class)
locks
loops 2nd

Iproj directory extension

.m files (Objective-C source code) 2nd 3rd
Mac OS X
development documentation for
key environments of
language preferences for
Release 10.2 (Jaguar)
Software Update tool, Developer Tools and
MacOS bundle directory
mailing lists
main nib file
formatted cell example and
opening in Interface Builder
main window
adding custom views to
panels and
main.m file 2nd 3rd
manpages
margins, setting
memory leaks
memory management 2nd
multiple documents and
notifications and
rules for
Menu bar (Interface Builder)
menu items
document controller and
finishing touches for
message arguments
message expressions

message log

http://www.it-ebooks.info/

www.it-ebooks.info

messages 2nd
nested
parts of
method name
methods 2nd
calling
overriding
minus sign (-) in method definitions
model class [See Converter model class]
Model-View-Controller [See MVC]
models 2nd
adding entries to
mouse clicks 2nd [See also events]
mouseDown\: method, implementing for Dot View
mouse events
MP3 players
songs illustrating classes
multilingual applications
multiple-document architecture
multiple-inheritance
mutability vs. immutability
mutable arrays
mutable collection classes
mutable dictionaries
mutable strings
MVC (Model-View-Controller)
designing applications with
text system and
"MyDocument" class

implementing

nested messages

New Project Assistant (Project Builder)
NeXT Interface Builder

nextKeyView outlet

NeXTSTEP

Nib file window (Interface Builder)

nib files 2nd

localizing

http://www.it-ebooks.info/

main
nil/Nil type
notification center
notifications 2nd

tracking changes with
NS prefix
NSApp object

event handling and
NSApplication class 2nd

event cycle and
NSApplicationMain function
NSArchive class
NSArray class
NSBeginAlertSheet function

NSBundle class

resources-handling methods and

NSCoder class

NSCoding protocol, serialization and

NSColor class
NSDictionary class
NSDocument class

file wrappers and

skeletal implementation of

window controllers and
NSDocumentController class 2nd
NSEvent class
NSFontManager class
NSFontPanel class
NSKeyValueCoding protocol
NSLayoutManager class
NSLog function 2nd
NSMutableArray class 2nd
NSMutableDictionary class
NSMutableSet class
NSMutableString class
NSNotificationCenter class
NSNumber class

NSObject class

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

NSPrintinfo helper object
NSPrintOperation class
NSResponder class 2nd 3rd
NSSet class
NSString class
NSTextContainer class
NSTextStorage class 2nd
NSTextView class
NSUndoManager class
NSUserDefaults class
NSView class 2nd

custom views and

defining subclass of
NSWindow class 2nd

event handling and

notifications and
NSWindowController class 2nd

numbers, comparing

object composition
object-oriented programming (OOP) with Objective-C
objectAtindex\: method (NSArray class)
objectForKey\: method (NSDictionary class)
Objective-C programming language 2nd

categories and

defined types of (list)

protocols and
Objective-C++ programming language
objects

aligning

allocating

arrays and

classes of

creating 2nd

deallocating 2nd

duplicating

functionality of, Foundation framework and

initializing 2nd

sending to another application

http://www.it-ebooks.info/

www.it-ebooks.info

working with multiple
onscreen/offscreen windows
opacity
OpenStep
operating systems, Foundation framework and
optimization level box
-Os setting
Other Sources group
outlets
for Controller class, defining
delegate
for formatted cell example, creating
making connections and
typing
oval paths

overriding methods

packaging applications for distribution
panels 2nd
paragraphs, formatting
pasteboards
pathExtension method (NSString class) 2nd
paths
drawing into views
oval
PDF (Portable Document Format)
performance
improving image load time
multiple nib files for
periodic events
Photoshop, designing icons with
PID (process ID number) 2nd
Pkglnfo file 2nd
plist files (property lists)
plug-in bundles
plus (+) sign in method definitions
polymorphism

Portable Document Format (PDF)

http://www.it-ebooks.info/

ports

preferences
accessing from the command line
functionality of, Foundation framework and
language, in Mac OS X
overriding

Preferences folder, caution when editing files in

preloading images

Preview application

primitive types

print command 2nd

print info objects

print-object command 2nd

print\: message

printf (C programming language)

printf manpage, accessing

printing 2nd 3rd
print operations for

tokens for

printShowingPrintPanel\: method (NSDocument class)

process ID number (PID) 2nd
Products group 2nd
programming, Foundation framework and
Project Builder

accessing documentation via

autoindentation for

viewing application icons and
projects

creating/building

naming
properties

application-wide, setting
property lists (plist files)
protocols 2nd 3rd

types of
Puma release of Mac OS X

Pure Java, as project type

Quartz environment 2nd

www.it-ebooks.info

http://www.it-ebooks.info/

Core Graphics calls and

rangeOfString\: method (NSString class)
receivers
reference counting
Refresh button, adding
release messages
Release Notes for Project Builder, accessing
removeObject\: method (NSMutableArray class)
removeObjectAtindex\: method (NSMutableArray class)
removeObjectForKey\: method (NSMutableDictionary class)
resources
localized
resources bundle directory
resources for further reading
Apple documentation for developers
Apple Help
AppleScript Studio
C programming language
Carbon environment
categories
Cocoa 2nd
distributed objects
Human interface Guidelines
icon design
manpages
Objective-C 2nd
Objective-C++
Resources group
responder chain
responders
first responder
retain messages
RGB
rich text
data types for
"rich-text editor" application 2nd

root class

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

routing events

RTF files, Project Builder and
RTF format

RTFD format 2nd

run loops 2nd

runtime

sample applications [See also Foundation Tools, creating]

\Simple Date
Currency Converter
for displaying date and time
Document Print
Dot View
Favorites
finishing touches for
Hello, World

code for

GUI for
Image Bundle
Menu
RTF Edit
Simple Inspector
Simple Text Edit
View Print

sample code

"Hello, World" example 2nd
custom views, setting up (finalizing)
dealloc method
designated initializer method
dot, changing size of
DotView.h header file
implementation file

for Dot View
interface, drawing
key-value coding
mouse-down events
MyDelegate.m file

modified to use sheets

notification center, removing object from

http://www.it-ebooks.info/

notification handler, adding to Dot View
opaque view
oval paths, drawing
refresh\: method
skeletal implementations
skeleton code for Dot View
song implementation
song interface
screen coordinate system
SEL type
self variable 2nd
serialization
serializers
serializing GUIs
Services submenu
set command
set method (NSColor class)
setColor\: action method, implementing for Dot View
setDelegate\: method
setObject\:forKey\: method (NSMutableDictionary class)
setRadius\: action method, implementing for Dot View
sets 2nd
setWidth\:height\: method
shared framework bundle directory
shared support bundle directory
sheetClosed\: method
sheets
skeletal implementation
Software Update tool, Developer Tools and
songs, illustrating classes
sorting table data
source code for application's entry point, displaying via disclosure triangle
Source group
spaces, in folder names
spell-checking
Standard Apple plug-ins, as project type
Standard Tools
static typing

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

Step over Function button (debugger) 2nd
string attributes 2nd [See also text attributes]3rd
string data type
string tokens
stringByAppendingString\: method (NSString class) 2nd
stringByStandardizingPath method (NSString class)
strings 2nd

drawing into views

localizing

mutable/immutable

portions of, working with
stringWithContentsOfFile\: method (NSString class)
stroke method
subclasses
substrings
substringFromIndex\: method (NSString class)
substringTolndex\: method (NSString class)
substringWithRange\: method (NSString class)
superclasses

methods for, calling

support classes

Tab key
tabbing between text fields
table columns, configuring
table entries, allowing modification of
table views
tables, sorting data in
Takanori, Hoshi
takeValueForKey\: method (NSKeyValueCoding protocol)
target/action relationship
tasks
Terminal (the)
accessing preferences and
Terminal window
text 2nd
data types of
rich

storing

http://www.it-ebooks.info/

www.it-ebooks.info

text attributes 2nd [See also string attributes]
text fields

adding to formatted cell example

changing attributes of

first
text labels, adding to text fields
Text menu
text views 2nd

inspector for viewing contents of
thread stack viewer (debugger)
threads

image loading performance and
time [See date and time]
timers
timestamp 2nd
titles

of columns

setting for windows
tokens (string format)
tools [See development tools]
tracking-rectangle events
transparency

troubleshooting

undo manager
undo/redo, Foundation framework and
unlockFocus method (NSView class)
URL handling
URLs
Apple Developer Connection (ADC)
Apple documentation for developers
Apple software development kits
Cocoa Browser
country abbreviations
language abbreviations
Mac DevCenter
sample code for this book

web sites about Cocoa

http://www.it-ebooks.info/

user events [See events]
user interface [See also GUIs]
Apple Computer guidelines for
for formatted cell example, creating
functionality of, Foundation framework and
user language-specific resources
user preferences [See preferences]
user region-specific resource
UTF8String method (NSString class) 2nd
utilities
Disk Copy
Software Update

valueForKey\: method (NSKeyValueCoding protocol)

variable viewer (debugger)
Vervante
view coordinate system
"View Print" application
views 2nd 3rd

content

custom

hierarchy of

printing

voice functionality

web sites [See URLs]

whatis command

widgets

width of table columns, adjusting
window controllers

window coordinate system

Window Environment configuration option (Project Builder)

Window menu
window objects

window server

windowControllerDidLoadNib\: method (NSDocument class)

windowNibName method (NSDocument class)
windows 2nd 3rd

auxiliary

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

key/main

onscreen/offscreen

resizing

window controllers for
windowShouldClose\: method 2nd

writeToFile\: method (NSString class) 2nd

zero-based indexing

http://www.it-ebooks.info/

	Table of contents
	Copyright
	Preface
	Audience
	About the Example Code
	How This Book Is Organized
	How to Use This Book
	Conventions Used in This Book
	How to Contact Us
	Acknowledgments

	Part I: Cocoa Overview and Foundation
	Chapter 1. Introduction to Cocoa
	1.1 The Mac OS X Programming Environment
	1.2 Cocoa Defined
	1.3 The Cocoa Frameworks
	1.4 Languages
	1.5 The Foundation Framework
	1.6 The Application Kit Framework

	Chapter 2. Cocoa Development Tools
	2.1 Installing the Developer Tools
	2.2 Interface Builder
	2.3 Other Tools
	2.4 Exercises

	Chapter 3. Object-Oriented Programming with Objective-C
	3.1 Introducing Objects
	3.2 Creating and Using Objects
	3.3 Methods and Messages
	3.4 Objective-C-Defined Types
	3.5 Creating New Classes
	3.6 Overriding Methods
	3.7 Other Concepts
	3.8 Exercises

	Chapter 4. The Cocoa Foundation Kit
	4.1 Strings
	4.2 Collections
	4.3 Memory Management
	4.4 Exercises

	Part II: Single-Window Applications
	Chapter 5. Graphical User Interfaces
	5.1 Graphical User Interfaces in Cocoa
	5.2 Designing Applications Using MVC
	5.3 Create the Currency Converter Project
	5.4 Create the Interface
	5.5 Define the Classes
	5.6 Connect the Model, Controller, and View
	5.7 Implement the Classes
	5.8 Build and Run
	5.9 Exercises

	Chapter 6. Windows, Views, and Controls
	6.1 Windows and the Window System
	6.2 The View Hierarchy
	6.3 Coordinate Systems
	6.4 Controls, Cells, and Formatters
	6.5 Targets and Actions
	6.6 Exercises

	Chapter 7. Custom Views
	7.1 Custom View Creation Steps
	7.2 Create a Custom View
	7.3 Drawing into a View: Behind the Scenes
	7.4 Draw Strings into a View
	7.5 Draw Paths into a View
	7.6 Exercises

	Chapter 8. Event Handling
	8.1 Events
	8.2 Dot View Application
	8.3 Event Delegation
	8.4 Notifications
	8.5 Exercises

	Chapter 9. Models and Data Functionality
	9.1 Protocols
	9.2 Key-Value Coding
	9.3 Table Views
	9.4 Table View Example
	9.5 Saving Data: Coding and Archiving
	9.6 Using Formatters
	9.7 Sorting Tables
	9.8 Exercises

	Part III: Document-Based Applications
	Chapter 10. Multiple Document Architecture
	10.1 Architectural Overview
	10.2 Building a Document-Based Application
	10.3 Exercises

	Chapter 11. Rich-Text Handling
	11.1 Cocoa's Text System
	11.2 Creating a Rich-Text Editor
	11.3 Enabling the Font Menu
	11.4 Text Storage and Attributed Text
	11.5 Enabling the Text Menu
	11.6 Handling Embedded Images
	11.7 Exercises

	Part IV: Miscellaneous Topics
	Chapter 12. Printing
	12.1 Printing a View
	12.2 Using Print Operations
	12.3 Setting Margins
	12.4 Exercises

	Chapter 13. Bundles and Resources
	13.1 Peeking Inside Bundles
	13.2 Using Bundles
	13.3 Exercises

	Chapter 14. Localization
	14.1 Mac OS X Language Preferences
	14.2 Localizing Resources
	14.3 Localizing Nib Files
	14.4 Localizing Strings
	14.5 Exercises

	Chapter 15. Defaults and Preferences
	15.1 How Preferences Work
	15.2 Using Defaults
	15.3 Command-Line Preferences Access
	15.4 Using Unique Application Identifiers
	15.5 Exercises

	Chapter 16. Accessory Windows
	16.1 The Role of File's Owner
	16.2 Making an Info Window
	16.3 Exercises

	Chapter 17. Finishing Touches
	17.1 Tidying Up the User Interface
	17.2 Providing an Icon
	17.3 Providing Help
	17.4 Customizing the About Box
	17.5 Tweaking Compiler Settings
	17.6 Packaging for Distribution
	17.7 Closure
	17.8 Exercises

	Part V: Appendixes
	Appendix A. Exercise Solutions
	A.1 Chapter 2
	A.2 Chapter 3
	A.3 Chapter 4
	A.4 Chapter 5
	A.5 Chapter 6
	A.6 Chapter 7
	A.7 Chapter 8
	A.8 Chapter 9
	A.9 Chapter 10
	A.10 Chapter 11
	A.11 Chapter 12
	A.12 Chapter 13
	A.13 Chapter 14
	A.14 Chapter 15
	A.15 Chapter 16
	A.16 Chapter 17

	Appendix B. Additional Resources
	B.1 Documentation on Your Hard Drive
	B.2 Printed Documentation
	B.3 Getting Sample Code
	B.4 Web Sites
	B.5 Mailing Lists
	B.6 Partnering with Apple

	Appendix C. Using the Foundation and Application Kit API References
	C.1 Cocoa Browser

	Colophon
	Index

